Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2022 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2022 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The immune landscape of hepatocellular carcinoma‑where we are? (Review)

  • Authors:
    • Maciej Gryziak
    • Krzysztof Wozniak
    • Leszek Kraj
    • Letycja Rog
    • Rafal Stec
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Medical University of Warsaw, 02‑091 Warsaw, Poland
    Copyright: © Gryziak et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 410
    |
    Published online on: September 27, 2022
       https://doi.org/10.3892/ol.2022.13530
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC) is one of the most common types of cancer diagnosed worldwide. After a decade of stagnation, several novel compounds have recently been shown to be effective in the treatment of HCC. Since immunotherapy is associated with important clinical benefits in some, but not all patients, it is essential to identify reliable predictive biomarkers. As the complex interplay between hepatocytes and immune cells is highly dependent on the tumor microenvironment, the tumor microenviroment has been suggested to be an important factor associated with the response to therapy and is currently being extensively investigated. Within this network, several important factors should be highlighted. Most of the cells are hepatocytes, but fibroblasts, endothelial cells, and immune cells are also present. Tumor‑infiltrating leukocytes include several populations of cells and each of them plays a role in forming the tumor environment. Some of these cells may have antitumor effects, whereas others may be associated with the progression of the disease. The most important subsets include tumor‑associated macrophages, tumor‑associated neutrophils, and lymphocytes. These groups are described in the present review. The immune response is controlled by immune checkpoint molecules. One of the most important molecules involved in this checkpoint process seems to be the programmed death‑1 (PD‑1) receptor, which typically is induced on activated T cells, natural killer (NK) cells, B cells, and antigen‑presenting cells. On the other hand, programmed death ligand 1 (PD‑L1) is expressed by tumor cells, hepatocytes and hepatic stellate cells, and Kupffer cells or liver sinusoidal cells. Complex interactions between ligands and receptors are dependent on the signals from the microenvironment leading to either cancer development or apoptosis. Evidence from several studies indicates that patients with higher expression levels of PD‑L1 on tumor cells or immune cells are more likely to achieve beneficial results from treatment with checkpoint blockers. This review focuses on the basic information regarding the microenvironment and its components, particularly on immune system involvement.
View Figures

Figure 1

Figure 2

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10:25–34. 2009. View Article : Google Scholar

3 

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Cheng A, Qin S, Ikeda M, Galle PR, Ducreux MP, Zhu AX, Kim T, Kudo M, Breder V, Merle P, et al: Imbrave150: Efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC)'. Ann Oncol. 30 (Suppl 9):ix183–ix202. 2019. View Article : Google Scholar

5 

Ghouri YA, Mian I and Rowe JH: Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J Carcinog. 16:12017. View Article : Google Scholar : PubMed/NCBI

6 

Novikova MV, Khromova NV and Kopnin PB: Components of the hepatocellular carcinoma microenvironment and their role in tumor progression. Biochemistry (Mosc). 82:861–873. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Jia W, Rajani C, Xu H and Zheng X: Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell. 12:374–393. 2021. View Article : Google Scholar

8 

Kumar V, Patel S, Tcyganov E and Gabrilovich DI: The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37:208–220. 2016. View Article : Google Scholar

9 

Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8:5172017. View Article : Google Scholar : PubMed/NCBI

10 

Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF and Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 135:234–243. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP and Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 6:409–421. 2004. View Article : Google Scholar

12 

Li H, Han Y, Guo Q, Zhang M and Cao X: Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 182:240–249. 2009. View Article : Google Scholar

13 

Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, Liang X and Ma C: Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 64:1593–1604. 2015. View Article : Google Scholar

14 

Chang CJ, Yang YH, Chiu CJ, Lu LC, Liao CC, Liang CW, Hsu CH and Cheng AL: Targeting tumor-infiltrating Ly6G+ myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int J Cancer. 142:1878–1889. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Mantovani A, Bottazzi B, Colotta F, Sozzani S and Ruco L: The origin and function of tumor-associated macrophages. Immunol Today. 13:265–270. 1992. View Article : Google Scholar : PubMed/NCBI

16 

Gordon S and Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol. 5:953–964. 2005. View Article : Google Scholar

17 

Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI

18 

Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar

19 

Solinas G, Germano G, Mantovani A and Allavena P: Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 86:1065–1073. 2009. View Article : Google Scholar

