You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Hanif F, Muzaffar K, Perveen K, Malhi SM and Simjee SHU: Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 18:3–9. 2017.PubMed/NCBI | |
|
Karachi A, Dastmalchi F, Mitchell DA and Rahman M: Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 20:1566–1572. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Delgado-López PD and Corrales-García EM: Survival in glioblastoma: A review on the impact of treatment modalities. Clin Transl Oncol. 18:1062–1071. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tamimi AF and Juweid M: Epidemiology and outcome of glioblastoma. Glioblastoma. De Vleeschouwer S: Codon Publications; Brisbane, AU: 2017, Available from:. http://www.ncbi.nlm.nih.gov/books/NBK470003/ View Article : Google Scholar | |
|
Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hubbard SR: Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol. 71:343–358. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Montor WR, Salas AROSE and Melo FHM: Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: The current arsenal of inhibitors. Mol Cancer. 17:552018. View Article : Google Scholar : PubMed/NCBI | |
|
Blume-Jensen P and Hunter T: Oncogenic kinase signalling. Nature. 411:355–365. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hunter T: Tyrosine phosphorylation: Thirty years and counting. Curr Opin Cell Biol. 21:140–146. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wen PY and Kesari S: Malignant gliomas in adults. N Engl J Med. 359:492–507. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chakravarti A, Chakladar A, Delaney MA, Latham DE and Loeffler JS: The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res. 62:4307–4315. 2002.PubMed/NCBI | |
|
Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL and Galli R: Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res. 70:7500–7513. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Dutra A, Pak E, Labrie JE III, Gerstein RM, Pandolfi PP, Recht LD and Ross AH: EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro Oncol. 11:9–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hatanpaa KJ, Burma S, Zhao D and Habib AA: Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 12:675–684. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, et al: EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 125:683–698. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bonavia R, Inda MM, Vandenberg S, Cheng SY, Nagane M, Hadwiger P, Tan P, Sah DW, Cavenee WK and Furnari FB: EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene. 31:4054–4066. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T and Koizumi F: Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 12:312013. View Article : Google Scholar : PubMed/NCBI | |
|
Feng H, Hu B, Vuori K, Sarkaria JN, Furnari FB, Cavenee WK and Cheng SY: EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180. Oncogene. 33:2504–2512. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Eskilsson E, Rosland GV, Talasila KM, Knappskog S, Keunen O, Sottoriva A, Foerster S, Solecki G, Taxt T, Jirik R, et al: EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro Oncol. 18:1644–1655. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Roos A, Dhruv HD, Peng S, Inge LJ, Tuncali S, Pineda M, Millard N, Mayo Z, Eschbacher JM, Loftus JC, et al: EGFRvIII-Stat5 signaling enhances glioblastoma cell migration and survival. Mol Cancer Res. 16:1185–1195. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sugawa N, Ekstrand AJ, James CD and Collins VP: Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA. 87:8602–8606. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Frederick L, Wang XY, Eley G and James CD: Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 60:1383–1387. 2000.PubMed/NCBI | |
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M and Choulier L: A systematic review of glioblastoma-targeted therapies in phases II, III, IV clinical trials. Cancers (Basel). 13:17952021. View Article : Google Scholar : PubMed/NCBI | |
|
Van Den Bent M, Eoli M, Sepulveda JM, Smits M, Walenkamp A, Frenel JS, Franceschi E, Clement PM, Chinot O, De Vos F, et al: INTELLANCE 2/EORTC 1410 randomized Phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 22:684–693. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Solomon MT, Miranda N, Jorrín E, Chon I, Marinello JJ, Alert J, Lorenzo-Luaces P and Crombet T: Nimotuzumab in combination with radiotherapy in high grade glioma patients: A single institution experience. Cancer Biol Ther. 15:504–509. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Reardon DA, Nabors LB, Mason WP, Perry JR, Shapiro W, Kavan P, Mathieu D, Phuphanich S, Cseh A, Fu Y, et al: Phase I/randomized Phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro Oncol. 17:430–439. 2015.PubMed/NCBI | |
|
Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE, et al: Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 13:324–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Paulsson J, Lindh MB, Jarvius M, Puputti M, Nistér M, Nupponen NN, Paulus W, Söderberg O, Dresemann G, von Deimling A, et al: Prognostic but not predictive role of platelet-derived growth factor receptors in patients with recurrent glioblastoma. Int J Cancer. 128:1981–1988. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Plate KH, Breier G, Farrell CL and Risau W: Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest. 67:529–534. 1992.PubMed/NCBI | |
|
Camorani S, Esposito CL, Rienzo A, Catuogno S, Iaboni M, Condorelli G, de Franciscis V and Cerchia L: Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Mol Ther. 22:828–841. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Vassbotn FS, Ostman A, Langeland N, Holmsen H, Westermark B, Heldin CH and Nistér M: Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line. J Cell Physiol. 158:381–389. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA and Giese NA: Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 62:3729–3735. 2002.PubMed/NCBI | |
|
Cattaneo MG, Gentilini D and Vicentini LM: Deregulated human glioma cell motility: Inhibitory effect of somatostatin. Mol Cell Endocrinol. 256:34–39. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kwak Y, Kim SI, Park CK, Paek SH, Lee ST and Park SH: C-MET overexpression and amplification in gliomas. Int J Clin Exp Pathol. 8:14932–14938. 2015.PubMed/NCBI | |
|
Bender S, Gronych J, Warnatz HJ, Hutter B, Gröbner S, Ryzhova M, Pfaff E, Hovestadt V, Weinberg F, Halbach S, et al: Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med. 22:1314–1320. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, Wolf M, Oliner KS, Anderson A, Zhu M, et al: A Phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 13:437–446. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li A, Glas M, Lal B, Ying M, Sang Y, Xia S, Trageser D, Guerrero-Cázares H, Eberhart CG, et al: c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA. 108:9951–9956. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jahangiri A, De Lay M, Miller LM, Carbonell WS, Hu YL, Lu K, Tom MW, Paquette J, Tokuyasu TA, Tsao S, et al: Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res. 19:1773–1783. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson J, Ascierto ML, Mittal S, Newsome D, Kang L, Briggs M, Tanner K, Marincola FM, Berens ME, Vande Woude GF and Xie Q: Genomic profiling of a hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma. J Transl Med. 13:3062015. View Article : Google Scholar : PubMed/NCBI | |
|
Cruickshanks N, Zhang Y, Yuan F, Pahuski M, Gibert M and Abounader R: Role and therapeutic targeting of the HGF/MET pathway in glioblastoma. Cancers (Basel). 9:872017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, et al: Glioma targeted therapy: Insight into future of molecular approaches. Mol Cancer. 21:392022. View Article : Google Scholar : PubMed/NCBI | |
|
Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Torre M, Vasudevaraja V, Serrano J, DeLorenzo M, Malinowski S, Blandin AF, Pages M, Ligon AH, Dong F, Meredith DM, et al: Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun. 8:1072020. View Article : Google Scholar : PubMed/NCBI | |
|
