|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yaffe MJ, Mittmann N, Alagoz O,
Trentham-Dietz A, Tosteson AN and Stout NK: The effect of
mammography screening regimen on incidence-based breast cancer
mortality. J Med Screen. 25:197–204. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Alberg AJ, Lam AP and Helzlsouer KJ:
Epidemiology, prevention, and early detection of breast cancer.
Curr Opin Oncol. 11:435–441. 1999. View Article : Google Scholar
|
|
4
|
Momenimovahed Z and Salehiniya H:
Epidemiological characteristics of and risk factors for breast
cancer in the world. Breast Cancer (Dove Med Press). 11:151–164.
2019.PubMed/NCBI
|
|
5
|
Wu MH, Chou YC, Yu JC, Yu CP, Wu CC, Chu
CM, Yang T, Lai CH, Hsieh CY, You SL, et al: Hormonal and body-size
factors in relation to breast cancer risk: A prospective study of
11,889 women in a low-incidence area. Ann Epidemiol. 16:223–229.
2006. View Article : Google Scholar
|
|
6
|
Dai Q, Liu B and Du Y: Meta-analysis of
the risk factors of breast cancer concerning reproductive factors
and oral contraceptive use. Front Med China. 3:452–458. 2009.
View Article : Google Scholar
|
|
7
|
Golubnitschaja O, Debald M, Yeghiazaryan
K, Kuhn W, Pešta M, Costigliola V and Grech G: Breast cancer
epidemic in the early twenty-first century: Evaluation of risk
factors, cumulative questionnaires and recommendations for
preventive measures. Tumor Biol. 37:12941–12957. 2016. View Article : Google Scholar
|
|
8
|
Tamakoshi K, Yatsuya H, Wakai K, Suzuki S,
Nishio K, Lin Y, Niwa Y, Kondo T, Yamamoto A, Tokudome S, et al:
Impact of menstrual and reproductive factors on breast cancer risk
in Japan: Results of the JACC study. Cancer Sci. 96:57–62. 2005.
View Article : Google Scholar
|
|
9
|
Daly AA, Rolph R, Cutress RI and Copson
ER: A Review of modifiable risk factors in young women for the
prevention of breast cancer. Breast cancer (Dove Med Press).
13:241–257. 2021.PubMed/NCBI
|
|
10
|
Uva P, Cossu-Rocca P, Loi F, Pira G,
Murgia L, Orrù S, Floris M, Muroni MR, Sanges F, Carru C, et al:
miRNA-135b contributes to triple negative breast cancer molecular
heterogeneity: Different expression profile in basal-like versus
non-basal-like phenotypes. Int J Med Sci. 15:536–548. 2018.
View Article : Google Scholar
|
|
11
|
Perou CM, Sørile T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dalivandan ST, Plummer J and Gayther SA:
Risks and Function of breast cancer susceptibility alleles. Cancers
(Basel). 13:39532021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dumitrescu RG and Cotarla I: Understanding
breast cancer risk-where do we stand in 2005? J Cell Mol Med.
9:208–221. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Deng N, Zhou H, Fan H and Yuan Y: Single
nucleotide polymorphisms and cancer susceptibility. Oncotarget.
8:110635–110649. 2017. View Article : Google Scholar
|
|
15
|
Palomba G, Loi A, Porcu E, Cossu A, Zara
I, Budroni M, Dei M, Lai S, Mulas A, Olmeo N, et al: Genome-wide
association study of susceptibility loci for breast cancer in
Sardinian population. BMC Cancer. 15:2015. View Article : Google Scholar
|
|
16
|
Narod SA: Genetic variants associated with
breast-cancer risk. Lancet Oncol. 12:415–416. 2011. View Article : Google Scholar
|
|
17
|
Lichtenstein P, Holm NV, Verkasalo PK,
Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A and Hemminki
K: Environmental and heritable factors in the causation of
cancer-analyses of cohorts of twins from Sweden, Denmark, and
Finland. N Engl J Med. 343:78–85. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Castiglia P, Sanna V, Azara A, De Miglio
MR, Murgia L, Pira G, Sanges F, Fancellu A, Carru C, Bisail M and
Muroni MR: Methylenetetrahydrofolate reductase (MTHFR) C677T and
A1298C polymorphisms in breast cancer: A sardinian preliminary
case-control study. Int J Med Sci. 16:1089–1095. 2019. View Article : Google Scholar
|
|
19
|
Floris M, Sanna D, Castiglia P, Putzu C,
Sanna V, Pazzola A, De Miglio MR, Sanges F, Pira G, Azara A, et al:
MTHFR, XRCC1 and OGG1 genetic polymorphisms in breast cancer: A
case-control study in a population from North Sardinia. BMC Cancer.