20 

Yao Y, Xu XH and Jin L: Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 10:7922019. View Article : Google Scholar

21 

Wan S, Kuo N, Kryczek I, Zou W and Welling TH: Myeloid cells in hepatocellular carcinoma. Hepatology. 62:1304–1312. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Wang J, Li D, Cang H and Guo B: Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 8:4709–4721. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Guo B, Li L, Guo J, Liu A, Wu J, Wang H, Shi J, Pang D and Cao Q: M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma. Oncotarget. 8:44465–44476. 2017. View Article : Google Scholar

24 

Fu XT, Song K, Zhou J, Shi YH, Liu WR, Shi GM, Gao Q, Wang XY, Ding ZB and Fan J: Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma. Cancer Cell Int. 19:712019. View Article : Google Scholar

25 

Zhang J, Chang L, Zhang X, Zhou Z and Gao Y: Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in hepatocellular carcinoma. J Invest Surg. 34:297–306. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Zong Z, Zou J, Mao R, Ma C, Li N, Wang J, Wang X, Zhou H, Zhang L and Shi Y: M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling. Front Immunol. 10:16432019. View Article : Google Scholar

27 

Ding W, Tan Y, Qian Y, Xue W, Wang Y, Jiang P and Xu X: Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS One. 14:e02239712019. View Article : Google Scholar : PubMed/NCBI

28 

Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, Sanders L, Koeppen H, Caplazi P, McBride J, et al: Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat Commun. 8:145722017. View Article : Google Scholar : PubMed/NCBI

29 

Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, Eto M and Tamada K: Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 68:201–211. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, Li Y, Deng H, Wu Y, Li M and Li JL: M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 121:22–33. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Zhou DY, Qin J, Huang J, Wang F, Xu GP, Lv YT, Zhang JB and Shen LM: Zoledronic acid inhibits infiltration of tumor-associated macrophages and angiogenesis following transcatheter arterial chemoembolization in rat hepatocellular carcinoma models. Oncol Lett. 14:4078–4084. 2017. View Article : Google Scholar

32 

Ao JY, Zhu XD, Chai ZT, Cai H, Zhang YY, Zhang KZ, Kong LQ, Zhang N, Ye BG, Ma DN and Sun HC: Colony-stimulating factor 1 receptor blockade inhibits tumour growth by altering the polarization of tumour-associated macrophages in hepatocellular carcinoma. Mol Cancer Ther. 16:1544–1554. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Sun S, Cui Y, Ren K, Quan M, Song Z, Zou H, Li D, Zheng Y and Cao J: 8-bromo-7-methoxychrysin reversed M2 polarization of tumour-associated macrophages induced by liver cancer stem-like cells. Anticancer Agents Med Chem. 17:286–293. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, Simeone DM, Zou W and Welling TH: Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology. 147:1393–1404. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar

36 

Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A natural CCR93 antagonist relieves tumour-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu C, Li SP and Zheng L: Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 50:980–989. 2009. View Article : Google Scholar

38 

Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, et al: Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 59:1415–1426. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Ringelhan M, Pfister D, O'Connor T, Pikarsky E and Heikenwalder M: The immunology of hepatocellular carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar

40 

Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE, et al: TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 571:211–218. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA and Wherry EJ: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 10:29–37. 2009. View Article : Google Scholar

42 

Wherry EJ and Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–499. 2015. View Article : Google Scholar

43 

Kim HD, Song GW, Park S, Jung MK, Kim MH, Kang HJ, Yoo C, Yi K, Kim KH, Eo S, et al: Association between expression level of PD1 by tumor-infiltrating CD8(+) T cells and features of hepatocellular carcinoma. Gastroenterology. 155:1936–1950.e17. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW and Tang ZY: Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 25:2586–2593. 2007. View Article : Google Scholar

45 

Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, et al: Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 132:2328–2339. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE, Schutz HM, de Man RA, Sprengers D, Buschow SI, et al: PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. OncoImmunology. 6:e12733092017. View Article : Google Scholar : PubMed/NCBI

47 

Kang HJ, Oh JH, Chun SM, Kim D, Ryu YM, Hwang HS, Kim SY, An J, Cho EJ, Lee H, et al: Immunogenomic landscape of hepatocellular carcinoma with immune cell stroma and EBV-positive tumor-infiltrating lymphocytes. J Hepatol. 71:91–103. 2019. View Article : Google Scholar