Jimenez-Pascual A, Mitchell K, Siebzehnrubl FA and Lathia JD: FGF2: A novel druggable target for glioblastoma? Expert Opin Ther Targets. 24:311–318. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Feldkamp MM, Lau N and Guha A: The farnesyltransferase inhibitor L-744,832 inhibits the growth of astrocytomas through a combination of antiproliferative, antiangiogenic, and proapoptotic activities. Ann N Y Acad Sci. 886:257–260. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Kowalewski A, Durślewicz J, Zdrenka M, Grzanka D and Szylberg Ł: Clinical relevance of BRAF V600E mutation status in brain tumors with a focus on a novel management algorithm. Target Oncol. 15:531–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dischinger PS, Tovar EA, Essenburg CJ, Madaj ZB, Gardner EE, Callaghan ME, Turner AN, Challa AK, Kempston T, Eagleson B, et al: NF1 deficiency correlates with estrogen receptor signaling and diminished survival in breast cancer. NPJ Breast Cancer. 4:292018. View Article : Google Scholar : PubMed/NCBI | |
|
Arima Y, Hayashi H, Kamata K, Goto TM, Sasaki M, Kuramochi A and Saya H: Decreased expression of neurofibromin contributes to epithelial-mesenchymal transition in neurofibromatosis type 1. Exp Dermatol. 19:e136–e141. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Altwairgi AK, Alghareeb WA, AlNajjar FH, Alhussain H, Alsaeed E, Balbaid AAO, Aldanan S, Orz Y and Alsharm AA: Atorvastatin in combination with radiotherapy and temozolomide for glioblastoma: A prospective Phase II study. Invest New Drugs. 39:226–231. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–519. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mondin VE, Ben El Kadhi K, Cauvin C, Jackson-Crawford A, Bélanger E, Decelle B, Salomon R, Lowe M, Echard A and Carréno S: PTEN reduces endosomal PtdIns(4,5)P2 in a phosphatase-independent manner via a PLC pathway. J Cell Biol. 218:2198–2214. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Han F, Hu R, Yang H, Liu J, Sui J, Xiang X, Wang F, Chu L and Song S: PTEN gene mutations correlate to poor prognosis in glioma patients: A meta-analysis. Onco Targets Ther. 9:3485–3492. 2016.PubMed/NCBI | |
|
Chen C, Zhu S, Zhang X, Zhou T, Gu J, Xu Y, Wan Q, Qi X, Chai Y, Liu X, et al: Targeting the synthetic vulnerability of PTEN-deficient glioblastoma cells with MCL1 inhibitors. Mol Cancer Ther. 19:2001–2011. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JJ, Liu Z, Wang L, Shin E, Loda MF and Roberts TM: The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA. 102:18443–18448. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, et al: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Weber GL, Parat MO, Binder ZA, Gallia GL and Riggins GJ: Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Oncotarget. 2:833–849. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Quayle SN, Lee JY, Cheung LWT, Ding L, Wiedemeyer R, Dewan RW, Huang-Hobbs E, Zhuang L, Wilson RK, Ligon KL, et al: Somatic mutations of PIK3R1 promote gliomagenesis. PLoS One. 7:e494662012. View Article : Google Scholar : PubMed/NCBI | |
|
Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, Marie SKN, Oba-Shinjo SM, Carlotti CG, Caballero OL, Simpson AJ, et al: PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res. 4:709–714. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka S, Batchelor TT, Iafrate AJ, Dias-Santagata D, Borger DR, Ellisen LW, Yang D, Louis DN, Cahill DP and Chi AS: PIK3CA activating mutations are associated with more disseminated disease at presentation and earlier recurrence in glioblastoma. Acta Neuropathol Commun. 7:662019. View Article : Google Scholar : PubMed/NCBI | |
|
England B, Huang T and Karsy M: Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 34:2063–2074. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ohgaki H: Genetic pathways to glioblastomas. Neuropathology. 25:1–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Olafson LR, Gunawardena M, Nixdorf S, McDonald KL and Rapkin RW: The role of TP53 gain-of-function mutation in multifocal glioblastoma. J Neurooncol. 147:37–47. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fontemaggi G, Dell'Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, et al: The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol. 16:1086–1093. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ham SW, Jeon HY, Jin X, Kim EJ, Kim JK, Shin YJ, Lee Y, Kim SH, Lee SY, Seo S, et al: TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ. 26:409–425. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL and de Oliveira GAP: Oncogenic gain of function in glioblastoma is linked to mutant p53 amyloid oligomers. iScience. 23:1008202020. View Article : Google Scholar : PubMed/NCBI | |
|
Tao W and Levine AJ: P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA. 96:6937–6941. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, Kleihues P and Ohgaki H: p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 11:159–168. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Reifenberger G, Liu L, Ichimura K, Schmidt EE and Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53:2736–2739. 1993.PubMed/NCBI | |
|
Riemenschneider MJ, Büschges R, Wolter M, Reifenberger J, Boström J, Kraus JA, Schlegel U and Reifenberger G: Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification1. Cancer Res. 59:6091–6096. 1999.PubMed/NCBI | |
|
Xiong Y, Zhang Y, Xiong S and Williams-Villalobo AE: A glance of p53 functions in brain development, neural stem cells, and brain cancer. Biology (Basel). 9:2852020.PubMed/NCBI | |
|
Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Allen BK, Stathias V, Maloof ME, Vidovic D, Winterbottom EF, Capobianco AJ, Clarke J, Schurer S, Robbins DJ and Ayad NG: Epigenetic pathways and glioblastoma treatment: Insights from signaling cascades. J Cell Biochem. 116:351–363. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Romani M, Pistillo MP and Banelli B: Epigenetic targeting of glioblastoma. Front Oncol. 8:4482018. View Article : Google Scholar : PubMed/NCBI | |
|
Roos WP, Batista LFZ, Naumann SC, Wick W, Weller M, Menck CFM and Kaina B: Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene. 26:186–197. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yu W, Zhang L, Wei Q and Shao A: O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front Oncol. 9:15472020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Chen L, Han L, Shi Z, Zhang J, Pu P and Kang C: EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 356:929–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma V, Malgulwar PB, Purkait S, Patil V, Pathak P, Agrawal R, Kulshreshtha R, Mallick S, Julka PK, Suri A, et al: Genome-wide ChIP-seq analysis of EZH2-mediated H3K27me3 target gene profile highlights differences between low- and high-grade astrocytic tumors. Carcinogenesis. 38:152–161. 2017.PubMed/NCBI | |
|
Mohammad F, Weissmann S, Leblanc B, Pandey DP, Højfeldt JW, Comet I, Zheng C, Johansen JV, Rapin N, Porse BT, et al: EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med. 23:483–492. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lee DH, Kim GW, Yoo J, Lee SW, Jeon YH, Kim SY, Kang HG, Kim DH, Chun KH, Choi J and Kwon SH: Histone demethylase KDM4C controls tumorigenesis of glioblastoma by epigenetically regulating p53 and c-Myc. Cell Death Dis. 12:892021. View Article : Google Scholar : PubMed/NCBI | |
|
Ceccacci E and Minucci S: Inhibition of histone deacetylases in cancer therapy: Lessons from leukaemia. Br J Cancer. 114:605–611. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee P, Murphy B, Miller R, Menon V, Banik NL, Giglio P, Lindhorst SM, Varma AK, Vandergrift WA III, Patel SJ and Das A: Mechanisms and clinical significance of histone deacetylase inhibitors: Epigenetic glioblastoma therapy. Anticancer Res. 35:615–625. 2015.PubMed/NCBI | |
|
Chen R, Zhang M, Zhou Y, Guo W, Yi M, Zhang Z, Ding Y and Wang Y: The application of histone deacetylases inhibitors in glioblastoma. J Exp Clin Cancer Res. 39:1382020. View Article : Google Scholar : PubMed/NCBI | |
|
Harbour JW, Luo RX, Santi AD, Postigo AA and Dean DC: Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 98:859–869. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF and Sherr CJ: Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell. 71:323–334. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Cooper S and Shayman JA: Revisiting retinoblastoma protein phosphorylation during the mammalian cell cycle. Cell Mol Life Sci. 58:580–595. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, Clarke JL, Oberheim-Bush NA, Chang SM, Berger MS and Prados M: Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol. 140:477–483. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Goldberg AL: Protein degradation and protection against misfolded or damaged proteins. Nature. 426:895–899. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Narayanan S, Cai CY, Assaraf YG, Guo HQ, Cui Q, Wei L, Huang JJ, Ashby CR Jr and Chen ZS: Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat. 48:1006632020. View Article : Google Scholar : PubMed/NCBI | |
|