20:2342020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pilato B, Martinucci M, Danza K, Pinto R,
Petriella D, Lacalamita R, Bruno M, Lambo R, D'Amico C, Paradiso A
and Tommasi S: Mutations and polymorphic BRCA variants transmission
in breast cancer familial members. Breast Cancer Res Treat.
125:651–657. 2011. View Article : Google Scholar
|
|
21
|
Levine AJ and Oren M: The first 30 years
of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Leroy B, Girard L, Hollestelle A, Minna
JD, Gazdar AF and Soussi T: Analysis of TP53 mutation status in
human cancer cell lines: A reassessment. Hum Mutat. 35:756–765.
2014. View Article : Google Scholar
|
|
23
|
Forbes SA, Bindal N, Bamford S, Cole C,
Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al:
COSMIC: Mining complete cancer genomes in the catalogue of somatic
mutations in cancer. Nucleic Acids Res. 39:(Database Issue).
D945–D950. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Harris CC and Hollstein M: Clinical
implications of the p53 tumor-suppressor gene. N Engl J Med.
329:1318–1327. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Vogelstein B and Kinzler KW: Cancer genes
and the pathways they control. Nat Med. 10:789–799. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Marchenko ND, Zaika A and Moll UM: Death
signal-induced localization of p53 protein to mitochondria: A
potential role in apoptotic signaling. J Biol Chem.
275:16202–16212. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chipuk JE, Bouchier-Hayes L, Kuwana T,
Newmeyer DD and Green DR: PUMA couples the nuclear and cytoplasmic
proapoptotic function of p53. Science. 309:1732–1735. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bond GL, Hu W, Bond EE, Robins H, Lutzker
SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, et al: A
single nucleotide polymorphism in the MDM2 promoter attenuates the
p53 tumor suppressor pathway and accelerates tumor formation in
humans. Cell. 119:591–602. 2004. View Article : Google Scholar
|
|
29
|
Miedl H, Lebhard J, Ehart L and Schreiber
M: Association of the MDM2 SNP285 and SNP309 genetic variants with
the risk, age at onset and prognosis of breast cancer in Central
European women: A hospital-based case-control study. Int J Mol Sci.
20:5092019. View Article : Google Scholar
|
|
30
|
Estiar MA and Mehdipour P: ATM in breast
and brain tumors: A comprehensive review. Cancer Biol Med.
15:210–227. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Børresen-Dale AL: TP53 and breast cancer.
Hum Mutat. 21:292–300. 2003. View Article : Google Scholar
|
|
32
|
Grochola LF, Zeron-Medina J, Mériaux S and
Bond GL: Single-nucleotide polymorphisms in the p53 signaling
pathway. Cold Spring Harb Perspect Biol. 2:a0010322010. View Article : Google Scholar
|
|
33
|
Whibley C, Pharoah PD and Hollstein M: p53
polymorphisms: Cancer implications. Nat Rev Cancer. 9:95–107. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Vannini I, Zoli W, Tesei A, Rosetti M,
Sansone P, Storci G, Passardi A, Massa I, Ricci M, Gusolfino D, et
al: Role of p53 codon 72 arginine allele in cell survival in vitro
and in the clinical outcome of patients with advanced breast
cancer. Tumor Biol. 29:145–151. 2008. View Article : Google Scholar
|
|
35
|
Toyama T, Zhang Z, Nishio M, Hamaguchi M,
Kondo N, Iwase H, Iwata H, Takahashi S, Yamashita H and Fujii Y:
Association of TP53 codon 72 polymorphism and the outcome of
adjuvant therapy in breast cancer patients. Breast Cancer Res.