48 

Cariani E and Missale G: Immune landscape of hepatocellular carcinoma microenvironment: Implications for prognosis and therapeutic applications. Liver Int. 39:1608–1621. 2019. View Article : Google Scholar

49 

Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW, et al: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 70:1214–1230. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, Kong LQ, Wang L, Wu WZ and Tang ZY: Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 16:3420–3430. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, Yun JP, Xu RH, Cai QQ and Xie D: Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 9:1965–1979. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Gao X, Huang H, Wang Y, Pan C, Yin S, Zhou L and Zheng S: Tumor immune microenvironment characterization in hepatocellular carcinoma identifies four prognostic and immunotherapeutically relevant subclasses. Front Oncol. 10:6105132021. View Article : Google Scholar

54 

Budimir N, Thomas GD, Dolina JS and Salek-Ardakani S: Reversing T-cell exhaustion in cancer: Lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol Res. 10:146–153. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 14:e02125132019. View Article : Google Scholar : PubMed/NCBI

56 

Lu M, Zhang X, Gao X, Sun S, Wei X, Hu X, Huang C, Xu H, Wang B, Zhang W, et al: Lenvatinib enhances T cell immunity and the efficacy of adoptive chimeric antigen receptor-modified T cells by decreasing myeloid-derived suppressor cells in cancer. Pharmacol Res. 174:1058292021. View Article : Google Scholar : PubMed/NCBI

57 

Huang X, Xu L, Ma T, Yin X, Huang Z, Ran Y, Ni Y, Bi X and Che X: Lenvatinib plus immune checkpoint inhibitors improve survival in advanced hepatocellular carcinoma: A Retrospective Study. Front Oncol. 11:7511592021. View Article : Google Scholar

58 

Wang BJ, Bao JJ, Wang JZ, Wang Y, Jiang M, Xing MY, Zhang WG, Qi JY, Roggendorf M, Lu MJ and Yang DL: Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol. 17:3322–3329. 2011. View Article : Google Scholar

59 

Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, Szeliga W, Herbst R, Harms PW, Fecher LA, et al: Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 128:805–815. 2018. View Article : Google Scholar

61 

Calderaro J, Rousseau B, Amaddeo G, Mercey M, Charpy C, Costentin C, Luciani A, Zafrani ES, Laurent A, Azoulay D, et al: Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship With clinical and pathological features. Hepatology. 64:2038–2046. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Teng MW, Ngiow SF, Ribas A and Smyth MJ: Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–927. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Kurebayashi Y, Ojima H, Tsujikawa H, Kubota N, Maehara J, Abe Y, Kitago M, Shinoda M, Kitagawa Y and Sakamoto M: Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology. 68:1025–1041. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Abdou Y, Pandey M, Sarma M, Shah S, Baron J and Ernstoff MS: Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Br J Clin Pharmacol. 86:1690–1702. 2020. View Article : Google Scholar

66 

European Medicine Agency, . Bevacizumab, Avastin Summary of Product Characteristics. https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdfJune 12–2022

67 

European Medicine Agency, . Atezolizumab Summary of Product Characteristics. June 12–2022

68 

Roland CL, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L, Sullivan JP, Shames DS and Brekken RA: Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther. 8:1761–1771. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, et al: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 212:139–148. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 382:1894–1905. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, Kudo M, Harding JJ, Merle P, Rosmorduc O, et al: Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 23:77–90. 2022. View Article : Google Scholar

72 

Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou MM, Matilla A, et al: Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The checkmate 040 randomized clinical trial. JAMA Oncol. 6:e2045642020. View Article : Google Scholar

73 

European Medicine Agency, . Pembrolizumab Summary of Product Characteristics. https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-information_en.pdfJune 12–2022

74 

Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, et al: Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 19:940–952. 2018. View Article : Google Scholar

75 

Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, Breder V, Edeline J, Chao Y, Ogasawara S, et al: Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial. J Clin Oncol. 38:193–202. 2020. View Article : Google Scholar

76 

Kelley RK, Sangro B, Harris W, Ikeda M, Okusaka T, Kang YK, Qin S, Tai DW, Lim HY, Yau T, et al: Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study. J Clin Oncol. 39:2991–3001. 2021. View Article : Google Scholar

77 

U.S. National Library of Medicine (NIH), . Study of Durvalumab and Tremelimumab as First-line Treatment in Patients With Advanced Hepatocellular Carcinoma (HIMALAYA). ClinicalTrials.gov Identifier: NCT03298451. NIH; Bethesda, MD: 2017, https://clinicaltrials.gov/ct2/show/NCT03298451April 19–2021