Kong XT, Nguyen NT, Choi YJ, Zhang G, Nguyen HN, Filka E, Green S, Yong WH, Liau LM, Green RM, et al: Phase 2 study of bortezomib combined with temozolomide and regional radiation therapy for upfront treatment of patients with newly diagnosed glioblastoma multiforme: safety and efficacy assessment. Int J Radiat Oncol Biol Phys. 100:1195–1203. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Di K, Lloyd GK, Abraham V, MacLaren A, Burrows FJ, Desjardins A, Trikha M and Bota DA: Marizomib activity as a single agent in malignant gliomas: Ability to cross the blood-brain barrier. Neuro Oncol. 18:840–848. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Roth P, Mason WP, Richardson PG and Weller M: Proteasome inhibition for the treatment of glioblastoma. Expert Opin Investig Drugs. 29:1133–1141. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Quillin J, Patel R, Herzberg E, Alton D, Bikzhanova G, Geisler L and Olson J: A phase 0 analysis of ixazomib in patients with glioblastoma. Mol Clin Oncol. 13:432020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Campian JL, Gujar AD, Tsien C, Ansstas G, Tran DD, DeWees TA, Lockhart AC and Kim AH: Final results of a Phase I dose-escalation, dose-expansion study of adding disulfiram with or without copper to adjuvant temozolomide for newly diagnosed glioblastoma. J Neurooncol. 138:105–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Chaudhary R, Cohen AL, Fink K, Goldlust S, Boockvar J, Chinnaiyan P, Wan L, Marcus S and Campian JL: A multicenter Phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 142:537–544. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Carruthers R and Chalmers AJ: Improving the therapeutic ratio of radiotherapy by targeting the DNA damage response. Increasing the Therapeutic Ratio of Radiotherapy. Series: Cancer Drug Discovery and Development. Tofilon PJ and Camphausen K: Humana Press; Cham: pp. 1–34. 2017, View Article : Google Scholar | |
|
Murnyák B, Kouhsari MC, Hershkovitch R, Kálmán B, Marko-Varga G, Klekner Á and Hortobágyi T: PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma. Oncotarget. 8:46348–46362. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chalmers AJ: Overcoming resistance of glioblastoma to conventional cytotoxic therapies by the addition of PARP inhibitors. Anticancer Agents Med Chem. 10:520–533. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, Strathdee K, Cruickshank G, Dunn L, Erridge S, et al: Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: Results of the Phase I OPARATIC trial. Neuro Oncol. 22:1840–1850. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Robins HI, Zhang P, Gilbert MR, Chakravarti A, de Groot JF, Grimm SA, Wang F, Lieberman FS, Krauze A, Trotti AM, et al: A randomized Phase I/II study of ABT-888 in combination with temozoflomide in recurrent temozolomide resistant glioblastoma: An NRG oncology RTOG group study. J Neurooncol. 126:309–316. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Baxter PA, Su JM, Onar-Thomas A, Billups CA, Li XN, Poussaint TY, Smith ER, Thompson P, Adesina A, Ansell P, et al: A Phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: A pediatric brain tumor consortium study. Neuro Oncol. 22:875–885. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organi-zation classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, et al: Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem. 276:16168–16176. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SM, Koh HJ, Park DC, Song BJ, Huh TL and Park JW: Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 32:1185–1196. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SY and Park JW: Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res. 37:309–316. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I and Bardella C: Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One. 6:e198682011. View Article : Google Scholar : PubMed/NCBI | |
|
Arita H, Narita Y, Yoshida A, Hashimoto N, Yoshimine T and Ichimura K: IDH1/2 mutation detection in gliomas. Brain Tumor Pathol. 32:79–89. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med. 360:765–773. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Capper D, Weissert S, Balss J, Habel A, Meyer J, Jäger D, Ackermann U, Tessmer C, Korshunov A, Zentgraf H, et al: Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 20:245–254. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, et al: IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 483:474–478. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yalaza C, Ak H, Cagli MS, Ozgiray E, Atay S and Aydin HH: R132H mutation in IDH1 gene is associated with increased tumor HIF1-alpha and serum VEGF levels in primary glioblastoma multiforme. Ann Clin Lab Sci. 47:362–364. 2017.PubMed/NCBI | |
|
Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML and Bernstein BE: Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 529:110–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Zheng S, Zheng Y, Huang R, An N, Liang A and Hu C: Glioma derived isocitrate dehydrogenase-2 mutations induced up-regulation of HIF-1α and β-catenin signaling: Possible impact on glioma cell metastasis and chemo-resistance. Int J Biochem Cell Biol. 44:770–775. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Warburg O: On respiratory impairment in cancer cells. Science. 124:269–270. 1956. View Article : Google Scholar : PubMed/NCBI | |
|
Stern R, Shuster S, Neudecker BA and Formby B: Lactate stimulates fibroblast expression of hyaluronan and CD44: The Warburg effect revisited. Exp Cell Res. 276:24–31. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Saier MH Jr: Families of transmembrane sugar transport proteins. Mol Microbiol. 35:699–710. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Scheepers A, Joost H and Schürmann A: The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr. 28:364–371. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, et al: Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 16:1373–1382. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Libby CJ, Gc S, Benavides GA, Fisher JL, Williford SE, Zhang S, Tran AN, Gordon ER, Jones AB, Tuy K, et al: A role for GLUT3 in glioblastoma cell invasion that is not recapitulated by GLUT1. Cell Adh Migr. 15:101–115. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C and Guha A: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 208:313–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Vartanian A, Agnihotri S, Wilson MR, Burrell KE, Tonge PD, Alamsahebpour A, Jalali S, Taccone MS, Mansouri S, Golbourn B, et al: Targeting hexokinase 2 enhances response to radio-chemotherapy in glioblastoma. Oncotarget. 7:69518–69535. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pastorino JG, Shulga N and Hoek JB: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 277:7610–7618. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Agnihotri S, Mansouri S, Burrell K, Li M, Mamatjan Y, Liu J, Nejad R, Kumar S, Jalali S, Singh SK, et al: Ketoconazole and posaconazole selectively target HK2-expressing glioblastoma cells. Clin Cancer Res. 25:844–855. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Harada K, Saheki S, Wada K and Tanaka T: Purification of four pyruvate kinase isozymes of rats by affinity elution chromatography. Biochim Biophys Acta. 524:327–339. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Verma H, Cholia RP, Kaur S, Dhiman M and Mantha AK: A short review on cross-link between pyruvate kinase (PKM2) and glioblastoma multiforme. Metab Brain Dis. 36:751–765. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Uyeda K: Pyruvate kinase. Encyclopedia of Biological Chemistry. (2nd edition). Lennarz WJ and Lane MD: Academic Press; Waltham: pp. 719–721. 2013, Available from:. https://www.sciencedirect.com/science/article/pii/B9780123786302000530 View Article : Google Scholar | |
|