9:R342007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lazar V, Hazard F, Bertin F, Janin N,
Bellet D and Bressac B: Simple sequence repeat polymorphism within
the p53 gene. Oncogene. 8:1703–1705. 1993.PubMed/NCBI
|
|
37
|
Peller S, Kopilova Y, Slutzki S, Halevy A,
Kvitko K and Rotter V: A Novel Polymorphism in Intron 6 of the
Human p53 Gene: A possible association with cancer predisposition
and susceptibility. DNA Cell Biol. 14:983–990. 1995. View Article : Google Scholar
|
|
38
|
Schmidt MK, Reincke S, Broeks A, Braaf LM,
Hogervorst FB, Tollenaar RA, Johnson N, Fletcher O, Peto J,
Tommiska J, et al: Do MDM2 SNP309 and TP53 R72P interact in breast
cancer susceptibility? A large pooled series from the breast cancer
association consortium. Cancer Res. 67:9584–9590. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gonçalves ML, Borja SM, Cordeiro JA, Saddi
VA, Ayres FM, Vilanova-Costa CA and Silva AM: Association of the
TP53 codon 72 polymorphism and breast cancer risk: A meta-analysis.
Springerplus. 3:7492014. View Article : Google Scholar
|
|
40
|
Cheng H, Ma B, Jiang R, Wang W, Guo H,
Shen N, Li D, Zhao Q, Wang R, Yi P, et al: Individual and combined
effects of MDM2 SNP309 and TP53 Arg72Pro on breast cancer risk: An
updated meta-analysis. Mol Biol Rep. 39:9265–9274. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dumont P, Leu JIJ, Della Pietra AC III,
George DL and Murphy M: The codon 72 polymorphic variants of p53
have markedly different apoptotic potential. Nat Genet. 33:357–365.
2003. View
Article : Google Scholar
|
|
42
|
Thomas M, Kalita A, Labrecque S, Pim D,
Banks L and Matlashewski G: Two polymorphic variants of wild-type
p53 differ biochemically and biologically. Mol Cell Biol.
19:1092–1100. 1999. View Article : Google Scholar
|
|
43
|
Pim D and Banks L: P53 polymorphic
variants at codon 72 exert different effects on cell cycle
progression. Int J Cancer. 108:196–199. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Siddique M and Sabapathy K:
Trp53-dependent DNA-repair is affected by the codon 72
polymorphism. Oncogene. 25:3489–3500. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Petitjean A, Mathe E, Kato S, Ishioka C,
Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53
functional properties on TP53 mutation patterns and tumor
phenotype: Lessons from recent developments in the IARC TP53
database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar
|
|
46
|
Zhang Y and Lozano G: P53: Multiple facets
of a rubik's cube. Annu Rev Cancer Biol. 1:185–201. 2017.
View Article : Google Scholar
|
|
47
|
Walerych D, Napoli M, Collavin L and Del
Sal G: The rebel angel: Mutant p53 as the driving oncogene in
breast cancer. Carcinogenesis. 33:2007–2017. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cossu-Rocca P, Orrù S, Muroni MR, Sanges
F, Sotgiu G, Ena S, Pira G, Murgia L, Manca A, Uras MG, et al:
Analysis of PIK3CA mutations and activation pathways in triple
negative breast cancer. PLoS One. 10:e01417632015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huun J, Gansmo LB, Mannsåker B, Iversen
GT, Sommerfelt-Pettersen J, Øvrebø JI, Lønning PE and Knappskog S:
The functional roles of the MDM2 splice variants P2-MDM2-10 and
MDM2-∆5 in breast cancer cells. Transl Oncol. 10:806–817. 2017.
