|
1
|
Pierce GB: The cancer cell and its control
by the embryo. Rous-Whipple Award lecture. Am J Pathol.
113:117–124. 1983.PubMed/NCBI
|
|
2
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Krebs ET: Cancer and the embryonal
hypothesis. Calif Med. 66:270–271. 1947.PubMed/NCBI
|
|
4
|
Ma YL, Zhang P, Wang F, Yang JJ, Yang Z
and Qin HL: The relationship between early embryo development and
tumourigenesis. J Cell Mol Med. 14:2697–2701. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cofre J and Abdelhay E: Cancer is to
embryology as mutation is to genetics: Hypothesis of the cancer as
embryological phenomenon. Sci World J. 2017:35780902017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Murray MJ and Lessey BA: Embryo
implantation and tumor metastasis: Common pathways of invasion and
angiogenesis. Semin Reprod Endocrinol. 17:275–290. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vogelstein B and Kinzler KW: Cancer genes
and the pathways they control. Nat Med. 10:789–799. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Williams JW III, Carlson DL, Gadson RG,
Rollins-Smith L, Williams CS and McKinnell RG: Cytogenetic analysis
of triploid renal carcinoma in Rana pipiens. Cytogenet Cell Genet.
64:18–22. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bignold LP, Coghlan BL and Jersmann HP:
Hansemann, Boveri, chromosomes and the gametogenesis-related
theories of tumours. Cell Biol Int. 30:640–644. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nordstrom L, Andersson E, Kuci V,
Gustavsson E, Holm K, Ringnér M, Guldberg P and Ek S: DNA
methylation and histone modifications regulate SOX11 expression in
lymphoid and solid cancer cells. BMC Cancer. 15:2732015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gibadulinova A, Tothova V, Pastorek J and
Pastorekova S: Transcriptional regulation and functional
implication of S100P in cancer. Amino Acids. 41:885–892. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Carosella ED, Rouas-Freiss N, Tronik-Le
Roux D, Moreau P and LeMaoult J: HLA-G: An immune checkpoint
molecule. Adv Immunol. 127:33–144. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bagley RG, Honma N, Weber W, Boutin P,
Rouleau C, Shankara S, Kataoka S, Ishida I, Roberts BL and Teicher
BA: Endosialin/TEM 1/CD248 is a pericyte marker of embryonic and
tumor neovascularization. Microvasc Res. 76:180–188. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Monk M and Holding C: Human embryonic
genes re-expressed in cancer cells. Oncogene. 20:8085–8091. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Monk M: Variation in epigenetic
inheritance. Trends Genet. 6:110–114. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Stojanov T and O'Neill C: In vitro
fertilization causes epigenetic modifications to the onset of gene
expression from the zygotic genome in mice. Biol Reprod.
64:696–705. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wrenzycki C and Niemann H: Epigenetic
reprogramming in early embryonic development: Effects of in-vitro
production and somatic nuclear transfer. Reprod Biomed Online.
7:649–656. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen HM, Egan JO and Chiu JF: Regulation
and activities of alpha-fetoprotein. Crit Rev Eukar Gene. 7:11–41.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang Y and Steinbeisser H: Molecular basis
of morphogenesis during vertebrate gastrulation. Cell Mol Life Sci.
66:2263–2273. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Katoh M: Networking of WNT, FGF, Notch,
BMP, and Hedgehog signaling pathways during carcinogenesis. Stem
Cell Rev. 3:30–38. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhou JS, Yang ZS, Cheng SY, Yu JH, Huang
CJ and Feng Q: miRNA-425-5p enhances lung cancer growth via the
PTEN/PI3K/AKT signaling axis. BMC Pulm Med. 20:2232020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fattahi S, Amjadi-Moheb F, Tabaripour R,
Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric
cancer: Epigenetics and beyond. Life Sci. 262:1185132020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu L, Qi BX and Hou DR: Roles of HIF1α-
and HIF2α-regulated BNIP3 in hypoxia-induced injury of neurons.
