
Bacterial RNA virus MS2 exposure increases the expression of cancer progression genes in the LNCaP prostate cancer cell line
- Authors:
- Swapnil Ganesh Sanmukh
- Nilton José Dos Santos
- Caroline Nascimento Barquilha
- Márcio De Carvalho
- Patricia Pintor Dos Reis
- Flávia Karina Delella
- Hernandes F. Carvalho
- Dorota Latek
- Tamás Fehér
- Sérgio Luis Felisbino
-
Affiliations: Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618‑689, Brazil, Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University, Botucatu, São Paulo 18618‑687, Brazil, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083‑970, Brazil, Faculty of Chemistry, University of Warsaw, 02‑093 Warsaw, Poland, Synthetic and Systems Biology Unit, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary - Published online on: January 17, 2023 https://doi.org/10.3892/ol.2023.13672
- Article Number: 86
-
Copyright: © Sanmukh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sakr WA, Grignon DJ, Crissman JD, Heilbrun LK, Cassin BJ, Pontes JJ and Haas GP: High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: An autopsy study of 249 cases. In Vivo. 8:439–443. 1994.PubMed/NCBI | |
Nelson WG, De Marzo AM and Isaacs WB: Prostate cancer. N Engl J Med. 349:366–381. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nuhn P, De Bono JS, Fizazi K, Freedland SJ, Grilli M, Kantoff PW, Sonpavde G, Sternberg CN, Yegnasubramanian S and Antonarakis ES: Update on systemic prostate cancer therapies: Management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol. 75:88–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sumanasuriya S and De Bono J: Treatment of advanced prostate cancer-a review of current therapies and future promise. Cold Spring Harb Perspect Med. 8:a0306352018. View Article : Google Scholar : PubMed/NCBI | |
Barquilha CN, Santos NJ, Monção CCD, Barbosa IC, Lima FO, Justulin LA, Pértega-Gomes N and Felisbino SL: Sulfiredoxin as a potential therapeutic target for advanced and metastatic prostate cancer. Oxid Med Cell Longev. 2020:21485622020. View Article : Google Scholar : PubMed/NCBI | |
Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui NG, Tabatabai G, Carcaboso AM, et al: Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol Med. 11:e84922019. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Fengyu Zuo S, Zhao M, Wang X, Wang X, Chen Y, Wu Z and Ren Z: Inhibition of tumor angiogenesis in lung cancer by T4 phage surface displaying mVEGFR2 vaccine. Vaccine. 29:5802–5811. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shadidi M, Sørensen D, Dybwad A, Furset G and Sioud M: Mucosal vaccination with phage-displayed tumour antigens identified through proteomics-based strategy inhibits the growth and metastasis of 4T1 breast adenocarcinoma. Int J Oncol. 32:241–247. 2008.PubMed/NCBI | |
Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, et al: Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 5:5729–5745. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aanei IL, ElSohly AM, Farkas ME, Netirojjanakul C, Regan M, Taylor Murphy S, O'Neil JP, Seo Y and Francis MB: Biodistribution of antibody-MS2 viral capsid conjugates in breast cancer models. Mol Pharm. 13:3764–3772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Sun Y, Jia T, Zhang R, Zhang K and Wang L: Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer. 134:1683–1694. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhai L, Yadav R, Kunda NK, Anderson D, Bruckner E, Miller EK, Basu R, Muttil P and Tumban E: Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antiviral Res. 166:56–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lino CA, Caldeira JC and Peabody DS: Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. J Nanobiotechnology. 15:132017. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Wang G, Jia T, Zhang L, Li Y, Han Y, Zhang K, Lin G, Zhang R, Li J and Wang L: Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget. 7:23988–24004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C and Boisgerault N: Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer. 20:552021. View Article : Google Scholar : PubMed/NCBI | |
Kolesanova EF, Melnikova MV, Bolshakova TN, Rybalkina EY and Sivov IG: Bacteriophage MS2 as a tool for targeted delivery in solid tumor chemotherapy. Acta Naturae. 11:98–101. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sanmukh SG and Felisbino SL: Bacteriophages in cancer biology and therapies. Clin Oncol. 2:12952017. | |
