The immune landscape of hepatocellular carcinoma‑where we are? (Review)
- Authors:
- Maciej Gryziak
- Krzysztof Wozniak
- Leszek Kraj
- Letycja Rog
- Rafal Stec
-
Affiliations: Department of Oncology, Medical University of Warsaw, 02‑091 Warsaw, Poland - Published online on: September 27, 2022 https://doi.org/10.3892/ol.2022.13530
- Article Number: 410
-
Copyright: © Gryziak et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10:25–34. 2009. View Article : Google Scholar | |
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheng A, Qin S, Ikeda M, Galle PR, Ducreux MP, Zhu AX, Kim T, Kudo M, Breder V, Merle P, et al: Imbrave150: Efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC)'. Ann Oncol. 30 (Suppl 9):ix183–ix202. 2019. View Article : Google Scholar | |
Ghouri YA, Mian I and Rowe JH: Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J Carcinog. 16:12017. View Article : Google Scholar : PubMed/NCBI | |
Novikova MV, Khromova NV and Kopnin PB: Components of the hepatocellular carcinoma microenvironment and their role in tumor progression. Biochemistry (Mosc). 82:861–873. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jia W, Rajani C, Xu H and Zheng X: Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell. 12:374–393. 2021. View Article : Google Scholar | |
Kumar V, Patel S, Tcyganov E and Gabrilovich DI: The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37:208–220. 2016. View Article : Google Scholar | |
Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8:5172017. View Article : Google Scholar : PubMed/NCBI | |
Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF and Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 135:234–243. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP and Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 6:409–421. 2004. View Article : Google Scholar | |
Li H, Han Y, Guo Q, Zhang M and Cao X: Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 182:240–249. 2009. View Article : Google Scholar | |
Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, Liang X and Ma C: Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 64:1593–1604. 2015. View Article : Google Scholar | |
Chang CJ, Yang YH, Chiu CJ, Lu LC, Liao CC, Liang CW, Hsu CH and Cheng AL: Targeting tumor-infiltrating Ly6G+ myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int J Cancer. 142:1878–1889. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Bottazzi B, Colotta F, Sozzani S and Ruco L: The origin and function of tumor-associated macrophages. Immunol Today. 13:265–270. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol. 5:953–964. 2005. View Article : Google Scholar | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar | |
Solinas G, Germano G, Mantovani A and Allavena P: Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 86:1065–1073. 2009. View Article : Google Scholar | |
Yao Y, Xu XH and Jin L: Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 10:7922019. View Article : Google Scholar | |
Wan S, Kuo N, Kryczek I, Zou W and Welling TH: Myeloid cells in hepatocellular carcinoma. Hepatology. 62:1304–1312. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li D, Cang H and Guo B: Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 8:4709–4721. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo B, Li L, Guo J, Liu A, Wu J, Wang H, Shi J, Pang D and Cao Q: M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma. Oncotarget. 8:44465–44476. 2017. View Article : Google Scholar | |
Fu XT, Song K, Zhou J, Shi YH, Liu WR, Shi GM, Gao Q, Wang XY, Ding ZB and Fan J: Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma. Cancer Cell Int. 19:712019. View Article : Google Scholar | |
Zhang J, Chang L, Zhang X, Zhou Z and Gao Y: Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in hepatocellular carcinoma. J Invest Surg. 34:297–306. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zong Z, Zou J, Mao R, Ma C, Li N, Wang J, Wang X, Zhou H, Zhang L and Shi Y: M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling. Front Immunol. 10:16432019. View Article : Google Scholar | |
Ding W, Tan Y, Qian Y, Xue W, Wang Y, Jiang P and Xu X: Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS One. 14:e02239712019. View Article : Google Scholar : PubMed/NCBI | |
Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, Sanders L, Koeppen H, Caplazi P, McBride J, et al: Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat Commun. 8:145722017. View Article : Google Scholar : PubMed/NCBI | |
Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, Eto M and Tamada K: Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 68:201–211. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, Li Y, Deng H, Wu Y, Li M and Li JL: M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 121:22–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou DY, Qin J, Huang J, Wang F, Xu GP, Lv YT, Zhang JB and Shen LM: Zoledronic acid inhibits infiltration of tumor-associated macrophages and angiogenesis following transcatheter arterial chemoembolization in rat hepatocellular carcinoma models. Oncol Lett. 14:4078–4084. 2017. View Article : Google Scholar | |
Ao JY, Zhu XD, Chai ZT, Cai H, Zhang YY, Zhang KZ, Kong LQ, Zhang N, Ye BG, Ma DN and Sun HC: Colony-stimulating factor 1 receptor blockade inhibits tumour growth by altering the polarization of tumour-associated macrophages in hepatocellular carcinoma. Mol Cancer Ther. 16:1544–1554. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Cui Y, Ren K, Quan M, Song Z, Zou H, Li D, Zheng Y and Cao J: 8-bromo-7-methoxychrysin reversed M2 polarization of tumour-associated macrophages induced by liver cancer stem-like cells. Anticancer Agents Med Chem. 17:286–293. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, Simeone DM, Zou W and Welling TH: Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology. 147:1393–1404. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar | |
Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A natural CCR93 antagonist relieves tumour-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu C, Li SP and Zheng L: Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 50:980–989. 2009. View Article : Google Scholar | |
Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, et al: Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 59:1415–1426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ringelhan M, Pfister D, O'Connor T, Pikarsky E and Heikenwalder M: The immunology of hepatocellular carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar | |
Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE, et al: TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 571:211–218. 2019. View Article : Google Scholar : PubMed/NCBI | |
Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA and Wherry EJ: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 10:29–37. 2009. View Article : Google Scholar | |
Wherry EJ and Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–499. 2015. View Article : Google Scholar | |
Kim HD, Song GW, Park S, Jung MK, Kim MH, Kang HJ, Yoo C, Yi K, Kim KH, Eo S, et al: Association between expression level of PD1 by tumor-infiltrating CD8(+) T cells and features of hepatocellular carcinoma. Gastroenterology. 155:1936–1950.e17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW and Tang ZY: Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 25:2586–2593. 2007. View Article : Google Scholar | |
Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, et al: Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 132:2328–2339. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE, Schutz HM, de Man RA, Sprengers D, Buschow SI, et al: PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. OncoImmunology. 6:e12733092017. View Article : Google Scholar : PubMed/NCBI | |
Kang HJ, Oh JH, Chun SM, Kim D, Ryu YM, Hwang HS, Kim SY, An J, Cho EJ, Lee H, et al: Immunogenomic landscape of hepatocellular carcinoma with immune cell stroma and EBV-positive tumor-infiltrating lymphocytes. J Hepatol. 71:91–103. 2019. View Article : Google Scholar | |
Cariani E and Missale G: Immune landscape of hepatocellular carcinoma microenvironment: Implications for prognosis and therapeutic applications. Liver Int. 39:1608–1621. 2019. View Article : Google Scholar | |
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW, et al: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 70:1214–1230. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, Kong LQ, Wang L, Wu WZ and Tang ZY: Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 16:3420–3430. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, Yun JP, Xu RH, Cai QQ and Xie D: Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 9:1965–1979. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Huang H, Wang Y, Pan C, Yin S, Zhou L and Zheng S: Tumor immune microenvironment characterization in hepatocellular carcinoma identifies four prognostic and immunotherapeutically relevant subclasses. Front Oncol. 10:6105132021. View Article : Google Scholar | |
Budimir N, Thomas GD, Dolina JS and Salek-Ardakani S: Reversing T-cell exhaustion in cancer: Lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol Res. 10:146–153. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 14:e02125132019. View Article : Google Scholar : PubMed/NCBI | |