Mukherjee J, Phillips JJ, Zheng S, Wiencke J, Ronen SM and Pieper RO: Pyruvate kinase M2 expression, but not pyruvate kinase activity, is up-regulated in a grade-specific manner in human glioma. PLoS One. 8:e576102013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK and Lu Z: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 150:685–696. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, Wei C, Guo F, Chen Y and Lu Z: PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell. 53:75–87. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cholia RP, Dhiman M, Kumar R and Mantha AK: Oxidative stress stimulates invasive potential in rat C6 and human U-87 MG glioblastoma cells via activation and cross-talk between PKM2, ENPP2 and APE1 enzymes. Metab Brain Dis. 33:1307–1326. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, Li C, Yang F, Zeng R, Wei P, et al: Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res. 27:329–351. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K and Lu Z: Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 480:118–122. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chaneton B and Gottlieb E: Rocking cell metabolism: Revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem Sci. 37:309–316. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sizemore ST, Zhang M, Cho JH, Sizemore GM, Hurwitz B, Kaur B, Lehman NL, Ostrowski MC, Robe PA, Miao W, et al: Pyruvate kinase M2 regulates homologous recombination-mediated DNA double-strand break repair. Cell Res. 28:1090–1102. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rieger J, Bähr O, Maurer GD, Hattingen E, Franz K, Brucker D, Walenta S, Kämmerer U, Coy JF, Weller M and Steinbach JP: ERGO: A pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 44:1843–1852. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kucharzewska P, Christianson HC and Belting M: Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS One. 10:e01167402015. View Article : Google Scholar : PubMed/NCBI | |
|
Ogunrinu TA and Sontheimer H: Hypoxia increases the dependence of glioma cells on glutathione. J Biol Chem. 285:37716–37724. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson DS: The physical chemistry of brain and neural cell membranes: An overview. Neurochem Res. 35:681–687. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Newsholme P, Lima MMR, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB and Curi R: Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 36:153–163. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bak LK, Schousboe A and Waagepetersen HS: The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 98:641–653. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Obara-Michlewska M and Szeliga M: Targeting glutamine addiction in gliomas. Cancers (Basel). 12:3102020. View Article : Google Scholar : PubMed/NCBI | |
|
Michalak KP, Maćkowska-Kędziora A, Sobolewski B and Woźniak P: Key roles of glutamine pathways in reprogramming the cancer metabolism. Oxid Med Cell Longev. 2015:9643212015. View Article : Google Scholar : PubMed/NCBI | |
|
Rubin H: Deprivation of glutamine in cell culture reveals its potential for treating cancer. Proc Natl Acad Sci USA. 116:6964–6968. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ekici S, Nye JA, Neill SG, Allen JW, Shu HK and Fleischer CC: Glutamine imaging: A new avenue for glioma management. AJNR Am J Neuroradiol. 43:11–18. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
de Groot JF, Liu TJ, Fuller G and Yung WKA: The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res. 65:1934–1940. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lyons SA, Chung WJ, Weaver AK, Ogunrinu T and Sontheimer H: Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 67:9463–9471. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Dranoff G, Elion GB, Friedman HS and Bigner DD: Combination chemotherapy in vitro exploiting glutamine metabolism of human glioma and medulloblastoma. Cancer Res. 45:4082–4086. 1985.PubMed/NCBI | |
|
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, et al: Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70:8981–8987. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Majewska E, Márquez J, Albrecht J and Szeliga M: Transfection with GLS2 glutaminase (GAB) sensitizes human glioblastoma cell lines to oxidative stress by a common mechanism involving suppression of the PI3K/AKT pathway. Cancers (Basel). 11:1152019. View Article : Google Scholar : PubMed/NCBI | |
|
Szeliga M, Obara-Michlewska M, Matyja E, Łazarczyk M, Lobo C, Hilgier W, Alonso FJ, Márquez J and Albrecht J: Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells. Glia. 57:1014–1023. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Szeliga M, Zgrzywa A, Obara-Michlewska M and Albrecht J: Transfection of a human glioblastoma cell line with liver-type glutaminase (LGA) down-regulates the expression of DNA-repair gene MGMT and sensitizes the cells to alkylating agents. J Neurochem. 123:428–436. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Sun W, Xiang J, Deng L, Zhang B, Xie P, Qiao W, Zou J and Liu C: Glutamine synthetase functions as a negative growth regulator in glioma. J Neurooncol. 114:59–69. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ye ZC, Rothstein JD and Sontheimer H: Compromised glutamate transport in human glioma cells: Reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci. 19:10767–10777. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY and Sontheimer H: Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci. 25:7101–7110. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M, Albert A, Vanbelle S, Califice S, Bredel M and Bours V: Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer. 9:3722009. View Article : Google Scholar : PubMed/NCBI | |
|
Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, Leiss L, Heggdal JI, Pedersen PH, Wang J and Enger PØ: Drug repurposing: Sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene. 34:5951–5959. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YK and Park KG: Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Morris SM Jr: Enzymes of arginine metabolism. J Nutr. 134 (Suppl 10):2743S–2747S. 2765S–2767S. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo MT, Savaraj N and Feun LG: Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget. 1:246–251. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Khoury O, Ghazale N, Stone E, El-Sibai M, Frankel AE and Abi-Habib RJ: Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol. 122:75–85. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Choy CT, Wong CH and Loong HHF: Low expressions of ASS1 and OTC in glioblastoma suggest the potential clinical use of recombinant human arginase (rhArg). J Neurooncol. 129:579–581. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bobak Y, Kurlishchuk Y, Vynnytska-Myronovska B, Grydzuk O, Shuvayeva G, Redowicz MJ, Kunz-Schughart LA and Stasyk O: Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells. Int J Biochem Cell Biol. 70:29–38. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlyk I, Rzhepetskyy Y, Jagielski AK, Drozak J, Wasik A, Pereverzieva G, Olchowik M, Kunz-Schugart LA, Stasyk O and Redowicz MJ: Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β-actin arginylation. Amino Acids. 47:199–212. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stasyk OV, Boretsky YR, Gonchar MV and Sibirny AA: Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biol Int. 39:246–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stone EM, Chantranupong L and Georgiou G: The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate. Biochemistry. 49:10582–10588. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Koussa H, Al-Haddad M, Abi-Habib R and El-Sibai M: Human recombinant arginase I [HuArgI (Co)-PEG5000]-induced arginine depletion inhibits colorectal cancer cell migration and invasion. Int J Mol Sci. 20:60182019. View Article : Google Scholar : PubMed/NCBI | |
|
Khalil N and Abi-Habib RJ: [HuArgI (co)-PEG5000]-induced arginine deprivation leads to autophagy dependent cell death in pancreatic cancer cells. Invest New Drugs. 38:1236–1246. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tanios R, Bekdash A, Kassab E, Stone E, Georgiou G, Frankel AE and Abi-Habib RJ: Human recombinant arginase I(Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human acute myeloid leukemia cells. Leuk Res. 37:1565–1571. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nasreddine G, El-Sibai M and Abi-Habib RJ: Cytotoxicity of [HuArgI (co)-PEG5000]-induced arginine deprivation to ovarian cancer cells is autophagy dependent. Invest New Drugs. 38:10–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Glazer ES, Stone EM, Zhu C, Massey KL, Hamir AN and Curley SA: Bioengineered human arginase I with enhanced activity and stability controls hepatocellular and pancreatic carcinoma xenografts. Transl Oncol. 4:138–146. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon CY, Sung DJ, Lee JH, Kim AR, Oh CW, Je JH, Weon BM, Seol SK, Pyun A, Hwu Y, et al: Imaging of renal and prostate carcinoma with refractive index radiology. Int J Urol. 14:96–103. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hsueh EC, Knebel SM, Lo WH, Leung YC, Cheng PNM and Hsueh CT: Deprivation of arginine by recombinant human arginase in prostate cancer cells. J Hematol Oncol. 5:172012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Shi X, Li Y, Fan J, Zeng X, Xian Z, Wang Z, Sun Y, Wang S, Song P, et al: Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells. Cell Death Dis. 5:e15632014. View Article : Google Scholar : PubMed/NCBI | |