View Article : Google Scholar
|
|
50
|
Bond G, Hu W and Levine A: MDM2 is a
central node in the p53 pathway: 12 years and counting. Curr Cancer
Drug Targets. 5:3–8. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Isakova J, Talaibekova E, Aldasheva N,
Vinnikov D and Aldashev A: The association of polymorphic markers
Arg399Gln of XRCC1 gene, Arg72Pro of TP53 gene and T309G of MDM2
gene with breast cancer in Kyrgyz females. BMC Cancer. 17:7582017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gao J, Kang AJ, Lin S, Dai ZJ, Zhang SQ,
Liu D, Zhao Y, Yang PT, Wang M and Wang XJ: Association between
MDM2 rs 2279744 polymorphism and breast cancer susceptibility: A
meta-analysis based on 9,788 cases and 11,195 controls. Ther Clin
Risk Manag. 10:269–277. 2014.PubMed/NCBI
|
|
53
|
Yilmaz M, Tas A, Donmez G, Kacan T and
Silig Y: Significant association of the MDM2 T309G polymorphism
with breast cancer risk in a Turkish Population. Asian Pac J Cancer
Prev. 19:1059–1062. 2018.PubMed/NCBI
|
|
54
|
Wilkening S, Bermejo JL and Hemminki K:
MDM2 SNP309 and cancer risk: A combined analysis. Carcinogenesis.
28:2262–2267. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gatti RA, Berkel I, Boder E, Braedt G,
Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K, et
al: Localization of an ataxia-telangiectasia gene to chromosome
11q22-23. Nature. 336:577–580. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kruse JP and Gu W: SnapShot: p53
posttranslational modifications. Cell. 133:930–30.e1. 2008.
View Article : Google Scholar
|
|
57
|
Chen L, Gilkes DM, Pan Y, Lane WS and Chen
J: ATM and Chk2-dependent phosphorylation of MDMX contribute to p53
activation after DNA damage. EMBO J. 24:3411–3422. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lee JH and Paull TT: Activation and
regulation of ATM kinase activity in response to DNA double-strand
breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
González-Hormazábal P, Bravo T, Blanco R,
Valenzuela CY, Gómez F, Waugh E, Peralta O, Ortuzar W, Reyes JM and
Jara L: Association of common ATM variants with familial breast
cancer in a South American population. BMC Cancer. 8:1172008.
View Article : Google Scholar
|
|
60
|
Heikkinen K, Rapakko K, Karppinen SM,
Erkko H, Nieminen P and Winqvist R: Association of common ATM
polymorphism with bilateral breast cancer. Int J Cancer. 116:69–72.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhao L, Yin XX, Qin J, Wang W and He XF:
Association between the TP53 polymorphisms and breast cancer risk:
An updated meta-analysis. Front Genet. 13:8074662022. View Article : Google Scholar
|
|
62
|
Diakite B, Kassogue Y, Dolo G, Wang J,
Neuschler E, Kassogue O, Keita ML, Traore CB, Kamate B, Dembele E,
et al: p.Arg72Pro polymorphism of P53 and breast cancer risk: A
meta-analysis of case-control studies. BMC Med Genet. 21:2062020.
View Article : Google Scholar
|
|
63
|
Diakite B, Kassogue Y, Dolo G, Kassogue O,
Keita ML, Joyce B, Neuschler E, Wang J, Musa J, Traore CB, et al:
Association of PIN3 16-bp duplication polymorphism of TP53 with
breast cancer risk in Mali and a meta-analysis. BMC Med Genet.