78 

U.S. National Library of Medicine (NIH), . Combination Therapy of Microwave Ablation and Cellular Immunotherapy for Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT02851784. NIH; Bethesda, MD: 2016, https://clinicaltrials.gov/ct2/show/NCT02851784November 20–2021

79 

U.S. National Library of Medicine (NIH), . Hepatocellular Carcinoma Study Comparing Vaccinia Virus Based Immunotherapy Plus Sorafenib vs Sorafenib Alone (PHOCUS). ClinicalTrials.gov Identifier: NCT02562755. NIH; Bethesda, MD: 2015, https://clinicaltrials.gov/ct2/show/NCT02562755November 20–2021

80 

U.S. National Library of Medicine (NIH), . FImmunotherapy for Advanced Liver Cancer (ALIVE). ClinicalTrials.gov Identifier: NCT05033522. NIH; Bethesda, MD: 2021, https://clinicaltrials.gov/ct2/show/NCT05033522November 20–2021

81 

U.S. National Library of Medicine (NIH), . An Investigational Immuno-therapy Study of Nivolumab Compared to Sorafenib as a First Treatment in Patients With Advanced Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT02576509. NIH; Bethesda, MD: 2015, https://clinicaltrials.gov/ct2/show/NCT02576509November 20–2021

82 

U.S. National Library of Medicine (NIH), . RRFA+Highly-purified CTL vs. RFA Alone for Recurrent HCC. ClinicalTrials.gov Identifier: NCT02678013. NIH; Bethesda, MD: 2016, https://clinicaltrials.gov/ct2/show/NCT02678013November 20–2021

83 

U.S. National Library of Medicine (NIH), . Combination of Sintilimab and Stereotactic Body Radiotherapy in Hepatocellular Carcinoma (ISBRT01) (ISBRT01). ClinicalTrials.gov Identifier: NCT04167293. NIH; Bethesda, MD: 2019, https://clinicaltrials.gov/ct2/show/NCT04167293November 20–2021

84 

U.S. National Library of Medicine (NIH), . Infusion of PD1/PDL1 Inhibitor Via Hepatic Arterial Versus Vein for Immunotherapy of Advanced Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT03949231. NIH; Bethesda, MD: 2019, https://clinicaltrials.gov/ct2/show/NCT03949231November 20–2021

85 

U.S. National Library of Medicine (NIH), . DEB-TACE Plus Lenvatinib or Sorafenib or PD-1 Inhibitor for Unresectable Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT04229355. NIH; Bethesda, MD: 2020, https://clinicaltrials.gov/ct2/show/NCT04229355November 20–2021

86 

U.S. National Library of Medicine (NIH), . Efficacy and Safety of Immuncell-LC Group and Non-treatment Group in Hepatocelluar Carcinoma Patients. ClinicalTrials.gov Identifier: NCT00699816. NIH; Bethesda, MD: 2008, https://clinicaltrials.gov/ct2/show/NCT00699816November 20–2021

87 

U.S. National Library of Medicine (NIH), . Resection+Highly Purified CTL Versus Resection Alone for HCC. ClinicalTrials.gov Identifier: NCT02709070. NIH; Bethesda, MD: 2016, https://clinicaltrials.gov/ct2/show/NCT02709070November 20–2021

88 

U.S. National Library of Medicine (NIH), . Nivolumab in Combination With TACE/TAE for Patients With Intermediate Stage HCC (TACE-3). ClinicalTrials.gov Identifier: NCT04268888. NIH; Bethesda, MD: 2020, https://clinicaltrials.gov/ct2/show/NCT04268888November 20–2021

89 

U.S. National Library of Medicine (NIH), . Safety and Efficacy of Pembrolizumab (MK-3475) Versus Placebo as Adjuvant Therapy in Participants With Hepatocellular Carcinoma (HCC) and Complete Radiological Response After Surgical Resection or Local Ablation (MK-3475-937 / KEYNOTE-937). ClinicalTrials.gov Identifier: NCT03867084. NIH; Bethesda, MD: 2019, https://clinicaltrials.gov/ct2/show/NCT03867084November 20–2021