|
Hou X, Chen S, Zhang P, Guo D and Wang B: Targeted arginine metabolism therapy: A dilemma in glioma treatment. Front Oncol. 12:9388472022. View Article : Google Scholar : PubMed/NCBI | |
|
Arita H, Narita Y, Fukushima S, Tateishi K, Matsushita Y, Yoshida A, Miyakita Y, Ohno M, Collins VP, Kawahara N, et al: Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol. 126:267–276. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nonoguchi N, Ohta T, Oh JE, Kim YH, Kleihues P and Ohgaki H: TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol. 126:931–937. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, et al: TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 110:6021–6066. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H, Tanaka S, Mukasa A, Shirahata M, Shimizu S, et al: A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun. 4:792016. View Article : Google Scholar : PubMed/NCBI | |
|
Kikuchi Z, Shibahara I, Yamaki T, Yoshioka E, Shofuda T, Ohe R, Matsuda KI, Saito R, Kanamori M, Kanemura Y, et al: TERT promoter mutation associated with multifocal phenotype and poor prognosis in patients with IDH wild-type glioblastoma. Neurooncol Adv. 2:vdaa1142020.PubMed/NCBI | |
|
Vuong HG, Nguyen TQ, Ngo TNM, Nguyen HC, Fung KM and Dunn IF: The interaction between TERT promoter mutation and MGMT promoter methylation on overall survival of glioma patients: A meta-analysis. BMC Cancer. 20:8972020. View Article : Google Scholar : PubMed/NCBI | |
|
Patel B, Taiwo R, Kim AH and Dunn GP: TERT, a promoter of CNS malignancies. Neurooncol Adv. 2:vdaa0252020.PubMed/NCBI | |
|
Picketts DJ, Higgs DR, Bachoo S, Blake DJ, Quarrell OW and Gibbons RJ: ATRX encodes a novel member of the SNF2 family of proteins: Mutations point to a common mechanism underlying the ATR-X syndrome. Hum Mol Genet. 5:1899–1907. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao Y, Killela PJ, Reitman ZJ, Rasheed BA, Heaphy CM, de Wilde RF, Rodriguez FJ, Rosemberg S, Oba-Shinjo SM, Nagahashi Marie SK, et al: Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 3:709–722. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Koschmann C, Calinescu AA, Nunez FJ, Mackay A, Fazal-Salom J, Thomas D, Mendez F, Kamran N, Dzaman M, Mulpuri L, et al: ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med. 8:328ra282016. View Article : Google Scholar : PubMed/NCBI | |
|
do Carmo A, Balça-Silva J, Matias D and Lopes MC: PKC signaling in glioblastoma. Cancer Biol Ther. 14:287–294. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Steinberg SF: Structural basis of protein kinase C isoform function. Physiol Rev. 88:1341–1378. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Leirdal M and Sioud M: Protein kinase Calpha isoform regulates the activation of the MAP kinase ERK1/2 in human glioma cells: Involvement in cell survival and gene expression. Mol Cell Biol Res Commun. 4:106–110. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Marquina-Sánchez B, González-Jorge J, Hansberg-Pastor V, Wegman-Ostrosky T, Baranda-Ávila N, Mejía-Pérez S, Camacho-Arroyo I and González-Arenas A: The interplay between intracellular progesterone receptor and PKC plays a key role in migration and invasion of human glioblastoma cells. J Steroid Biochem Mol Biol. 172:198–206. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Valdés-Rives SA, Arcos-Montoya D, de la Fuente-Granada M, Zamora-Sánchez CJ, Arias-Romero LE, Villamar-Cruz O, Camacho-Arroyo I, Pérez-Tapia SM and González-Arenas A: LPA1 receptor promotes progesterone receptor phosphorylation through PKCα in human glioblastoma cells. Cells. 10:8072021. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Tsujinoue H, Nakatani T, Shibuya M and Fukui H: Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res. 59:4413–4418. 1999.PubMed/NCBI | |
|
Liu Z, Wei Y, Zhang L, Yee PP, Johnson M, Zhang X, Gulley M, Atkinson JM, Trebak M, Wang HG and Li W: Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene. 38:120–139. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Forman LW, Williams RM and Faller DV: Protein kinase C-δ inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer. 14:902014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim MJ, Kim RK, Yoon CH, An S, Hwang SG, Suh Y, Park MJ, Chung HY, Kim IG and Lee SJ: Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. J Cell Sci. 124:3084–3094. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sarkar S and Yong VW: Reduction of protein kinase C delta attenuates tenascin-C stimulated glioma invasion in three-dimensional matrix. Carcinogenesis. 31:311–317. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Xu Z, Duan H, Ji H, Zhen Z, Li B, Wang H, Tang H, Zhou J, Guo T, et al: Tumor-associated macrophage interleukin-β promotes glycerol-3-phosphate dehydrogenase activation, glycolysis and tumorigenesis in glioma cells. Cancer Sci. 111:1979–1990. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sharif TR and Sharif M: Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 15:237–243. 1999.PubMed/NCBI | |
|
Okhrimenko H, Lu W, Xiang C, Hamburger N, Kazimirsky G and Brodie C: Protein kinase C-epsilon regulates the apoptosis and survival of glioma cells. Cancer Res. 65:7301–7309. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Besson A, Davy A, Robbins SM and Yong VW: Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene. 20:7398–7407. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Besson A, Wilson TL and Yong VW: The anchoring protein RACK1 links protein kinase cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem. 277:22073–22084. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Aeder SE, Martin PM, Soh JW and Hussaini IM: PKC-eta mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene. 23:9062–9069. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Uht RM, Amos S, Martin PM, Riggan AE and Hussaini IM: The protein kinase C-eta isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene. 26:2885–2893. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hussaini IM, Carpenter JE, Redpath GT, Sando JJ, Shaffrey ME and Vandenberg SR: Protein kinase C-eta regulates resistance to UV- and gamma-irradiation-induced apoptosis in glioblastoma cells by preventing caspase-9 activation. Neuro Oncol. 4:9–21. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Phillips E, Lang V, Bohlen J, Bethke F, Puccio L, Tichy D, Herold-Mende C, Hielscher T, Lichter P and Goidts V: Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism. Int J Cancer. 139:1776–1787. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Gu F, Li W, Zhang B, Niu R, Fu L, Zhang N and Ma Y: Reduction of protein kinase C zeta inhibits migration and invasion of human glioblastoma cells. J Neurochem. 109:203–213. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Baldwin RM, Parolin DA and Lorimer IA: Regulation of glioblastoma cell invasion by PKC iota and RhoB. Oncogene. 27:3587–3595. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Odia Y, Iwamoto FM, Moustakas A, Fraum TJ, Salgado CA, Li A, Kreisl TN, Sul J, Butman JA and Fine HA: A Phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J Neurooncol. 127:127–135. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sevastre AS, Costachi A, Tataranu LG, Brandusa C, Artene SA, Stovicek O, Alexandru O, Danoiu S, Sfredel V and Dricu A: Glioblastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments (review). Exp Ther Med. 22:14082021. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, et al: Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 343:189–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Stieber D, Golebiewska A, Evers L, Lenkiewicz E, Brons NHC, Nicot N, Oudin A, Bougnaud S, Hertel F, Bjerkvig R, et al: Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 127:203–219. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ and Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28:511–515. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lauko A, Lo A, Ahluwalia MS and Lathia JD: Cancer cell heterogeneity and plasticity in glioblastoma and brain tumors. Semin Cancer Biol. 82:162–175. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD, Betensky RA, et al: Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 20:810–817. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nobusawa S, Lachuer J, Wierinckx A, Kim YH, Huang J, Legras C, Kleihues P and Ohgaki H: Intratumoral patterns of genomic imbalance in glioblastomas. Brain Pathol. 20:936–944. 2010.PubMed/NCBI | |
|
Kumar A, Boyle EA, Tokita M, Mikheev AM, Sanger MC, Girard E, Silber JR, Gonzalez-Cuyar LF, Hiatt JB, Adey A, et al: Deep sequencing of multiple regions of glial tumors reveals spatial heterogeneity for mutations in clinically relevant genes. Genome Biol. 15:5302014. View Article : Google Scholar : PubMed/NCBI | |