21:1422020. View Article : Google Scholar
|
|
64
|
Jalilvand A, Yari K, Aznab M, Rahimi Z,
Salahshouri Far I and Mohammadi P: A case-control study on the
SNP309T → G and 40-bp Del1518 of the MDM2 gene and a systematic
review for MDM2 polymorphisms in the patients with breast cancer. J
Clin Lab Anal. 34:e235292020. View Article : Google Scholar
|
|
65
|
Vodolazhsky DI, Mayakovskaya AV, Kubyshkin
AV, Aliev KA and Fomochkina II: Clinical significance of gene
polymorphisms for hereditary predisposition to breast and ovarian
cancer (review of literature). Klin Lab Diagn. 66:760–767. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chiang CWK, Marcus JH, Sidore C, Biddanda
A, Al-Asadi H, Zoledziewska M, Pitzalis M, Busonero F, Maschio A,
Pistis G, et al: Genomic history of the Sardinian population. Nat
Genet. 50:1426–1434. 2018. View Article : Google Scholar
|
|
67
|
Osorio A, Martínez-Delgado B, Pollán M,
Cuadros M, Urioste M, Torrenteras C, Melchor L, Díez O, De La Hoya
M, Velasco E, et al: A haplotype containing the p53 polymorphisms
Ins16bp and Arg72Pro modifies cancer risk in BRCA2 mutation
carriers. Hum Mutat. 27:242–248. 2006. View Article : Google Scholar
|
|
68
|
González JR, Armengol L, Solé X, Guinó E,
Mercader JM, Estivill X and Moreno V: SNPassoc: An R package to
perform whole genome association studies. Bioinformatics.
23:644–645. 2007. View Article : Google Scholar
|
|
69
|
Schlesselman JJ: Basic methods of
analysis. Case-Control Studies: Design, Conduct, Analysis: Design,
Conduct, Analysis. Oxford University Press; Oxford, UK: pp.
1761982
|
|
70
|
1000 Genomes Project Consortium, . Auton
A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA, et al: A global reference for human
genetic variation. Nat. 526:68–74. 2015. View Article : Google Scholar
|
|
71
|
De Vecchi G, Verderio P, Pizzamiglio S,
Manoukian S, Bernard L, Pensotti V, Volorio S, Ravagnani F, Radice
P and Peterlongo P: The p53 Arg72Pro and Ins16bp polymorphisms and
their haplotypes are not associated with breast cancer risk in
BRCA-mutation negative familial cases. Cancer Detect Prev.
32:140–143. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gohari-Lasaki S, Gharesouran J, Ghojazadeh
M, Montazeri V and Mohaddes Ardebili SM: Lack of influence of TP53
Arg72Pro and 16bp duplication polymorphisms on risk of breast
cancer in iran. Asian Pacific J Cancer Prev. 16:2971–2974. 2015.
View Article : Google Scholar
|
|
73
|
Eskandari-Nasab E, Hashemi M, Amininia S,
Ebrahimi M, Rezaei M and Hashemi SM: Effect of TP53 16-bp and
β-TrCP 9-bp INS/DEL polymorphisms in relation to risk of breast
cancer. Gene. 568:181–185. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Costa S, Pinto D, Pereira D, Rodrigues H,
Cameselle-Teijeiro J, Medeiros R and Schmitt F: Importance of TP53
codon 72 and intron 3 duplication 16bp polymorphisms in prediction
of susceptibility on breast cancer. BMC Cancer. 8:322008.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ayoubi SE, Elkarroumi M, El Khachibi M,
Hassani Idrissi H, Ayoubi H, Ennachit S, Arazzakou M and Nadifi S:
The 72Pro variant of the tumor protein 53 is associated with an
increased breast cancer risk in the Moroccan Population.
Pathobiology. 85:247–253. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hu Z, Li X, Qu X, He Y, Ring BZ, Song E
and Su L: Intron 3 16 bp duplication polymorphism of TP53
contributes to cancer susceptibility: A meta-analysis.
Carcinogenesis. 31:643–647. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Akkiprik M, Sonmez O, Gulluoglu BM, Caglar
HB, Kaya H, Demirkalem P, Abacioglu U, Sengoz M, Sav A and Ozer A:
Analysis of p53 gene polymorphisms and protein over-expression in
patients with breast cancer. Pathol Oncol Res. 15:359–368. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hrstka R, Coates PJ and Vojtesek B:
Polymorphisms in p53 and the p53 pathway: Roles in cancer
susceptibility and response to treatment. J Cell Mol Med.
