|
1
|
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu
Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chang YC, Lee TS and Chiang AN: Quercetin
enhances ABCA1 expression and cholesterol efflux through a
p38-dependent pathway in macrophages. J Lipid Res. 53:1840–1850.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang J, Wang WJ, Zhai L and Zhang DF:
Association of cholesterol with risk of pancreatic cancer: A
meta-analysis. World J Gastroenterol. 21:3711–3719. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lee BH, Taylor MG, Robinet P, Smith JD,
Schweitzer J, Sehayek E, Falzarano SM, Magi-Galluzzi C, Klein EA
and Ting AH: Dysregulation of cholesterol homeostasis in human
prostate cancer through loss of ABCA1. Cancer Res. 73:1211–1218.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Phillips MC: Molecular mechanisms of
cellular cholesterol efflux. J Biol Chem. 289:24020–24029. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chushi L, Wei W, Kangkang X, Yongzeng F,
Ning X and Xiaolei C: HMGCR is up-regulated in gastric cancer and
promotes the growth and migration of the cancer cells. Gene.
587:42–47. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang W, Lokman NA, Noye TM, Macpherson AM,
Oehler MK and Ricciardelli C: ABCA1 is associated with the
development of acquired chemotherapy resistance and predicts poor
ovarian cancer outcome. Cancer Drug Resist. 4:485–502.
2021.PubMed/NCBI
|
|
8
|
Jacobo-Albavera L, Domínguez-Pérez M,
Medina-Leyte DJ, González-Garrido A and Villarreal-Molina T: The
role of the ATP-binding cassette A1 (ABCA1) in human disease. Int J
Mol Sci. 22:15932021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Luo X, Cheng C, Tan Z, Li N, Tang M, Yang
L and Cao Y: Emerging roles of lipid metabolism in cancer
metastasis. Mol Cancer. 16:762017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Adlakha YK, Khanna S, Singh R, Singh VP,
Agrawal A and Saini N: Pro-apoptotic miRNA-128-2 modulates ABCA1,
ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death
Dis. 4:e7802013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song
B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX:
Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT
activation underlies human prostate cancer aggressiveness. Cell
Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Qiu Z, Yuan W, Chen T, Zhou C, Liu C,
Huang Y, Han D and Huang Q: HMGCR positively regulated the growth
and migration of glioblastoma cells. Gene. 576:22–27. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ashida S, Kawada C and Inoue K: Stromal
regulation of prostate cancer cell growth by mevalonate pathway
enzymes HMGCS1 and HMGCR. Oncol Lett. 14:6533–6542. 2017.PubMed/NCBI
|
|
14
|
Xiong T, Xu G, Huang XL, Lu KQ, Xie WQ,
Yin K and Tu J: ATP-binding cassette transporter A1: A promising
therapy target for prostate cancer. Mol Clin Oncol. 8:9–14.
2018.PubMed/NCBI
|
|
15
|
Guo D, Reinitz F, Youssef M, Hong C,
Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S, et al:
An LXR agonist promotes glioblastoma cell death through inhibition
of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov.
1:442–456. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Touvier M, Fassier P, His M, Norat T, Chan
DS, Blacher J, Hercberg S, Galan P, Druesne-Pecollo N and
Latino-Martel P: Cholesterol and breast cancer risk: A systematic
review and meta-analysis of prospective studies. Br J Nutr.