|
Bhaduri A, Di Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, Cadwell CR, et al: Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell. 26:48–63.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pang B, Xu J, Hu J, Guo F, Wan L, Cheng M and Pang L: Single-cell RNA-seq reveals the invasive trajectory and molecular cascades underlying glioblastoma progression. Mol Oncol. 13:2588–2603. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al: A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 180:188–204.e22. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Iwadate Y: Plasticity in glioma stem cell phenotype and its therapeutic implication. Neurol Med Chir (Tokyo). 58:61–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koso H, Takeda H, Yew CCK, Ward JM, Nariai N, Ueno K, Nagasaki M, Watanabe S, Rust AG, Adams DJ, et al: Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells. Proc Natl Acad Sci USA. 109:E2998–E3007. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, et al: Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 22:514–528.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, Wang HC, Huang HR and Tsai MH: Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers (Basel). 13:1952021. View Article : Google Scholar : PubMed/NCBI | |
|
Lathia JD, Heddleston JM, Venere M and Rich JN: Deadly teamwork: Neural cancer stem cells and the tumor microenvironment. Cell Stem Cell. 8:482–485. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL and Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G and Pelicci G: CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 31:857–869. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Carlsson SK, Brothers SP and Wahlestedt C: Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 6:1359–1370. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nusse R: Wnt signaling and stem cell control. Cell Res. 18:523–527. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sareddy GR, Kesanakurti D, Kirti PB and Babu PP: Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochem Res. 38:2313–2322. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yu JB, Jiang H and Zhan RY: Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion. Mol Med Rep. 14:1263–1268. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shih IM and Wang TL: Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 67:1879–1882. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
de la Iglesia N, Puram SV and Bonni A: STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med. 9:580–590. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Porporato PE, Filigheddu N, Pedro JMBS, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, Soldano A, Adami V, Ambrosini C, Broso F, et al: Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 35:1090242021. View Article : Google Scholar : PubMed/NCBI | |
|
Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J, Cabaud O, Leroy C, David A, Acevedo V, et al: Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem. 9:1025–1033. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M and Hamidieh AA: Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat. 42:35–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K and Bauer HC: The rights and wrongs of blood-brain barrier permeability studies: A walk through 100 years of history. Front Neurosci. 8:4042014. View Article : Google Scholar : PubMed/NCBI | |
|
Daneman R and Prat A: The blood-brain barrier. Cold Spring Harb Perspect Biol. 7:a0204122015. View Article : Google Scholar : PubMed/NCBI | |
|
Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H and Wolburg H: Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100:323–331. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W and Engelhardt B: Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 105:586–592. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ishihara H, Kubota H, Lindberg RLP, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y and Frei K: Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol. 67:435–448. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rama AR, Alvarez PJ, Madeddu R and Aranega A: ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 41:4847–4851. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, et al: Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 16:5664–5678. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, Gril B, Hua E, Palmieri D, Polli JW, et al: Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 29:770–781. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tiwary S, Morales JE, Kwiatkowski SC, Lang FF, Rao G and McCarty JH: Metastatic brain tumors disrupt the blood-brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Sci Rep. 8:82672018. View Article : Google Scholar : PubMed/NCBI | |
|
Elmeliegy MA, Carcaboso AM, Tagen M, Bai F and Stewart CF: Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clin Cancer Res. 17:89–99. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
de Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JHM and van Tellingen O: Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs. 30:443–449. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Oberoi RK, Mittapalli RK and Elmquist WF: Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther. 347:755–764. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lin F, de Gooijer MC, Roig EM, Buil LCM, Christner SM, Beumer JH, Würdinger T, Beijnen JH and van Tellingen O: ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res. 20:2703–2713. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
de Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W and van Tellingen O: Improved brain penetration and antitumor efficacy of temozolomide by inhibition of ABCB1 and ABCG2. Neoplasia. 20:710–720. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YH and Yu AM: ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 20:793–807. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tran S, DeGiovanni PJ, Piel B and Rai P: Cancer nanomedicine: A review of recent success in drug delivery. Clin Transl Med. 6:442017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y: Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 53:12320–12364. 2014.PubMed/NCBI | |
|
Budama-Kilinc Y, Kecel-Gunduz S, Cakir-Koc R, Aslan B, Bicak B, Kokcu Y, Ozel AE and Akyuz S: Structural characterization and drug delivery system of natural growth-modulating peptide against glioblastoma cancer. Int J Pept Res Ther. 27:2015–2028. 2021. View Article : Google Scholar | |
|
Pasut G: Grand challenges in nano-based drug delivery. Front Med Technol. 1:12019. View Article : Google Scholar : PubMed/NCBI | |
|
Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A and Kreuter J: Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul. 23:582–592. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N and Tyler BM: Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers (Basel). 14:29632022. View Article : Google Scholar : PubMed/NCBI | |
|
Ramalho MJ, Sevin E, Gosselet F, Lima J, Coelho MAN, Loureiro JA and Pereira MC: Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 545:84–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kuang Y, Jiang X, Zhang Y, Lu Y, Ma H, Guo Y, Zhang Y, An S, Li J, Liu L, et al: Dual functional peptide-driven nanoparticles for highly efficient glioma-targeting and drug codelivery. Mol Pharm. 13:1599–1607. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mathew EN, Berry BC, Yang HW, Carroll RS and Johnson MD: Delivering therapeutics to glioblastoma: Overcoming biological constraints. Int J Mol Sci. 23:17112022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei KC, Chu PC, Wang HYJ, Huang CY, Chen PY, Tsai HC, Lu YJ, Lee PY, Tseng IC, Feng LY, et al: Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: A preclinical study. PLoS One. 8:e589952013. View Article : Google Scholar : PubMed/NCBI | |
|
Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K and Hynynen K: Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer. 121:901–907. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Coluccia D, Figueiredo CA, Wu MY, Riemenschneider AN, Diaz R, Luck A, Smith C, Das S, Ackerley C, O'Reilly M, et al: Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine. 14:1137–1148. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Timbie KF, Mead BP and Price RJ: Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release. 219:61–75. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Burgess A, Shah K, Hough O and Hynynen K: Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother. 15:477–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dutta D, Heo I and Clevers H: Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 23:393–410. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hillen F and Griffioen AW: Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26:489–502. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, den Dunnen WF and Kruyt FA: Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 359:107–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Ding X, Ye H, Wang J, Shao J and Huang T: Hypoxia enhances the migration and invasion of human glioblastoma U87 cells through PI3K/Akt/mTOR/HIF-1α pathway. Neuroreport. 29:1578–1585. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JWE, Lumibao J, Blazek A, Gaskins HR and Harley B: Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells. Biomater Sci. 6:854–862. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rosa P, Catacuzzeno L, Sforna L, Mangino G, Carlomagno S, Mincione G, Petrozza V, Ragona G, Franciolini F and Calogero A: BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. J Cell Physiol. 233:6866–6877. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Velásquez C, Mansouri S, Gutiérrez O, Mamatjan Y, Mollinedo P, Karimi S, Singh O, Terán N, Martino J, Zadeh G and Fernández-Luna JL: Hypoxia can induce migration of glioblastoma cells through a methylation-dependent control of ODZ1 gene expression. Front Oncol. 9:10362019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Michalek JE, Reardon DA, Wen PY, Floyd JR, Fox PT, Clarke GD, Jerabek PA, Schmainda KM, Muzi M, et al: Assessment of tumor hypoxia and perfusion in recurrent glioblastoma following bevacizumab failure using MRI and 18F-FMISO PET. Sci Rep. 11:76322021. View Article : Google Scholar : PubMed/NCBI | |
|
Chédeville AL and Madureira PA: The role of hypoxia in glioblastoma radiotherapy resistance. Cancers (Basel). 13:5422021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, et al: Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 17:170–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, et al: Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 9:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, He Z, Duan H, Zhang D, Li J, Yang H, Dorsey JF, Zou W, Nabavizadeh SA, Bagley SJ, et al: Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat Commun. 12:34242021. View Article : Google Scholar : PubMed/NCBI | |
|
Banyer JL, Hamilton NH, Ramshaw IA and Ramsay AJ: Cytokines in innate and adaptive immunity. Rev Immunogenet. 2:359–373. 2000.PubMed/NCBI | |
|
Conlon KC, Miljkovic MD and Waldmann TA: Cytokines in the treatment of cancer. J Interferon Cytokine Res. 39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu VF, Yang J, Lebrun DG and Li M: Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett. 316:139–150. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wakabayashi T, Kayama T, Nishikawa R, Takahashi H, Hashimoto N, Takahashi J, Aoki T, Sugiyama K, Ogura M, Natsume A and Yoshida J: A multicenter Phase I trial of combination therapy with interferon-β and temozolomide for high-grade gliomas (INTEGRA study): The final report. J Neurooncol. 104:573–577. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Han MH, Kim JM, Cheong JH, Ryu JI, Won YD, Nam GH and Kim CH: Efficacy of cytokine-induced killer cell immunotherapy for patients with pathologically pure glioblastoma. Front Oncol. 12:8516282022. View Article : Google Scholar : PubMed/NCBI | |
|
Iwami K, Natsume A and Wakabayashi T: Cytokine therapy of gliomas. Prog Neurol Surg. 32:79–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
de Mello RA, Veloso AF, Esrom Catarina P, Nadine S and Antoniou G: Potential role of immunotherapy in advanced non-small-cell lung cancer. Onco Targets Ther. 10:21–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dine J, Gordon R, Shames Y, Kasler MK and Barton-Burke M: Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs. 4:127–135. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mpakali A and Stratikos E: The role of antigen processing and presentation in cancer and the efficacy of immune checkpoint inhibitor immunotherapy. Cancers (Basel). 13:1342021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Toregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, Bernal-Crespo V, Behymer MM, Knipp GT, Yun Y, Veronesi MC, et al: Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. Proc Natl Acad Sci USA. 118:e21075071182021. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar : PubMed/NCBI | |
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, et al: Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours. Cancers (Basel). 12:6832020. View Article : Google Scholar : PubMed/NCBI | |
|
Staquicini FI, Smith TL, Tang FHF, Gelovani JG, Giordano RJ, Libutti SK, Sidman RL, Cavenee WK, Arap W and Pasqualini R: Targeted AAVP-based therapy in a mouse model of human glioblastoma: A comparison of cytotoxic versus suicide gene delivery strategies. Cancer Gene Ther. 27:301–310. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vigneswaran K, Neill S and Hadjipanayis CG: Beyond the World Health Organization grading of infiltrating gliomas: Advances in the molecular genetics of glioma classification. Ann Transl Med. 3:952015.PubMed/NCBI | |
|
Goodwin CR, Rath P, Oyinlade O, Lopez H, Mughal S, Xia S, Xia S, Li Y, Kaur H, Zhou X, et al: Crizotinib and erlotinib inhibits growth of c-Met+/EGFRvIII+ primary human glioblastoma xenografts. Clin Neurol Neurosurg. 171:26–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sestito S, Runfola M, Tonelli M, Chiellini G and Rapposelli S: New multitarget approaches in the War against glioblastoma: A mini-perspective. Front Pharmacol. 9:8742018. View Article : Google Scholar : PubMed/NCBI | |
|
Lang F, Liu Y, Chou FJ and Yang C: Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther. 228:1079222021. View Article : Google Scholar : PubMed/NCBI | |
|
Lassman AB, Pugh SL, Gilbert MR, Aldape KD, Geinoz S, Beumer JH, Christner SM, Komaki R, DeAngelis LM, Gaur R, et al: Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 17:992–998. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baratta MG: Glioblastoma is ‘hot’ for personalized vaccines. Nat Rev Cancer. 19:1292019. View Article : Google Scholar : PubMed/NCBI | |
|
Wiwatchaitawee K, Quarterman JC, Geary SM and Salem AK: Enhancement of therapies for glioblastoma (GBM) using nanoparticle-based delivery systems. AAPS PharmSciTech. 22:712021. View Article : Google Scholar : PubMed/NCBI | |
|
Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, Pockley AG and McArdle SEB: Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol. 11:5821062020. View Article : Google Scholar : PubMed/NCBI | |
|
Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, Tonn T, Steinbach JP and Wels WS: CAR-engineered NK cells for the treatment of glioblastoma: Turning innate effectors into precision tools for cancer immunotherapy. Front Immunol. 10:26832019. View Article : Google Scholar : PubMed/NCBI | |
|
Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V and Ullrich E: Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol. 8:4582017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu MW and Quail DF: Immunotherapy for glioblastoma: Current progress and challenges. Front Immunol. 12:6763012021. View Article : Google Scholar : PubMed/NCBI | |
|
Dietrich J, Rao K, Pastorino S and Kesari S: Corticosteroids in brain cancer patients: Benefits and pitfalls. Expert Rev Clin Pharmacol. 4:233–242. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI | |
|
Chan HY, Choi J, Jackson C and Lim M: Combination immunotherapy strategies for glioblastoma. J Neurooncol. 151:375–391. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bausart M, Préat V and Malfanti A: Immunotherapy for glioblastoma: The promise of combination strategies. J Exp Clin Cancer Res. 41:352022. View Article : Google Scholar : PubMed/NCBI | |
|
Oh T, Sayegh ET, Fakurnejad S, Oyon D, Lamano JB, DiDomenico JD, Bloch O and Parsa AT: Vaccine therapies in malignant glioma. Curr Neurol Neurosci Rep. 15:5082015. View Article : Google Scholar : PubMed/NCBI | |
|
Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI | |
|
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in Phase Ib glioblastoma trial. Nature. 565:234–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Inc. AB, . AIVITA biomedical's phase 2 glioblastoma trial shows improved progression free survival. [cited 2022 Aug 5]. Available from:. https://www.prnewswire.com/news-releases/aivita-biomedicals-phase-2-glioblastoma-trial-shows-improved-progression-free-survival-301307757.html | |
|
Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, Tsiouris AJ and Boockvar JA: Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: Progression-free survival and overall survival. World Neurosurg. 77:130–134. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 32:42–56.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Petroni G, Buqué A, Zitvogel L, Kroemer G and Galluzzi L: Immunomodulation by targeted anticancer agents. Cancer Cell. 39:310–345. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Fu Y, Xie Q, Zhu B, Wang J and Zhang B: Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front Immunol. 11:19562020. View Article : Google Scholar : PubMed/NCBI | |
|
Selek L, Seigneuret E, Nugue G, Wion D, Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T and Berger F: Imaging and histological characterization of a human brain xenograft in pig: The first induced glioma model in a large animal. J Neurosci Methods. 221:159–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, Belluco S, Leveneur O, Chuzel T, Pillet-Michelland E, Dreyfus M, Roger T, Berger F and Ponce F: Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. 282:61–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tora MS, Texakalidis P, Neill S, Wetzel J, Rindler RS, Hardcastle N, Nagarajan PP, Krasnopeyev A, Roach C, James R, et al: Lentiviral vector induced modeling of high-grade spinal cord glioma in minipigs. Sci Rep. 10:52912020. View Article : Google Scholar : PubMed/NCBI | |
|
Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, et al: Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 15:e02347722020. View Article : Google Scholar : PubMed/NCBI | |
|
Hicks WH, Bird CE, Pernik MN, Haider AS, Dobariya A, Abdullah KG, Aoun SG, Bentley RT, Cohen-Gadol AA, Bachoo RM, et al: Large animal models of glioma: Current status and future prospects. Anticancer Res. 41:5343–5353. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao CY, Cheng R, Yang Z and Tian ZM: Nanotechnology for cancer therapy based on chemotherapy. Molecules. 23:8262018. View Article : Google Scholar : PubMed/NCBI | |
|
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S and Tavakkoly-Bazzaz J: New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 24:233–243. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, Neumann JO, Schöning T, Hüsing J, Beelte B, et al: Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first Phase I/IIa glioblastoma trial. Mol Ther. 25:2620–2634. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Angelova AL, Barf M, Geletneky K, Unterberg A and Rommelaere J: Immunotherapeutic potential of oncolytic H-1 parvovirus: Hints of glioblastoma microenvironment conversion towards immunogenicity. Viruses. 9:3822017. View Article : Google Scholar : PubMed/NCBI | |
|
Suryawanshi YR and Schulze AJ: Oncolytic viruses for malignant glioma: On the verge of success? Viruses. 13:12942021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang W, Wang J, Cao Y, Wang S and Zhao J: Viral gene therapy for glioblastoma multiforme: A promising hope for the current dilemma. Front Oncol. 11:6782262021. View Article : Google Scholar : PubMed/NCBI | |
|
Clement PMJ, Dirven L, Eoli M, Sepulveda-Sanchez JM, Walenkamp AME, Frenel JS, Franceschi E, Weller M, Chinot O, De Vos FYFL, et al: Impact of depatuxizumab mafodotin on health-related quality of life and neurological functioning in the Phase II EORTC 1410/INTELLANCE 2 trial for EGFR-amplified recurrent glioblastoma. Eur J Cancer. 147:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sathornsumetee S, Desjardins A, Vredenburgh JJ, McLendon RE, Marcello J, Herndon JE, Mathe A, Hamilton M, Rich JN, Norfleet JA, et al: Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol. 12:1300–1310. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, et al: Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 353:2012–2024. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Raizer JJ, Abrey LE, Lassman AB, Chang SM, Lamborn KR, Kuhn JG, Yung WK, Gilbert MR, Aldape KD, Wen PY, et al: A Phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. Neuro Oncol. 12:87–94. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lucas JT Jr, Knapp BJ, Uh J, Hua CH, Merchant TE, Hwang SN, Patay Z and Broniscer A: Posttreatment DSC-MRI is predictive of early treatment failure in children with supratentorial high-grade glioma treated with erlotinib. Clin Neuroradiol. 28:393–400. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H, Kabuubi P, Ayers-Ringler J, Rabbitt J, Page M, et al: Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol. 27:579–54. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MCM, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, et al: Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib-a Phase II trial. Mol Cancer Ther. 10:1102–1112. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liang D, Chen J, Chen H, Fan R, Gao Y, Gao Y, Tao R and Zhang H: Targeted therapy with anlotinib for a patient with an oncogenic FGFR3-TACC3 fusion and recurrent glioblastoma. Oncologist. 26:173–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL and Lamar RE: Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer. 116:3663–3669. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shahid S, Kushner BH, Modak S, Basu EM, Rubin EM, Gundem G, Papaemmanuil E and Roberts SS: Association of BRAF V600E mutations with vasoactive intestinal peptide syndrome in MYCN-amplified neuroblastoma. Pediatr Blood Cancer. 68:e292652021. View Article : Google Scholar : PubMed/NCBI | |
|
Rahman MA, Brekke J, Arnesen V, Hannisdal MH, Navarro AG, Waha A, Herfindal L, Rygh CB, Bratland E, Brandal P, et al: Sequential bortezomib and temozolomide treatment promotes immunological responses in glioblastoma patients with positive clinical outcomes: A phase 1B study. Immun Inflamm Dis. 8:342–359. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Morin A, Soane C, Pierce A, Sanford B, Jones KL, Crespo M, Zahedi S, Vibhakar R and Mulcahy Levy JM: Proteasome inhibition as a therapeutic approach in atypical teratoid/rhabdoid tumors. Neurooncol Adv. 2:vdaa0512020.PubMed/NCBI | |
|
Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK, Pokorny JL, Schroeder MA, Decker PA, Cen L, et al: Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst. 108:djv3692016. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong Y, Guo Y, Liu Y, Wang H, Gong W, Liu Y, Wang X, Gao Y, Yu F, Su D, et al: Pamiparib is a potent and selective PARP inhibitor with unique potential for the treatment of brain tumor. Neoplasia. 22:431–440. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lowery MA, Burris HA III, Janku F, Shroff RT, Cleary JM, Azad NS, Goyal L, Maher EA, Gore L, Hollebecque A, et al: Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study. Lancet Gastroenterol Hepatol. 4:711–720. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
DiNardo CD, Hochhaus A, Frattini MG, Yee K, Zander T, Krämer A, Chen X, Ji Y, Parikh N, Choi J and Wei AH: A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome. J Cancer Res Clin Oncol. Mar 30–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Penas-Prado M, Hess KR, Fisch MJ, Lagrone LW, Groves MD, Levin VA, De Groot JF, Puduvalli VK, Colman H, Volas-Redd G, et al: Randomized Phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro Oncol. 17:266–273. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kesari S, Schiff D, Henson JW, Muzikansky A, Gigas DC, Doherty L, Batchelor TT, Longtine JA, Ligon KL, Weaver S, et al: Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol. 10:300–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Halatsch ME, Dwucet A, Schmidt CJ, Mühlnickel J, Heiland T, Zeiler K, Siegelin MD, Kast RE and Karpel-Massler G: In vitro and clinical compassionate use experiences with the drug-repurposing approach CUSP9v3 in glioblastoma. Pharmaceuticals (Basel). 14:12412021. View Article : Google Scholar : PubMed/NCBI | |
|
Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, Feldman SA, Chinnasamy N, Kuan CT, Song H, et al: Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 23:1043–1053. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, Heth JA, Salacz M, Taylor S, D'Andre SD, et al: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 16:1422018. View Article : Google Scholar : PubMed/NCBI | |
|
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 18:1373–1385. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Reardon DA, Desjardins A, Vredenburgh JJ, O'Rourke DM, Tran DD, Fink KL, Nabors LB, Li G, Bota DA, Lukas RV, et al: Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): Results of a double-blind randomized Phase II trial. Clin Cancer Res. 26:1586–1594. 2020. View Article : Google Scholar : PubMed/NCBI |