13:440–453. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hao W, Xu X, Shi H, Zhang C and Chen X: No
association of TP53 codon 72 and intron 3 16-bp duplication
polymorphisms with breast cancer risk in Chinese Han women: New
evidence from a population-based case-control investigation. Eur J
Med Res. 23:472018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Morten BC, Chiu S, Oldmeadow C, Lubinski
J, Scott RJ and Avery-Kiejda KA: The intron 3 16 bp duplication
polymorphism of p53 (rs17878362) is not associated with increased
risk of developing triple-negative breast cancer. Breast Cancer Res
Treat. 173:727–733. 2019. View Article : Google Scholar
|
|
81
|
Campbell IG, Eccles DM, Dunn B, Davis M
and Leake V: P53 polymorphism in ovarian and breast cancer. Lancet.
347:393–394. 1996. View Article : Google Scholar
|
|
82
|
Mavridou D, Gornall R, Campbell IG and
Eccles DM: TP53 intron 6 polymorphism and the risk of ovarian and
breast cancer. Br J Cancer. 77:676–677. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dahabreh IJ, Schmid CH, Lau J, Varvarigou
V, Murray S and Trikalinos TA: Genotype misclassification in
genetic association studies of the rs1042522 TP53 (Arg72Pro)
polymorphism: A systematic review of studies of breast, lung,
colorectal, ovarian, and endometrial cancer. Am J Epidemiol.
177:1317–1325. 2013. View Article : Google Scholar
|
|
84
|
Liu J, Tang X, Li M, Lu C, Shi J, Zhou L,
Yuan Q and Yang M: Functional MDM4 rs4245739 genetic variant, alone
and in combination with P53 Arg72Pro polymorphism, contributes to
breast cancer susceptibility. Breast Cancer Res Treat. 140:151–157.
2013. View Article : Google Scholar
|
|
85
|
Sharma S, Sambyal V, Guleria K, Manjari M,
Sudan M, Uppal MS, Singh NR, Bansal D and Gupta A: TP53
polymorphisms in sporadic North Indian breast cancer patients.
Asian Pacific J Cancer Prev. 15:6871–6879. 2014. View Article : Google Scholar
|
|
86
|
Vymetalkova V, Soucek P, Kunicka T,
Jiraskova K, Brynychova V, Pardini B, Novosadova V, Polivkova Z,
Kubackova K, Kozevnikovova R, et al: Genotype and haplotype
analyses of TP53 gene in breast cancer patients: Association with
risk and clinical outcomes. PLoS One. 10:e01344632015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Perriaud L, Marcel V, Sagne C, Favaudon V,
Guédin A, De Rache A, Guetta C, Hamon F, Teulade-Fichou MP, Hainaut
P, et al: Impact of G-quadruplex structures and intronic
polymorphisms rs17878362 and rs1642785 on basal and ionizing
radiation-induced expression of alternative p53 transcripts.
Carcinogenesis. 35:2706–2715. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lai MY, Chang HC, Li HP, Ku CK, Chen PJ,
Sheu JC, Huang GT, Lee PH and Chen DS: Splicing mutations of the
p53 gene in human hepatocellular carcinoma. Cancer Res.