Pathol Res Pract. 215:822–827. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang Y, Wang H, Ren C, Yu H, Fang W,
Zhang N, Gao S and Hou Q: Correlation Between C-MYC, BCL-2, and
BCL-6 protein expression and gene translocation as biomarkers in
diagnosis and prognosis of diffuse large B-cell lymphoma. Front
Pharmacol. 9:017492019. View Article : Google Scholar
|
|
26
|
Mitra P: Transcription regulation of MYB:
A potential and novel therapeutic target in cancer. Ann Transl Med.
6:4432018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z and
Hu W: Mutant p53 in cancer: Accumulation, Gain-of-Function, and
therapy. J Mol Biol. 429:1595–1606. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tang Y, Weng X, Liu C, Li X and Chen C:
Hypoxia enhances activity and malignant behaviors of colorectal
cancer cells through the STAT3/MicroRNA-19a/PTEN/PI3K/AKT axis.
Anal Cell Pathol (Amst). 2021:41324882021.PubMed/NCBI
|
|
29
|
Pennanen M, Hagstrom J, Heiskanen I, Sane
T, Mustonen H, Arola J and Haglund C: C-myc expression in
adrenocortical tumours. J Clin Pathol. 71:129–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
En-Wu Y, Yin-Fang W, Jin-Fang X, Guang-Wei
Y, Li-Huan S and Yan-Peng D: Expressions of HIF-1α, BNIP3, LC3 in
villi from with women early pregnancy missed abortion. J Zhengzhou
Univ (Med Sci). 52:52017.
|
|
31
|
Scognamiglio R, Cabezas-Wallscheid N,
Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D,
Carnevalli LS, Atzberger A, Haas S, et al: Myc depletion induces a
pluripotent dormant state mimicking diapause. Cell. 164:668–680.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mayer IA and Arteaga CL: The PI3K/AKT
pathway as a target for cancer treatment. Annu Rev Med. 67:11–28.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S and
Navab R: MicroRNA-21 (miR-21) regulates cellular proliferation,
invasion, migration, and apoptosis by targeting PTEN, RECK and
Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One.
9:e1036982014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen Y, Yang JL, Xue ZZ, Cai QC, Hou C, Li
HJ, Zhao LX, Zhang Y, Gao CW, Cong L, et al: Effects and mechanism
of microRNA-218 against lung cancer. Mol Med Rep.
23:282021.PubMed/NCBI
|
|
35
|
Chen Y, Hou C, Zhao LX, Cai QC, Zhang Y,
Li DL, Tang Y, Liu HY, Liu YY, Zhang YY, et al: The association of
microRNA-34a with high incidence and metastasis of lung cancer in
gejiu and xuanwei yunnan. Front Oncol. 11:6193462021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhu QS, Cao CH, Yang JL, Li HJ, Zhang Y,
Cai QC, Chen Y, Gao CW, Hou C, Li X, et al: Biological effects of
artemether in U251 Glioma cells. Jap J Oncol Clin Res. 2:1–10.
2021.
|
|
37
|
Alvarez-Garcia V, Tawil Y, Wise HM and
Leslie NR: Mechanisms of PTEN loss in cancer: It's all about
diversity. Semin Cancer Biol. 59:66–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Elahi F, Lee H, Lee J, Lee ST, Park CK,
Hyun SH and Lee E: Effect of rapamycin treatment during
post-activation and/or in vitro culture on embryonic development
after parthenogenesis and in vitro fertilization in pigs. Reprod
Domest Anim. 52:741–748. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lee GK, Shin H and Lim HJ: Rapamycin
influences the efficiency of in vitro fertilization and development
in the mouse: A role for autophagic activation. Asian-Australas J
Anim Sci. 29:1102–1110. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Murakami M, Ichisaka T, Maeda M, Oshiro N,
Hara K, Edenhofer F, Kiyama H, Yonezawa K and Yamanaka S: mTOR is
essential for growth and proliferation in early mouse embryos and
embryonic stem cells. Mol Cell Biol. 24:6710–6718. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li Y, Yao Y, Yao B, Huang W and Yang M:
Expression of apoptosis modulation gene bcl-2 and p53 in mouse
preimplantation embryos. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.