Lu M, Zhang X, Gao X, Sun S, Wei X, Hu X, Huang C, Xu H, Wang B, Zhang W, et al: Lenvatinib enhances T cell immunity and the efficacy of adoptive chimeric antigen receptor-modified T cells by decreasing myeloid-derived suppressor cells in cancer. Pharmacol Res. 174:1058292021. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Xu L, Ma T, Yin X, Huang Z, Ran Y, Ni Y, Bi X and Che X: Lenvatinib plus immune checkpoint inhibitors improve survival in advanced hepatocellular carcinoma: A Retrospective Study. Front Oncol. 11:7511592021. View Article : Google Scholar | |
Wang BJ, Bao JJ, Wang JZ, Wang Y, Jiang M, Xing MY, Zhang WG, Qi JY, Roggendorf M, Lu MJ and Yang DL: Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol. 17:3322–3329. 2011. View Article : Google Scholar | |
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, Szeliga W, Herbst R, Harms PW, Fecher LA, et al: Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 128:805–815. 2018. View Article : Google Scholar | |
Calderaro J, Rousseau B, Amaddeo G, Mercey M, Charpy C, Costentin C, Luciani A, Zafrani ES, Laurent A, Azoulay D, et al: Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship With clinical and pathological features. Hepatology. 64:2038–2046. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teng MW, Ngiow SF, Ribas A and Smyth MJ: Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–927. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kurebayashi Y, Ojima H, Tsujikawa H, Kubota N, Maehara J, Abe Y, Kitago M, Shinoda M, Kitagawa Y and Sakamoto M: Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology. 68:1025–1041. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abdou Y, Pandey M, Sarma M, Shah S, Baron J and Ernstoff MS: Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Br J Clin Pharmacol. 86:1690–1702. 2020. View Article : Google Scholar | |
European Medicine Agency, . Bevacizumab, Avastin Summary of Product Characteristics. https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdfJune 12–2022 | |
European Medicine Agency, . Atezolizumab Summary of Product Characteristics. June 12–2022 | |
Roland CL, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L, Sullivan JP, Shames DS and Brekken RA: Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther. 8:1761–1771. 2009. View Article : Google Scholar : PubMed/NCBI | |
Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, et al: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 212:139–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 382:1894–1905. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, Kudo M, Harding JJ, Merle P, Rosmorduc O, et al: Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 23:77–90. 2022. View Article : Google Scholar | |
Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou MM, Matilla A, et al: Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The checkmate 040 randomized clinical trial. JAMA Oncol. 6:e2045642020. View Article : Google Scholar | |
European Medicine Agency, . Pembrolizumab Summary of Product Characteristics. https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-information_en.pdfJune 12–2022 | |
Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, et al: Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 19:940–952. 2018. View Article : Google Scholar | |
Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, Breder V, Edeline J, Chao Y, Ogasawara S, et al: Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial. J Clin Oncol. 38:193–202. 2020. View Article : Google Scholar | |
Kelley RK, Sangro B, Harris W, Ikeda M, Okusaka T, Kang YK, Qin S, Tai DW, Lim HY, Yau T, et al: Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study. J Clin Oncol. 39:2991–3001. 2021. View Article : Google Scholar | |
U.S. National Library of Medicine (NIH), . Study of Durvalumab and Tremelimumab as First-line Treatment in Patients With Advanced Hepatocellular Carcinoma (HIMALAYA). ClinicalTrials.gov Identifier: NCT03298451. NIH; Bethesda, MD: 2017, https://clinicaltrials.gov/ct2/show/NCT03298451April 19–2021 | |
U.S. National Library of Medicine (NIH), . Combination Therapy of Microwave Ablation and Cellular Immunotherapy for Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT02851784. NIH; Bethesda, MD: 2016, https://clinicaltrials.gov/ct2/show/NCT02851784November 20–2021 | |
U.S. National Library of Medicine (NIH), . Hepatocellular Carcinoma Study Comparing Vaccinia Virus Based Immunotherapy Plus Sorafenib vs Sorafenib Alone (PHOCUS). ClinicalTrials.gov Identifier: NCT02562755. NIH; Bethesda, MD: 2015, https://clinicaltrials.gov/ct2/show/NCT02562755November 20–2021 | |
U.S. National Library of Medicine (NIH), . FImmunotherapy for Advanced Liver Cancer (ALIVE). ClinicalTrials.gov Identifier: NCT05033522. NIH; Bethesda, MD: 2021, https://clinicaltrials.gov/ct2/show/NCT05033522November 20–2021 | |
U.S. National Library of Medicine (NIH), . An Investigational Immuno-therapy Study of Nivolumab Compared to Sorafenib as a First Treatment in Patients With Advanced Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT02576509. NIH; Bethesda, MD: 2015, https://clinicaltrials.gov/ct2/show/NCT02576509November 20–2021 | |