53:1653–1656. 1993.PubMed/NCBI
|
|
89
|
Takahashi T, D'Amico D, Chiba I, Buchhagen
DL and Minna JD: Identification of intronic point mutations as an
alternative mechanism for p53 inactivation in lung cancer. J Clin
Invest. 86:363–369. 1990. View Article : Google Scholar
|
|
90
|
Gemignani F, Moreno V, Landi S, Moullan N,
Chabrier A, Gutiérrez-Enríquez S, Hall J, Guino E, Peinado MA,
Capella G and Canzian F: A TP53 polymorphism is associated with
increased risk of colorectal cancer and with reduced levels of TP53
mRNA. Oncogene. 23:1954–1956. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Biroš E, Kalina I, Kohút A, Štubňa J and
Šalagovič J: Germ line polymorphisms of the tumor suppressor gene
p53 and lung cancer. Lung Cancer. 31:157–162. 2001. View Article : Google Scholar
|
|
92
|
Bond GL, Hirshfield KM, Kirchhoff T, Alexe
G, Bond EE, Robins H, Bartel F, Taubert H, Wuerl P, Hait W, et al:
MDM2 SNP309 accelerates tumor formation in a gender-specific and
hormone-dependent manner. Cancer Res. 66:5104–5110. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jones JS, Gu X, Lynch PM, Rodriguez-Bigas
M, Amos CI and Frazier ML: ATM Polymorphism and hereditary
nonpolyposis colorectal cancer (HNPCC) age of onset (United
States). Cancer Causes Control. 16:749–753. 2005. View Article : Google Scholar
|
|
94
|
Thorstenson YR, Shen P, Tusher VG, Wayne
TL, Davis RW, Chu G and Oefner PJ: Global analysis of ATM
polymorphism reveals significant functional constraint. Am J Hum
Genet. 69:396–412. 2001. View
Article : Google Scholar
|
|
95
|
Tommiska J, Jansen L, Kilpivaara O,
Edvardsen H, Kristensen V, Tamminen A, Aittomäki K, Blomqvist C,
Børresen-Dale AL and Nevanlinna H: ATM variants and cancer risk in
breast cancer patients from Southern Finland. BMC Cancer.
6:2092006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Einarsdóttir K, Rosenberg LU, Humphreys K,
Bonnard C, Palmgren J, Li Y, Li Y, Chia KS, Liu ET, Hall P, et al:
Comprehensive analysis of the ATM, CHEK2 and ERBB2 genes in
relation to breast tumour characteristics and survival: A
population-based case-control and follow-up study. Breast Cancer
Res. 8:R672006. View Article : Google Scholar
|
|
97
|
Lavin MF, Birrell G, Chen P, Kozlov S,
Scott S and Gueven N: ATM signaling and genomic stability in
response to DNA damage. Mutat Res. 569:123–132. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Veronesi U, Goldhirsch A, Boyle P,
Orecchia R and Viale G: Breast Cancer. Discov Med. 5:271–277.
2005.PubMed/NCBI
|
|
99
|
Collaborative Group on Hormonal Factors in
Breast Cancer, . Breast cancer and breastfeeding: Collaborative
reanalysis of individual data from 47 epidemiological studies in 30
countries, including 50302 women with breast cancer and 96973 women
without the disease. Lancet. 360:187–195. 2002. View Article : Google Scholar
|
|
100
|
World Health Organization (WHO), . IARC
Monographs on the Identification of Carcinogenic Hazards to Humans,
List of classifications by cancer sites with sufficient or limited
evidence in humans. IARC Monographs Volumes 1–132. https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdfFebruary
1–2022
|
|
101
|
Horn J, Åsvold BO, Opdahl S, Tretli S and
Vatten LJ: Reproductive factors and the risk of breast cancer in
old age: A Norwegian cohort study. Breast Cancer Res Treat.
139:237–243. 2013. View Article : Google Scholar
|
|
102
|
Lagerlund M, Sontrop JM and Zackrisson S:
Do reproductive and hormonal risk factors for breast cancer
associate with attendance at mammography screening? Cancer Causes
Control. 24:1687–1694. 2013. View Article : Google Scholar
|
|
103
|
Fioretti F, Tavani A, Bosetti C, La
Vecchia C, Negri E, Barbone F, Talamini R and Franceschi S: Risk
factors for breast cancer in nulliparous women. Br J Cancer.
79:1923–1928. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Akram M, Iqbal M, Daniyal M and Khan AU:
Awareness and current knowledge of breast cancer. Biol Res.