16:493–494,515. 2000.PubMed/NCBI
|
|
42
|
Pal SK, Crowell R, Kiessling AA and Cooper
GM: Expression of proto-oncogenes in mouse eggs and preimplantation
embryos. Mol Reprod Dev. 35:8–15. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang J, Ma X, Jones HM, Chan LL, Song F,
Zhang W, Bae-Jump VL and Zhou C: Evaluation of the antitumor
effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in
ovarian cancer cells. J Transl Med. 12:2262014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chami M, Prandini A, Campanella M, Pinton
P, Szabadkai G, Reed JC and Rizzuto R: Bcl-2 and bax exert opposing
effects on Ca2+ signaling, which do not depend on their putative
pore-forming region. J Biol Chem. 279:54581–54589. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Singh R, Letai A and Sarosiek K:
Regulation of apoptosis in health and disease: The balancing act of
BCL-2 family proteins. Nat Rev Mol Cell Bio. 20:175–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Radha G and Raghavan SC: BCL2: A promising
cancer therapeutic target. Biochim Biophys Acta Rev Cancer.
1868:309–314. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Farrall AL and Whitelaw ML: The
HIF1α-inducible pro-cell death gene BNIP3 is a novel target of
SIM2s repression through cross-talk on the hypoxia response
element. Oncogene. 28:3671–3680. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Levine AJ and Oren M: The first 30 years
of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lien EC, Dibble CC and Toker A: PI3K
signaling in cancer: Beyond AKT. Curr Opin Cell Biol. 45:62–71.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xia Z, Gao T, Zong Y, Zhang X, Mao Y, Yuan
B and Lu G: Evaluation of subchronic toxicity of GRD081, a dual
PI3K/mTOR inhibitor, after 28-day repeated oral administration in
Sprague-Dawley rats and beagle dogs. Food Chem Toxicol. 62:687–698.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lee DH, Szczepanski MJ and Lee YJ:
Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt
signaling pathway in human prostate cancer cells. J Cell Biochem.
106:1113–1122. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen H, Zhou L, Wu X, Li R, Wen J, Sha J
and Wen X: The PI3K/AKT pathway in the pathogenesis of prostate
cancer. Front Biosci (Landmark Ed). 21:1084–1091. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xu K, Liu P and Wei W: mTOR signaling in
tumorigenesis. Biochim Biophys Acta. 1846:638–654. 2014.PubMed/NCBI
|
|
54
|
Yan-Hong L, Yuan-Qing Y, Bing Y, Wei-Quan
H and Meng-Geng Y: Expression of the proto-oncogene c-myc products
in early mouse embryos. J Fourth Military Med Univ. 2:253–254.
2000.
|
|
55
|
Jieping C, Clarke D and Bonifer C: Effect
of c-myb on hematopoietic differentiation and shaping of embryonic
stem cells in vitro. J Third Military Med Univ. 27:52005.
|
|
56
|
Hu W, Feng Z, Teresky AK and Levine AJ:
p53 regulates maternal reproduction through LIF. Nature.
450:721–724. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gkountakos A, Sartori G, Falcone I, Piro
G, Ciuffreda L, Carbone C, Tortora G, Scarpa A, Bria E, Milella M,
et al: PTEN in lung cancer: Dealing with the problem, building on
new knowledge and turning the game around. Cancers (Basel).
11:11412019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xu W: Localization and expression of PTEN
during early embryonic development and its effects Northwest A
& F University. 2010.
|
|
59
|
Moreno-Moya JM, Ramirez L, Vilella F,
Martínez S, Quiñonero A, Noguera I, Pellicer A and Simón C:
Complete method to obtain, culture, and transfer mouse blastocysts
nonsurgically to study implantation and development. Fertil Steril.