90 

U.S. National Library of Medicine (NIH), . Sintilimab Plus Bevacizumab as Adjuvant Therapy in HCC Patients at High Risk of Recurrence After Curative Resection (DaDaLi). ClinicalTrials.gov Identifier: NCT04682210. NIH; Bethesda, MD: 2020, https://www.clinicaltrials.gov/ct2/show/NCT04682210November 20–2021

91 

U.S. National Library of Medicine (NIH):CIK Treatment for HCC Patient Underwent Radical Resection, . ClinicalTrials.gov Identifier NCT01749865. NIH; Bethesda, MD: 2012, https://clinicaltrials.gov/ct2/show/NCT01749865November 20–2021

92 

Schwacha-Eipper B, Minciuna I, Banz V and Dufour JF: Immunotherapy as a downstaging therapy for liver transplantation. Hepatology. 72:1488–1490. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Tabrizian P, Florman SS and Schwartz ME: PD-1 inhibitor as bridge therapy to liver transplantation? Am J Transplant. 21:1979–1980. 2021. View Article : Google Scholar

94 

Tanimine N, Tanaka Y, Ishiyama K, Ohira M, Shimizu S, Yano T and Ohdan H: Adoptive Immunotherapy with Liver allograft-derived NK Cells Improves Recurrence-free Survival after Living-donor Liver Transplantation in Patients with Hepatocellular Carcinoma. Am J Transplant. 15 (Suppl 3):3172015.

95 

Pandey A and Cohen DJ: Ipilumumab for hepatocellular cancer in a liver transplant recipient, with durable response, tolerance and without allograft rejection. Immunotherapy. 12:287–292. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Luo Y, Teng F, Fu H and Ding GS: Immunotherapy in liver transplantation for hepatocellular carcinoma: Pros and cons. World J Gastrointest Oncol. 14:163–180. 2022. View Article : Google Scholar

97 

Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019. View Article : Google Scholar

98 

Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, et al: Programmed Death-Ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 34:4102–4109. 2016. View Article : Google Scholar

99 

Tian P, He B, Mu W, Liu K, Liu L, Zeng H, Liu Y, Jiang L, Zhou P, Huang Z, et al: Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Theranostics. 11:2098–2107. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Feun LG, Li YY, Wu C, Wangpaichitr M, Jones PD, Richman SP, Madrazo B, Kwon D, Garcia-Buitrago M, Martin P, et al: Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer. 125:3603–3614. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Zhang H, Li XX, Yang Y, Zhang Y, Wang HY and Zheng XFS: Significance and mechanism of androgen receptor overexpression and androgen receptor/mechanistic target of rapamycin cross-talk in hepatocellular carcinoma. Hepatology. 67:2271–2286. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, et al: Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 25:1935–1940. 2014. View Article : Google Scholar

103 

Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL and Anders RA: Association of PD-1, PD-1 ligands, and other features of the tumour immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 20:5064–5074. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Macek Jilkova Z, Aspord C, Kurma K, Granon A, Sengel C, Sturm N, Marche PN and Decaens T: Immunologic features of patients with advanced hepatocellular carcinoma before and during sorafenib or anti-programmed death-1/programmed death-L1 treatment. Clin Transl Gastroenterol. 10:e000582019. View Article : Google Scholar

105 

Kleinovink JW, van Hall T, Ossendorp F and Fransen MF: PD-L1 immune suppression in cancer: Tumor cells or host cells? OncoImmunology. 6:e13259822017. View Article : Google Scholar : PubMed/NCBI

106 

Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, Liniker E, Kong BY, Cooper AJ, Howle JR, et al: Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in melanoma. Clin Cancer Res. 23:5024–5033. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, Putra J, Camprecios G, Bassaganyas L, Akers N, et al: Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 153:812–826. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Chang B, Shen L, Wang K, Jin J, Huang T, Chen Q, Li W and Wu P: High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int. 38:1449–1458. 2018. View Article : Google Scholar

109 

Ding Z, Dong Z, Chen Z, Hong J, Yan L, Li H, Yao S, Yan Y, Yang Y, Yang C and Li T: Viral status and efficacy of immunotherapy in hepatocellular carcinoma: A systematic review with meta-analysis. Front Immunol. 12:7335302021. View Article : Google Scholar

110 

Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, Gupta R, Qiu M, Deczkowska A, Weiner A, et al: NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 592:450–456. 2021. View Article : Google Scholar : PubMed/NCBI