114:347–357. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhou P, Li B, Liu B, Chen T and Xiao J:
Prognostic role of serum total cholesterol and high-density
lipoprotein cholesterol in cancer survivors: A systematic review
and meta-analysis. Clin Chim Acta. 477:94–104. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Guillaumond F, Bidaut G, Ouaissi M,
Servais S, Gouirand V, Olivares O, Lac S, Borge L, Roques J, Gayet
O, et al: Cholesterol uptake disruption, in association with
chemotherapy, is a promising combined metabolic therapy for
pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 112:2473–2478.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Menter DG, Ramsauer VP, Harirforoosh S,
Chakraborty K, Yang P, His L, Newman RA and Krishnan K:
Differential effects of pravastatin and simvastatin on the growth
of tumor cells from different organ sites. PLoS One. 6:e288132011.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li J, Gu D, Lee SS, Song B, Bandyopadhyay
S, Chen S, Konieczny SF, Ratliff TL, Liu X, Xie J and Cheng JX:
Abrogating cholesterol esterification suppresses growth and
metastasis of pancreatic cancer. Oncogene. 35:6378–6388. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhou T, Zhan J, Fang W, Zhao Y, Yang Y,
Hou X, Zhang Z, He X, Zhang Y, Huang Y and Zhang L: Serum
low-density lipoprotein and low-density lipoprotein expression
level at diagnosis are favorable prognostic factors in patients
with small-cell lung cancer (SCLC). BMC Cancer. 17:2692017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cruz PM, Mo H, McConathy WJ, Sabnis N and
Lacko AG: The role of cholesterol metabolism and cholesterol
transport in carcinogenesis: A review of scientific findings,
relevant to future cancer therapeutics. Front Pharmacol. 4:1192013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Folkerd EJ and Dowsett M: Influence of sex
hormones on cancer progression. J Clin Oncol. 28:4038–4044. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Phillips MC: Is ABCA1 a lipid transfer
protein? J Lipid Res. 59:749–763. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Saxena K and Shipley GG: Structural
studies of detergent-solubilized and vesicle-reconstituted
low-density lipoprotein (LDL) receptor. Biochemistry.
36:15940–15948. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vedhachalam C, Duong PT, Nickel M, Nguyen
D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S and Phillips
MC: Mechanism of ATP-binding cassette transporter A1-mediated
cellular lipid efflux to apolipoprotein A-I and formation of high
density lipoprotein particles. J Biol Chem. 282:25123–25130. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nagao K, Tomioka M and Ueda K: Function
and regulation of ABCA1-membrane meso-domain organization and
reorganization. FEBS J. 278:3190–3203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Takahashi Y and Smith JD: Cholesterol
efflux to apolipoprotein AI involves endocytosis and resecretion in
a calcium-dependent pathway. Proc Natl Acad Sci USA.
96:11358–11363. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lu R, Arakawa R, Ito-Osumi C, Iwamoto N
and Yokoyama S: ApoA-I facilitates ABCA1 recycle/accumulation to
cell surface by inhibiting its intracellular degradation and
increases HDL generation. Arterioscler Thromb Vasc Biol.
28:1820–1824. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hamon Y, Broccardo C, Chambenoit O,
Luciani MF, Toti F, Chaslin S, Freyssinet JM, Devaux PF, McNeish J,
Marguet D and Chimini G: ABC1 promotes engulfment of apoptotic
cells and transbilayer redistribution of phosphatidylserine. Nat
Cell Biol. 2:399–406. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
31
|
Landry YD, Denis M, Nandi S, Bell S,
Vaughan AM and Zha X: ATP-binding cassette transporter A1
expression disrupts raft membrane microdomains through its
ATPase-related functions. J Biol Chem. 281:36091–36101. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Santamarina-Fojo S, Remaley AT, Neufeld EB
and Brewer HB Jr: Regulation and intracellular trafficking of the
ABCA1 transporter. J Lipid Res. 42:1339–1345. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Koseki M, Hirano K, Masuda D, Ikegami C,
Tanaka M, Ota A, Sandoval JC, Nakagawa-Toyama Y, Sato SB, Kobayashi
T, et al: Increased lipid rafts and accelerated
lipopolysaccharide-induced tumor necrosis factor-alpha secretion in
Abca1-deficient macrophages. J Lipid Res. 48:299–306. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tang SL, Chen WJ, Yin K, Zhao GJ, Mo ZC,
Lv YC, Ouyang XP, Yu XH, Kuang HJ, Jiang ZS, et al: PAPP-A
negatively regulates ABCA1, ABCG1 and SR-B1 expression by
inhibiting LXRα through the IGF-I-mediated signaling pathway.
Atherosclerosis. 222:344–354. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang N, Silver DL, Thiele C and Tall AR:
ATP-binding cassette transporter A1 (ABCA1) functions as a
cholesterol efflux regulatory protein. J Biol Chem.
276:23742–23747. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Smith JD, Le Goff W, Settle M, Brubaker G,
Waelde C, Horwitz A and Oda MN: ABCA1 mediates concurrent
cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid
Res. 45:635–644. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tall AR: An overview of reverse
cholesterol transport. Eur Heart J. 19 (Suppl A):A31–A35.