U.S. National Library of Medicine (NIH), . RRFA+Highly-purified CTL vs. RFA Alone for Recurrent HCC. ClinicalTrials.gov Identifier: NCT02678013. NIH; Bethesda, MD: 2016, https://clinicaltrials.gov/ct2/show/NCT02678013November 20–2021 | |
U.S. National Library of Medicine (NIH), . Combination of Sintilimab and Stereotactic Body Radiotherapy in Hepatocellular Carcinoma (ISBRT01) (ISBRT01). ClinicalTrials.gov Identifier: NCT04167293. NIH; Bethesda, MD: 2019, https://clinicaltrials.gov/ct2/show/NCT04167293November 20–2021 | |
U.S. National Library of Medicine (NIH), . Infusion of PD1/PDL1 Inhibitor Via Hepatic Arterial Versus Vein for Immunotherapy of Advanced Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT03949231. NIH; Bethesda, MD: 2019, https://clinicaltrials.gov/ct2/show/NCT03949231November 20–2021 | |
U.S. National Library of Medicine (NIH), . DEB-TACE Plus Lenvatinib or Sorafenib or PD-1 Inhibitor for Unresectable Hepatocellular Carcinoma. ClinicalTrials.gov Identifier: NCT04229355. NIH; Bethesda, MD: 2020, https://clinicaltrials.gov/ct2/show/NCT04229355November 20–2021 | |
U.S. National Library of Medicine (NIH), . Efficacy and Safety of Immuncell-LC Group and Non-treatment Group in Hepatocelluar Carcinoma Patients. ClinicalTrials.gov Identifier: NCT00699816. NIH; Bethesda, MD: 2008, https://clinicaltrials.gov/ct2/show/NCT00699816November 20–2021 | |
U.S. National Library of Medicine (NIH), . Resection+Highly Purified CTL Versus Resection Alone for HCC. ClinicalTrials.gov Identifier: NCT02709070. NIH; Bethesda, MD: 2016, https://clinicaltrials.gov/ct2/show/NCT02709070November 20–2021 | |
U.S. National Library of Medicine (NIH), . Nivolumab in Combination With TACE/TAE for Patients With Intermediate Stage HCC (TACE-3). ClinicalTrials.gov Identifier: NCT04268888. NIH; Bethesda, MD: 2020, https://clinicaltrials.gov/ct2/show/NCT04268888November 20–2021 | |
U.S. National Library of Medicine (NIH), . Safety and Efficacy of Pembrolizumab (MK-3475) Versus Placebo as Adjuvant Therapy in Participants With Hepatocellular Carcinoma (HCC) and Complete Radiological Response After Surgical Resection or Local Ablation (MK-3475-937 / KEYNOTE-937). ClinicalTrials.gov Identifier: NCT03867084. NIH; Bethesda, MD: 2019, https://clinicaltrials.gov/ct2/show/NCT03867084November 20–2021 | |
U.S. National Library of Medicine (NIH), . Sintilimab Plus Bevacizumab as Adjuvant Therapy in HCC Patients at High Risk of Recurrence After Curative Resection (DaDaLi). ClinicalTrials.gov Identifier: NCT04682210. NIH; Bethesda, MD: 2020, https://www.clinicaltrials.gov/ct2/show/NCT04682210November 20–2021 | |
U.S. National Library of Medicine (NIH):CIK Treatment for HCC Patient Underwent Radical Resection, . ClinicalTrials.gov Identifier NCT01749865. NIH; Bethesda, MD: 2012, https://clinicaltrials.gov/ct2/show/NCT01749865November 20–2021 | |
Schwacha-Eipper B, Minciuna I, Banz V and Dufour JF: Immunotherapy as a downstaging therapy for liver transplantation. Hepatology. 72:1488–1490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tabrizian P, Florman SS and Schwartz ME: PD-1 inhibitor as bridge therapy to liver transplantation? Am J Transplant. 21:1979–1980. 2021. View Article : Google Scholar | |
Tanimine N, Tanaka Y, Ishiyama K, Ohira M, Shimizu S, Yano T and Ohdan H: Adoptive Immunotherapy with Liver allograft-derived NK Cells Improves Recurrence-free Survival after Living-donor Liver Transplantation in Patients with Hepatocellular Carcinoma. Am J Transplant. 15 (Suppl 3):3172015. | |
Pandey A and Cohen DJ: Ipilumumab for hepatocellular cancer in a liver transplant recipient, with durable response, tolerance and without allograft rejection. Immunotherapy. 12:287–292. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Teng F, Fu H and Ding GS: Immunotherapy in liver transplantation for hepatocellular carcinoma: Pros and cons. World J Gastrointest Oncol. 14:163–180. 2022. View Article : Google Scholar | |
Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019. View Article : Google Scholar | |
Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, et al: Programmed Death-Ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 34:4102–4109. 2016. View Article : Google Scholar | |
Tian P, He B, Mu W, Liu K, Liu L, Zeng H, Liu Y, Jiang L, Zhou P, Huang Z, et al: Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Theranostics. 11:2098–2107. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feun LG, Li YY, Wu C, Wangpaichitr M, Jones PD, Richman SP, Madrazo B, Kwon D, Garcia-Buitrago M, Martin P, et al: Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer. 125:3603–3614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li XX, Yang Y, Zhang Y, Wang HY and Zheng XFS: Significance and mechanism of androgen receptor overexpression and androgen receptor/mechanistic target of rapamycin cross-talk in hepatocellular carcinoma. Hepatology. 67:2271–2286. 2018. View Article : Google Scholar : PubMed/NCBI | |
Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, et al: Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 25:1935–1940. 2014. View Article : Google Scholar | |
Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL and Anders RA: Association of PD-1, PD-1 ligands, and other features of the tumour immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 20:5064–5074. 2014. View Article : Google Scholar : PubMed/NCBI | |
Macek Jilkova Z, Aspord C, Kurma K, Granon A, Sengel C, Sturm N, Marche PN and Decaens T: Immunologic features of patients with advanced hepatocellular carcinoma before and during sorafenib or anti-programmed death-1/programmed death-L1 treatment. Clin Transl Gastroenterol. 10:e000582019. View Article : Google Scholar | |
Kleinovink JW, van Hall T, Ossendorp F and Fransen MF: PD-L1 immune suppression in cancer: Tumor cells or host cells? OncoImmunology. 6:e13259822017. View Article : Google Scholar : PubMed/NCBI | |
Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, Liniker E, Kong BY, Cooper AJ, Howle JR, et al: Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in melanoma. Clin Cancer Res. 23:5024–5033. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, Putra J, Camprecios G, Bassaganyas L, Akers N, et al: Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 153:812–826. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Shen L, Wang K, Jin J, Huang T, Chen Q, Li W and Wu P: High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int. 38:1449–1458. 2018. View Article : Google Scholar | |
Ding Z, Dong Z, Chen Z, Hong J, Yan L, Li H, Yao S, Yan Y, Yang Y, Yang C and Li T: Viral status and efficacy of immunotherapy in hepatocellular carcinoma: A systematic review with meta-analysis. Front Immunol. 12:7335302021. View Article : Google Scholar | |
Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, Gupta R, Qiu M, Deczkowska A, Weiner A, et al: NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 592:450–456. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Wang T, Tu X, Huang Y, Zhang H, Tan D, Jiang W, Cai S, Zhao P, Song R, et al: Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 7:1932019. View Article : Google Scholar : PubMed/NCBI | |
Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S and Moriyama M: Exosomes and hepatocellular carcinoma: From bench to bedside. Int J Mol Sci. 20:14062019. View Article : Google Scholar | |
Hao J, Liang C and Jiao B: Eukaryotic translation initiation factor 3, subunit C is overexpressed and promotes cell proliferation in human glioma U-87 MG cells. Oncol Lett. 9:2525–2533. 2015. View Article : Google Scholar | |
Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L and Zhuang SM: Hepatocellular carcinoma cell-secreted exosomal MicroRNA-210 promotes angiogenesis in vitro and in vivo. Mol Ther Nucleic Acids. 11:243–252. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tai YL, Chen KC, Hsieh JT and Shen TL: Exosomes in cancer development and clinical applications. Cancer Sci. 109:2364–2374. 2018. View Article : Google Scholar | |
Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ang C, Klempner SJ, Ali SM, Madison R, Ross JS, Severson EA, Fabrizio D, Goodman A, Kurzrock R, Suh J and Millis SZ: Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 10:4018–4025. 2019. View Article : Google Scholar | |
Chen F, Wang J, Wu Y, Gao Q and Zhang S: Potential biomarkers for liver cancer diagnosis based on multi-omics strategy. Front Oncol. 12:8224492022. View Article : Google Scholar | |
Dominguez DA and Wang XW: Impact of next-generation sequencing on outcomes in hepatocellular carcinoma: How precise are we really? J Hepatocell Carcinoma. 7:33–37. 2020. View Article : Google Scholar | |
Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, Shia J, Hechtman JF, Kundra R, El Dika I, et al: Prospective genotyping of hepatocellular carcinoma: Clinical Implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 25:2116–2126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee PC, Chao Y, Chen MH, Lan KH, Lee CJ, Lee IC, Chen SC, Hou MC and Huang YH: Predictors of response and survival in immune checkpoint inhibitor-treated unresectable hepatocellular carcinoma. Cancers (Basel). 12:1822020. View Article : Google Scholar | |
Kim JY, Kronbichler A, Eisenhut M, Hong SH, van der Vliet HJ, Kang J, Shin JI and Gamerith G: Tumour mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers (Basel). 11:17982019. View Article : Google Scholar |