101:e132014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pandey UB and Nichols CD: Human disease
models in Drosophila melanogaster and the role of the fly in
therapeutic drug discovery. Pharmacol Rev. 63:411–436. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Markow TA, Beall S and Matzkin LM: Egg
size, embryonic development time and ovoviviparity in Drosophila
species. J Evol Biol. 22:430–434. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cheng T, Wu J, Wu Y, Chilukuri RV, Huang
L, Yamamoto K, Feng L, Li W, Chen Z, Guo H, et al: Genomic
adaptation to polyphagy and insecticides in a major East Asian
noctuid pest. Nat Ecol Evol. 1:1747–1756. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Perveen F, Ahmed H, Abbasi FM, Siddiqui NY
and Gul A: Characterization of Embryonic Stages through Variations
in the Egg's Contents in Spodoptera litura. J Agricultural Sci
Technol. 4:24–36. 2010.(In Chinese).
|
|
64
|
Bi HL, Xu J, Tan AJ and Huang YP:
CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera
litura. Insect Sci. 23:469–477. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Abate M, Scotti L, Nele V, Caraglia M,
Biondi M, De Rosa G, Leonetti C, Campani V, Zappavigna S and Porru
M: Hybrid Self-assembling nanoparticles encapsulating zoledronic
acid: A strategy for fostering their clinical use. Int J Mol Sci.
23:51382022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yin JC, Zhang L, Ma NX, Wang Y, Lee G, Hou
XY, Lei ZF, Zhang FY, Dong FP, Wu GY and Chen G: Chemical
conversion of human fetal astrocytes into neurons through
modulation of multiple signaling pathways. Stem Cell Rep.
12:488–501. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou GF, Chen CX, Cai QC, Yan X, Peng NN,
Li XC, Cui JH, Han YF, Zhang Q, Meng JH, et al: Bracovirus sneaks
into apoptotic bodies transmitting immunosuppressive signaling
driven by integration-mediated eIF5A hypusination. Front Immunol.
13:9015932022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rao X, Huang X, Zhou Z and Lin X: An
improvement of the 2ˆ(−delta delta CT) method for quantitative
real-time polymerase chain reaction data analysis. Biostat
Bioinforma Biomath. 3:71–85. 2013.PubMed/NCBI
|
|
69
|
Kumar S, Stecher G and Tamura K: MEGA7:
Molecular evolutionary genetics analysis version 7.0 for bigger
datasets. Mol Biol Evol. 33:1870–1874. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kou TC, Liu YT, Li M, Yang Y, Zhang W, Cui
JH, Zhang XW, Dong SM, Xu S, You S, et al: Identification of
β-chain of Fo F1-ATPase in apoptotic cell
population induced by Microplitis bicoloratus bracovirus and its
role in the development of Spodoptera litura. Arch Insect Biochem
Physiol. 952017.doi: 10.1002/arch.21389. PubMed/NCBI
|
|
71
|
Wu ZP, Gao CW, Wu YG, Zhu QS, Yan Chen,
Xin Liu and Chuen Liu: Inhibitive effect of artemether on tumor
growth and angiogenesis in the rat C6 orthotopic brain gliomas
model. Integr Cancer Ther. 8:88–92. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wu ZP, Gao CW, Wang XC, Wu YG, Zhu QS and
Hu WY: Anti-tumor Effect of artemether in CT-26 colorectal cancer
bearing BALB/c mice. China Cancer. 16:22007.
|
|
73
|
Wu ZP, Zhu QS, Gao CW, Wang XC, Wu YG and
Hu WY: Experiment of inhibitive effect of artemether in different
stages on colorectal cancer growth in BALB/c mice. Chin Clin Oncol.
12:743–745. 2007.
|
|
74
|
Wu ZP, Zhu QS, Wei WL, Huang J, Shen HM
and Tong SY: Study on inhibit ory effects of artemet her on brain
glioma growth and angiogenesis in SD rats. J Kunming Med Univ.
4:16–21. 2012.
|
|
75
|
Zhu QS, Wu ZP, Gao CW, Wu YG and Wang XC:
Experiment of inhibitive efect of artemether on colorectal cancer
growth and angiogenesis in BALB/c mice. Chin J Cancer Prev Treat.
15:189–192. 2008.
|
|
76
|
Liu G, David BT, Trawczynski M and Fessler
RG: Advances in pluripotent stem cells: History, mechanisms,
technologies, and applications. Stem Cell Rev Rep. 16:3–32. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Morimoto T, Nakazawa T, Matsuda R,
Nishimura F, Nakamura M, Yamada S, Nakagawa I, Park YS, Tsujimura T
and Nakase H: Evaluation of comprehensive gene expression and NK
cell-mediated killing in glioblastoma cell line-derived spheroids.