Sanmukh SG, Dos Santos SAA and Felisbino SL: Natural bacteriophages T4 and M13 down-regulates Hsp90 gene expression in human prostate cancer cells (PC-3) representing a potential nanoparticle against cancer. Virol Res J. 1:21–23. 2017. | |
Sanmukh SG and Felisbino SL: Development of pipette tip gap closure migration assay (s-ARU method) for studying semi-adherent cell lines. Cytotechnology. 70:1685–1695. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sanmukh SG, Santos NJ, Barquilha CN, dos Santos SAA, Duran BOS, Delella FK, Moroz A, Justulin LA, Carvalho HF and Felisbino SL: Exposure to bacteriophages T4 and M13 increases integrin gene expression and impairs migration of human PC-3 prostate cancer cells. Antibiotics (Basel). 10:12022021. View Article : Google Scholar : PubMed/NCBI | |
Sanmukh SG, Dos Santos NJ, Barquilha CN, Cucielo MS, de Carvalho M, Dos Reis PP, Delella FK, Carvalho HF and Felisbino SL: Bacteriophages M13 and T4 increase the expression of anchorage-dependent survival pathway genes and down regulate androgen receptor expression in LNCaP prostate cell line. Viruses. 13:17542021. View Article : Google Scholar : PubMed/NCBI | |
Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 65:55–63. 1983. View Article : Google Scholar : PubMed/NCBI | |
Berridge MV and Tan AS: Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys. 303:474–482. 1993. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, et al: Gene set knowledge discovery with enrichr. Curr Protoc. 1:e902021. View Article : Google Scholar : PubMed/NCBI | |
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al: The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1): D605–D612. 2021. View Article : Google Scholar : PubMed/NCBI | |
Langer I, Jeandriens J, Couvineau A, Sanmukh S and Latek D: Signal transduction by VIP and PACAP receptors. Biomedicines. 10:4062022. View Article : Google Scholar : PubMed/NCBI | |
Peterson YK and Luttrell LM: The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev. 69:256–297. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gad AA and Balenga N: The Emerging Role of adhesion GPCRs in cancer. ACS Pharmacol Transl Sci. 3:29–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liscano Y, Oñate-Garzón J and Delgado JP: Peptides with Dual antimicrobial-anticancer activity: Strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules. 25:42452020. View Article : Google Scholar : PubMed/NCBI | |
Hwang JS, Kim SG, Shin TH, Jang YE, Kwon DH and Lee G: Development of anticancer peptides using artificial intelligence and combinational therapy for cancer therapeutics. Pharmaceutics. 14:9972022. View Article : Google Scholar : PubMed/NCBI | |
Ripa I, Andreu S, López-Guerrero JA and Bello-Morales R: Membrane rafts: Portals for viral entry. Front Microbiol. 12:6312742021. View Article : Google Scholar : PubMed/NCBI | |
Kim A, Shin TH, Shin SM, Pham CD, Choi DK, Kwon MH and Kim YS: Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One. 7:e518132012. View Article : Google Scholar : PubMed/NCBI | |
Peterziel H, Mink S, Schonert A, Becker M, Klocker H and Cato AC: Rapid signalling by androgen receptor in prostate cancer cells. Oncogene. 18:6322–6329. 1999. View Article : Google Scholar : PubMed/NCBI | |
Liao RS, Ma S, Miao L, Li R, Yin Y and Raj GV: Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol. 2:187–196. 2013.PubMed/NCBI | |
Heinlein CA and Chang C: The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol. 16:2181–2187. 2002. View Article : Google Scholar : PubMed/NCBI | |
Siu MK, Chen WY, Tsai HY, Yeh HL, Yin JJ, Liu SY and Liu YN: Androgen receptor regulates SRC expression through microRNA-203. Oncotarget. 7:25726–25741. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S and Baniahmad A: Interaction between non-coding RNAs and androgen receptor with an especial focus on prostate cancer. Cells. 10:31982021. View Article : Google Scholar : PubMed/NCBI | |