111 

Zheng Y, Wang T, Tu X, Huang Y, Zhang H, Tan D, Jiang W, Cai S, Zhao P, Song R, et al: Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 7:1932019. View Article : Google Scholar : PubMed/NCBI

112 

Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S and Moriyama M: Exosomes and hepatocellular carcinoma: From bench to bedside. Int J Mol Sci. 20:14062019. View Article : Google Scholar

113 

Hao J, Liang C and Jiao B: Eukaryotic translation initiation factor 3, subunit C is overexpressed and promotes cell proliferation in human glioma U-87 MG cells. Oncol Lett. 9:2525–2533. 2015. View Article : Google Scholar

114 

Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L and Zhuang SM: Hepatocellular carcinoma cell-secreted exosomal MicroRNA-210 promotes angiogenesis in vitro and in vivo. Mol Ther Nucleic Acids. 11:243–252. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Tai YL, Chen KC, Hsieh JT and Shen TL: Exosomes in cancer development and clinical applications. Cancer Sci. 109:2364–2374. 2018. View Article : Google Scholar

116 

Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Ang C, Klempner SJ, Ali SM, Madison R, Ross JS, Severson EA, Fabrizio D, Goodman A, Kurzrock R, Suh J and Millis SZ: Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 10:4018–4025. 2019. View Article : Google Scholar

118 

Chen F, Wang J, Wu Y, Gao Q and Zhang S: Potential biomarkers for liver cancer diagnosis based on multi-omics strategy. Front Oncol. 12:8224492022. View Article : Google Scholar

119 

Dominguez DA and Wang XW: Impact of next-generation sequencing on outcomes in hepatocellular carcinoma: How precise are we really? J Hepatocell Carcinoma. 7:33–37. 2020. View Article : Google Scholar

120 

Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, Shia J, Hechtman JF, Kundra R, El Dika I, et al: Prospective genotyping of hepatocellular carcinoma: Clinical Implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 25:2116–2126. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Lee PC, Chao Y, Chen MH, Lan KH, Lee CJ, Lee IC, Chen SC, Hou MC and Huang YH: Predictors of response and survival in immune checkpoint inhibitor-treated unresectable hepatocellular carcinoma. Cancers (Basel). 12:1822020. View Article : Google Scholar

122 

Kim JY, Kronbichler A, Eisenhut M, Hong SH, van der Vliet HJ, Kang J, Shin JI and Gamerith G: Tumour mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers (Basel). 11:17982019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gryziak M, Wozniak K, Kraj L, Rog L and Stec R: The immune landscape of hepatocellular carcinoma‑where we are? (Review). Oncol Lett 24: 410, 2022.
APA
Gryziak, M., Wozniak, K., Kraj, L., Rog, L., & Stec, R. (2022). The immune landscape of hepatocellular carcinoma‑where we are? (Review). Oncology Letters, 24, 410. https://doi.org/10.3892/ol.2022.13530
MLA
Gryziak, M., Wozniak, K., Kraj, L., Rog, L., Stec, R."The immune landscape of hepatocellular carcinoma‑where we are? (Review)". Oncology Letters 24.5 (2022): 410.
Chicago
Gryziak, M., Wozniak, K., Kraj, L., Rog, L., Stec, R."The immune landscape of hepatocellular carcinoma‑where we are? (Review)". Oncology Letters 24, no. 5 (2022): 410. https://doi.org/10.3892/ol.2022.13530
Copy and paste a formatted citation
x
Spandidos Publications style
Gryziak M, Wozniak K, Kraj L, Rog L and Stec R: The immune landscape of hepatocellular carcinoma‑where we are? (Review). Oncol Lett 24: 410, 2022.
APA
Gryziak, M., Wozniak, K., Kraj, L., Rog, L., & Stec, R. (2022). The immune landscape of hepatocellular carcinoma‑where we are? (Review). Oncology Letters, 24, 410. https://doi.org/10.3892/ol.2022.13530
MLA
Gryziak, M., Wozniak, K., Kraj, L., Rog, L., Stec, R."The immune landscape of hepatocellular carcinoma‑where we are? (Review)". Oncology Letters 24.5 (2022): 410.
Chicago
Gryziak, M., Wozniak, K., Kraj, L., Rog, L., Stec, R."The immune landscape of hepatocellular carcinoma‑where we are? (Review)". Oncology Letters 24, no. 5 (2022): 410. https://doi.org/10.3892/ol.2022.13530
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team