Cancers (Basel). 13:48962021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Park CM, Park MJ, Kwak HJ, Moon SI, Yoo
DH, Lee HC, Park IC, Rhee CH and Hong SI: Induction of p53-mediated
apoptosis and recovery of chemosensitivity through p53 transduction
in human glioblastoma cells by cisplatin. Int J Oncol. 28:119–125.
2006.PubMed/NCBI
|
|
79
|
Li M, Pang Z, Xiao W, Liu X, Zhang Y, Yu
D, Yang M, Yang Y, Hu J and Luo K: A transcriptome analysis
suggests apoptosis-related signaling pathways in hemocytes of
Spodoptera litura after parasitization by Microplitis bicoloratus.
PLoS One. 9:e1109672014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang P: A study on apoptosis in host
hemocytes induced by CypD-p53 interactions promoted by parasitic
Microplitis bicoloratus of Spodoptera litura. Yunnan University;
2019
|
|
81
|
Dong SM, Cui JH, Zhang W, Zhang XW, Kou
TC, Cai QC, Xu S, You S, Yu DS, Ding L, et al: Inhibition of
translation initiation factor eIF4A is required for apoptosis
mediated by Microplitis bicoloratus bracovirus. Arch Insect Biochem
Physiol. 962017.doi: 10.1002/arch.21423. PubMed/NCBI
|
|
82
|
Cai QC, Chen CX, Liu HY, Zhang W, Han YF,
Zhang Q, Zhou GF, Xu S, Liu T, Xiao W, et al: Interactions of Vank
proteins from Microplitis bicoloratus bracovirus with host Dip3
suppress eIF4E expression. Dev Comp Immunol. 118:1039942021.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen CX, He HJ, Cai QC, Zhang W, Kou TC,
Zhang XW, You S, Chen YB, Liu T, Xiao W, et al: Bracovirus-mediated
innexin hemichannel closure in cell disassembly. iScience.
24:1022812021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gorbunova AS, Yapryntseva MA, Denisenko TV
and Zhivotovsky B: BNIP3 in Lung cancer: To kill or rescue? Cancers
(Basel). 12:33902020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wu Y and Tang L: Bcl-2 family proteins
regulate apoptosis and epithelial to mesenchymal transition by
calcium signals. Curr Pharm Des. 22:4700–4704. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Dlamini Z, Tshidino SC and Hull R:
Abnormalities in alternative splicing of apoptotic genes and
cardiovascular diseases. Int J Mol Sci. 16:27171–27190. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gu Z, Guo J, Wang H, Wen Y and Gu Q:
Bioengineered microenvironment to culture early embryos. Cell
Prolif. 53:e127542020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Norambuena A, Wallrabe H, McMahon L, Silva
A, Swanson E, Khan SS, Baerthlein D, Kodis E, Oddo S, Mandell JW
and Bloom GS: mTOR and neuronal cell cycle reentry: How impaired
brain insulin signaling promotes Alzheimer's disease. Alzheimers
Dement. 13:152–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Song L, Liu S, Zhang L, Yao H, Gao F, Xu D
and Li Q: MiR-21 modulates radiosensitivity of cervical cancer
through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop
and the Akt-mTOR signaling pathway. Tumor Biol. 37:12161–12168.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Somarelli JA: The hallmarks of cancer as
ecologically driven phenotypes. Front Ecol Evol. 9:6615832021.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Merlo LMF, Pepper JW, Reid BJ and Maley
CC: Cancer as an evolutionary and ecological process. Nat Rev
Cancer. 6:924–935. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dujon AM, Aktipis A, Alix-Panabieres C,
Amend SR, Boddy AM, Brown JS, Capp JP, DeGregori J, Ewald P,
Gatenby R, et al: Identifying key questions in the ecology and
evolution of cancer. Evol Appl. 14:877–892. 2021. View Article : Google Scholar : PubMed/NCBI
|