Kim KH, Dobi A, Shaheduzzaman S, Gao CL, Masuda K, Li H, Drukier A, Gu Y, Srikantan V, Rhim JS and Srivastava S: Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer Prostatic Dis. 10:30–38. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li D, Zhang R, Peng R and Li J: Delivery of microRNA-21-sponge and pre-microRNA-122 by MS2 virus-like particles to therapeutically target hepatocellular carcinoma cells. Exp Biol Med (Maywood). 246:2463–2472. 2021. View Article : Google Scholar : PubMed/NCBI | |
Foglizzo V and Marchiò S: Bacteriophages as therapeutic and diagnostic vehicles in cancer. Pharmaceuticals (Basel). 14:1612021. View Article : Google Scholar : PubMed/NCBI | |
Echarri A and Del Pozo MA: Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle. 5:2179–2182. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shi F and Sottile J: Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci. 121:2360–2371. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tahir SA, Yang G, Ebara S, Timme TL, Satoh T, Li L, Goltsov A, Ittmann M, Morrisett JD and Thompson TC: Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 61:3882–3885. 2001.PubMed/NCBI | |
Xing Y, Wen Z, Gao W, Lin Z, Zhong J and Jiu Y: Multifaceted functions of host cell caveolae/caveolin-1 in virus infections. Viruses. 12:4872020. View Article : Google Scholar : PubMed/NCBI | |
Schaffner F, Ray AM and Dontenwill M: Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel). 5:27–47. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Yan D, Liu Y, Huang P and Cui H: The roles of integrin α5β1 in human cancer. Onco Targets Ther. 13:13329–13344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pantano F, Croset M, Driouch K, Bednarz-Knoll N, Iuliani M, Ribelli G, Bonnelye E, Wikman H, Geraci S, Bonin F, et al: Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene. 40:1284–1299. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou S, Isaji T, Hang Q, Im S, Fukuda T and Gu J: Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci Rep. 6:184302016. View Article : Google Scholar : PubMed/NCBI | |
Morozevich GE, Kozlova NI, Ushakova NA, Preobrazhenskaya ME and Berman AE: Integrin α5β1 simultaneously controls EGFR-dependent proliferation and Akt-dependent pro-survival signaling in epidermoid carcinoma cells. Aging (Albany NY). 4:368–374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Butler DE, Marlein C, Walker HF, Frame FM, Mann VM, Simms MS, Davies BR, Collins AT and Maitland NJ: Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget. 8:56698–56713. 2017. View Article : Google Scholar : PubMed/NCBI | |
DuShane JK and Maginnis MS: Human DNA virus exploitation of the MAPK-ERK cascade. Int J Mol Sci. 20:34272019. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C and Edwards J: Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br J Cancer. 104:1920–1928. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, Bianchi-Frias D, Dumpit RF, Kaipainen A, Corella AN, et al: Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 32:474–489.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang H and Ward WF: PGC-1alpha: A key regulator of energy metabolism. Adv Physiol Educ. 30:145–151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Abdulghani J, Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, Lisanti MP, Zellweger T, Alanen K, Mirtti T, et al: Stat3 promotes metastatic progression of prostate cancer. Am J Pathol. 172:1717–1728. 2008. View Article : Google Scholar : PubMed/NCBI | |
Barton BE, Karras JG, Murphy TF, Barton A and Huang HF: Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther. 3:11–20. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bishop JL, Thaper D and Zoubeidi A: The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancers (Basel). 6:829–859. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Gao FH, Wang JY, Liu F, Yuan HH, Zhang WY and Jiang B: JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer. 73:366–374. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H and Yu H: Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 118:3367–3377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Molek P, Strukelj B and Bratkovic T: Peptide phage display as a tool for drug discovery: Targeting membrane receptors. Molecules. 16:857–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Agu CA, Klein R, Schwab S, König-Schuster M, Kodajova P, Ausserlechner M, Binishofer B, Bläsi U, Salmons B, Günzburg WH and Hohenadl C: The cytotoxic activity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. J Gene Med. 8:229–241. 2006. View Article : Google Scholar : PubMed/NCBI | |