1998.PubMed/NCBI
|
|
38
|
Qian H, Zhao X, Cao P, Lei J, Yan N and
Gong X: Structure of the human lipid exporter ABCA1. Cell.
169:1228–1239.e10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kang MH, Singaraja R and Hayden MR:
Adenosine-triphosphate-binding cassette transporter-1 trafficking
and function. Trends Cardiovasc Med. 20:41–49. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yoshioka Y, Sasaki J, Yamamoto M, Saitoh
K, Nakaya S and Kubokawa M: Quantitation by (1)H-NMR of dolichol,
cholesterol and choline-containing lipids in extracts of normal and
phathological thyroid tissue. NMR Biomed. 13:377–383. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ding X, Zhang W, Li S and Yang H: The role
of cholesterol metabolism in cancer. Am J Cancer Res. 9:219–227.
2019.PubMed/NCBI
|
|
42
|
Kitahara CM, Berrington de González A,
Freedman ND, Huxley R, Mok Y, Jee SH and Samet JM: Total
cholesterol and cancer risk in a large prospective study in Korea.
J Clin Oncol. 29:1592–1598. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang B, Song BL and Xu C: Cholesterol
metabolism in cancer: Mechanisms and therapeutic opportunities. Nat
Metab. 2:132–141. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tabas I: Consequences of cellular
cholesterol accumulation: Basic concepts and physiological
implications. J Clin Invest. 110:905–911. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Prochazka L, Koudelka S, Dong LF, Stursa
J, Goodwin J, Neca J, Slavik J, Ciganek M, Masek J, Kluckova K, et
al: Mitochondrial targeting overcomes ABCA1-dependent resistance of
lung carcinoma to α-tocopheryl succinate. Apoptosis. 18:286–299.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Schimanski S, Wild PJ, Treeck O, Horn F,
Sigruener A, Rudolph C, Blaszyk H, Klinkhammer-Schalke M, Ortmann
O, Hartmann A and Schmitz G: Expression of the lipid transporters
ABCA3 and ABCA1 is diminished in human breast cancer tissue. Horm
Metab Res. 42:102–109. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dufour J, Viennois E, De Boussac H, Baron
S and Lobaccaro JM: Oxysterol receptors, AKT and prostate cancer.
Curr Opin Pharmacol. 12:724–728. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Maslyanko M, Harris RD and Mu D:
Connecting cholesterol efflux factors to lung cancer biology and
therapeutics. Int J Mol Sci. 22:72092021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Silvente-Poirot S and Poirot M: Cancer.
Cholesterol and cancer, in the balance. Science. 343:1445–1446.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Smith B and Land H: Anticancer activity of
the cholesterol exporter ABCA1 gene. Cell Rep. 2:580–590. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu K, Zhang W, Tan J, Ma J and Zhao J:
MiR-200b-3p functions as an oncogene by targeting ABCA1 in lung
adenocarcinoma. Technol Cancer Res Treat. 18:15330338198925902019.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Huang CX, Zhang YL, Wang JF, Jiang JY and
Bao JL: MCP-1 impacts RCT by repressing ABCA1, ABCG1, and SR-BI
through PI3K/Akt posttranslational regulation in HepG2 cells. J
Lipid Res. 54:1231–1240. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Thysell E, Surowiec I, Hörnberg E, Crnalic
S, Widmark A, Johansson AI, Stattin P, Bergh A, Moritz T, Antti H
and Wikström P: Metabolomic characterization of human prostate
cancer bone metastases reveals increased levels of cholesterol.
PLoS One. 5:e141752010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Murai T, Maruyama Y, Mio K, Nishiyama H,
Suga M and Sato C: Low cholesterol triggers membrane
microdomain-dependent CD44 shedding and suppresses tumor cell
migration. J Biol Chem. 286:1999–2007. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ramprasad OG, Srinivas G, Rao KS, Joshi P,
Thiery JP, Dufour S and Pande G: Changes in cholesterol levels in
the plasma membrane modulate cell signaling and regulate cell
adhesion and migration on fibronectin. Cell Motil Cytoskeleton.