50:332017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Trentham-Dietz A, Newcomb PA, Egan KM,
Titus-Ernstoff L, Baron JA, Storer BE, Stampfer M and Willett WC:
Weight change and risk of postmenopausal breast cancer (United
States). Cancer Causes Control. 11:533–542. 2000. View Article : Google Scholar
|
|
106
|
Miller ER, Wilson C, Chapman J, Flight I,
Nguyen AM, Fletcher C and Ramsey I: Connecting the dots between
breast cancer, obesity and alcohol consumption in middle-aged
women: Ecological and case control studies. BMC Public Health.
18:4602018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Alegre MM, Knowles MH, Robison RA and
O'Neill KL: Mechanics behind breast cancer prevention-focus on
obesity, exercise and dietary fat. Asian Pacific J Cancer Prev.
14:2207–2212. 2013. View Article : Google Scholar
|
|
108
|
Zeng H, Irwin ML, Lu L, Risch H, Mayne S,
Mu L, Deng Q, Scarampi L, Mitidieri M, Katsaros D and Yu H:
Physical activity and breast cancer survival: An epigenetic link
through reduced methylation of a tumor suppressor gene L3MBTL1.
Breast Cancer Res Treat. 133:127–135. 2012. View Article : Google Scholar
|
|
109
|
Jardé T, Perrier S, Vasson MP and
Caldefie-Chézet F: Molecular mechanisms of leptin and adiponectin
in breast cancer. Eur J Cancer. 47:33–43. 2011. View Article : Google Scholar
|
|
110
|
Siiteri PK: Adipose tissue as a source of
hormones. Am J Clin Nutr. 45 (1 Suppl):S277–S282. 1987. View Article : Google Scholar
|
|
111
|
Zimta AA, Tigu AB, Muntean M, Cenariu D,
Slaby O and Berindan-Neagoe I: Molecular links between central
obesity and breast cancer. Int J Mol Sci. 20:53642019. View Article : Google Scholar
|
|
112
|
Lynch BM, Neilson HK and Friedenreich CM:
Physical activity and breast cancer prevention. Recent Results
Cancer Res. 186:13–42. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wu Y, Zhang D and Kang S: Physical
activity and risk of breast cancer: A meta-analysis of prospective
studies. Breast Cancer Res Treat. 137:869–882. 2013. View Article : Google Scholar
|
|
114
|
Lee J: A meta-analysis of the association
between physical activity and breast cancer mortality. Cancer Nurs.
42:271–285. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
McTiernan A, Kooperberg C, White E, Wilcox
S, Coates R, Adams-Campbell LL, Woods N and Ockene J; Women's
Health Initiative Cohort Study, : Recreational physical activity
and the risk of breast cancer in postmenopausal women: The women's
health initiative cohort study. JAMA. 290:1331–1336. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lagerros YT, Hsieh SF and Hsieh CC:
Physical activity in adolescence and young adulthood and breast
cancer risk: A quantitative review. Eur J Cancer Prev. 13:5–12.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hankinson SE, Colditz GA and Willett WC:
Towards an integrated model for breast cancer etiology: The
lifelong interplay of genes, lifestyle, and hormones. Breast Cancer
Res. 6:213–218. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hartmann LC, Sellers TA, Frost MH, Lingle
WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS,
Hillman DW, et al: Benign breast disease and the risk of breast
cancer. N Engl J Med. 353:229–237. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Key TJ, Verkasalo PK and Banks E:
Epidemiology of breast cancer. Lancet Oncol. 2:133–140. 2001.
View Article : Google Scholar
|
|
120
|
Collaborative Group on Hormonal Factors in
Breast Cancer, . Familial breast cancer: Collaborative reanalysis
of individual data from 52 epidemiological studies including 58,209
women with breast cancer and 101,986 women without the disease.
Lancet. 358:1389–1399. 2001. View Article : Google Scholar
|
|
121
|
McPherson K, Steel CM and Dixon JM: ABC of
breast diseases: Breast cancer-Epidemiology, risk factors, and
genetics. BMJ. 321:624–628. 2000. View Article : Google Scholar : PubMed/NCBI
|