David M, Ribeiro J, Descotes F, Serre CM, Barbier M, Murone M, Clézardin P and Peyruchaud O: Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis. Int J Oncol. 40:1133–1141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary PK and Kim S: An insight into GPCR and G-proteins as cancer drivers. Cells. 10:32882021. View Article : Google Scholar : PubMed/NCBI | |
Bar-Shavit R, Maoz M, Kancharla A, Nag JK, Agranovich D, Grisaru-Granovsky S and Uziely B: G protein-coupled receptors in cancer. Int J Mol Sci. 17:13202016. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mapelli C, Wang Z, Sum CS, Hua J, Lawrence RM, Ni Y and Seiffert DA: An optimized agonist peptide of protease-activated receptor 4 and its use in a validated platelet-aggregation assay. Platelets. 33:979–986. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Ma A, Lin S, Yang Y and Hong G: Novel peptide screened from a phage display library antagonizes the activity of CC chemokine receptor 9. Oncol Lett. 14:6471–6476. 2017.PubMed/NCBI | |
Nickho H, Younesi V, Aghebati-Maleki L, Motallebnezhad M, Majidi Zolbanin J, Movassagh Pour A and Yousefi M: Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengineered. 8:501–510. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, Robitaille M, Mascall K, Pan J, Angers S, et al: A synthetic anti-frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs. 10:1157–1167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tobia C, Chiodelli P, Nicoli S, Dell'era P, Buraschi S, Mitola S, Foglia E, van Loenen PB, Alewijnse AE and Presta M: Sphingosine-1-phosphate receptor-1 controls venous endothelial barrier integrity in zebrafish. Arterioscler Thromb Vasc Biol. 32:e104–e116. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dąbrowska K, Kaźmierczak Z, Majewska J, Miernikiewicz P, Piotrowicz A, Wietrzyk J, Lecion D, Hodyra K, Nasulewicz-Goldeman A, Owczarek B and Górski A: Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment. Future Microbiol. 9:861–869. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hart SL, Knight AM, Harbottle RP, Mistry A, Hunger HD, Cutler DF, Williamson R and Coutelle C: Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. J Biol Chem. 269:12468–12474. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kantoch M and Mordarski M: Binding of bacterial viruses by cancer cells in vitro. Postepy Hig Med Dosw. 12:191–192. 1958.PubMed/NCBI | |
Porayath C, Salim A, Palillam Veedu A, Babu P, Nair B, Madhavan A and Pal S: Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol. 110:608–615. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lehti TA, Pajunen MI, Skog MS and Finne J: Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun. 8:19152017. View Article : Google Scholar : PubMed/NCBI | |
Kantoch M: Studies on phagocytosis of bacterial viruses. Arch Immunol Ther Exp. 6:63–84. 1958.PubMed/NCBI | |
Bloch H: Experimental investigation on the relationships between bacteriophages and malignant tumors. Arch Virol. 1:481–496. 1940.(In German). | |
Szczaurska-Nowak K, Dabrowska K, Celka M, Kurzepa A, Nevozhay D, Wietrzyk J, Switala-Jelen K, Syper D, Pozniak G, Opolski A, et al: Antitumor effect of combined treatment of mice with cytostatic agents and bacteriophage T4. Anticancer Res. 29:2361–2370. 2009.PubMed/NCBI | |
Dabrowska K, Skaradziński G, Jończyk P, Kurzepa A, Wietrzyk J, Owczarek B, Zaczek M, Switała-Jeleń K, Boratyński J, Poźniak G, et al: The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration. BMC Microbiol. 9:132009. View Article : Google Scholar : PubMed/NCBI | |
Kurzepa-Skaradzinska A, Skaradzinski G, Weber-Dabrowska B, Zaczek M, Maj T, Slawek A, Switalska M, Maciejewska M, Wietrzyk J, Rymowicz W and Gorski A: Influence of bacteriophage preparations on migration of HL-60 leukemia cells in vitro. Anticancer Res. 33:1569–1574. 2013.PubMed/NCBI | |
Merril CR, Friedman TB, Attallah AF, Geier MR, Krell K and Yarkin R: Isolation of bacteriophages from commercial sera. In Vitro. 8:91–93. 1972. View Article : Google Scholar : PubMed/NCBI | |
Eriksson F, Tsagozis P, Lundberg K, Parsa R, Mangsbo SM, Persson MA, Harris RA and Pisa P: Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol. 182:3105–3111. 2009. View Article : Google Scholar : PubMed/NCBI |