64:199–216. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Plösch T, Gellhaus A, van Straten EM, Wolf
N, Huijkman NC, Schmidt M, Dunk CE, Kuipers F and Winterhager E:
The liver X receptor (LXR) and its target gene ABCA1 are regulated
upon low oxygen in human trophoblast cells: A reason for
alterations in preeclampsia? Placenta. 31:910–918. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ohno Y, Ohori M, Nakashima J, Okubo H,
Satake N, Hashimoto T and Tachibana M: Association between
preoperative serum total cholesterol level and biochemical
recurrence in prostate cancer patients who underwent radical
prostatectomy. Mol Clin Oncol. 4:1073–1077. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Buchwald H: Cholesterol inhibition,
cancer, and chemotherapy. Lancet. 339:1154–1156. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cerovska E, Elsnerova K, Vaclavikova R and
Soucek P: The role of membrane transporters in ovarian cancer
chemoresistance and prognosis. Expert Opin Drug Metab Toxicol.
13:741–753. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Amaar YG and Reeves ME: RASSF1C regulates
miR-33a and EMT marker gene expression in lung cancer cells.
Oncotarget. 10:123–132. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Di Nicolantonio F, Mercer SJ, Knight LA,
Gabriel FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di
Palma S, Johnson P, et al: Cancer cell adaptation to chemotherapy.
BMC Cancer. 5:782005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li
K, Zhou L, Sun Y, Li M, Zhou J, et al: miR-508-5p regulates
multidrug resistance of gastric cancer by targeting ABCB1 and
ZNRD1. Oncogene. 33:3267–3276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: Role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Moitra K: Overcoming multidrug resistance
in cancer stem cells. Biomed Res Int. 2015:6357452015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bachmeier BE, Iancu CM, Killian PH,
Kronski E, Mirisola V, Angelini G, Jochum M, Nerlich AG and Pfeffer
U: Overexpression of the ATP binding cassette gene ABCA1 determines
resistance to Curcumin in M14 melanoma cells. Mol Cancer.
8:1292009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hou H, Kang Y, Li Y, Zeng Y, Ding G and
Shang J: miR-33a expression sensitizes Lgr5+ HCC-CSCs to
doxorubicin via ABCA1. Neoplasma. 64:81–91. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Iwasaki H, Okabe T, Takara K, Yoshida Y,
Hanashiro K and Oku H: Down-regulation of lipids transporter ABCA1
increases the cytotoxicity of nitidine. Cancer Chemother Pharmacol.
66:953–959. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sun M, Yang C, Zheng J, Wang M, Chen M, Le
DQS, Kjems J and Bünger CE: Enhanced efficacy of chemotherapy for
breast cancer stem cells by simultaneous suppression of multidrug
resistance and antiapoptotic cellular defense. Acta Biomater.
28:171–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen JH, Zheng YL, Xu CQ, Gu LZ, Ding ZL,
Qin L, Wang Y, Fu R, Wan YF and Hu CP: Valproic acid (VPA) enhances
cisplatin sensitivity of non-small cell lung cancer cells via HDAC2
mediated down regulation of ABCA1. Biol Chem. 398:785–792. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ma Y, Li X, Cheng S, Wei W and Li Y:
MicroRNA-106a confers cisplatin resistance in non-small cell lung
cancer A549 cells by targeting adenosine triphosphatase-binding
cassette A1. Mol Med Rep. 11:625–632. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Heilos D, Röhrl C, Pirker C, Englinger B,
Baier D, Mohr T, Schwaiger M, Iqbal SM, van Schoonhoven S, Klavins
K, et al: Altered membrane rigidity via enhanced endogenous
cholesterol synthesis drives cancer cell resistance to destruxins.
Oncotarget. 9:25661–25680. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wali VB, Bachawal SV and Sylvester PW:
Suppression in mevalonate synthesis mediates antitumor effects of
combined statin and gamma-tocotrienol treatment. Lipids.
44:925–934. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen W, Li L, Wang J, Zhang R, Zhang T, Wu
Y, Wang S and Xing D: The ABCA1-efferocytosis axis: A new strategy
to protect against atherosclerosis. Clin Chim Acta. 518:1–8. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Srivastava N: ATP binding cassette
transporter A1-key roles in cellular lipid transport and
atherosclerosis. Mol Cell Biochem. 237:155–164. 2002. View Article : Google Scholar : PubMed/NCBI
|