|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schabath MB and Cote ML: Cancer progress
and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev.
28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ganti AK, Klein AB, Cotarla I, Seal B and
Chou E: Update of incidence, prevalence, survival, and initial
treatment in patients with non-small cell lung cancer in the US.
JAMA Oncol. 7:1824–1832. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhou Y, Du Q, Zhao Q, Zhang M, Qin X,
Jiang Y and Luan Y: A heme-regulatable chemodynamic nanodrug
harnessing transcription factor Bach1 against lung cancer
metastasis. J Colloid Interface Sci. 610:698–708. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Duma N, Santana-Davila R and Molina JR:
Non-Small cell lung cancer: Epidemiology, screening, diagnosis, and
treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Goldstraw P, Chansky K, Crowley J,
Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P,
Mitchell A, Bolejack V, et al: The IASLC Lung Cancer Staging
Project: Proposals for Revision of the TNM Stage Groupings in the
Forthcoming (Eighth) Edition of the TNM Classification for Lung
Cancer. J Thorac Oncol. 11:39–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Otto AM: Warburg effect(s)-a biographical
sketch of Otto Warburg and his impacts on tumor metabolism. Cancer
Metab. 4:52016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Boroughs LK and DeBerardinis RJ: Metabolic
pathways promoting cancer cell survival and growth. Nat Cell Biol.
17:351–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hensley CT, Wasti AT and DeBerardinis RJ:
Glutamine and cancer: Cell biology, physiology, and clinical
opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mohamed A, Deng X, Khuri FR and Owonikoko
TK: Altered glutamine metabolism and therapeutic opportunities for
lung cancer. Clin Lung Cancer. 15:7–15. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Meijer TWH, Looijen-Salamon MG, Lok J, van
den Heuvel M, Tops B, Kaanders JHAM, Span PN and Bussink J: Glucose
and glutamine metabolism in relation to mutational status in NSCLC
histological subtypes. Thorac Cancer. 10:2289–2299. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kroemer G and Pouyssegur J: Tumor cell
metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G
and Thompson CB: The biology of cancer: Metabolic reprogramming
fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
DeBerardinis RJ and Chandel NS:
Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yoshida GJ: Metabolic reprogramming: The
emerging concept and associated therapeutic strategies. J Exp Clin
Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cruz-Bermudez A, Laza-Briviesca R,
Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S,
Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez
C, et al: Cisplatin resistance involves a metabolic reprogramming
through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS
inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Solanki HS, Babu N, Jain AP, Bhat MY,
Puttamallesh VN, Advani J, Raja R, Mangalaparthi KK, Kumar MM,
Prasad TSK, et al: Cigarette smoke induces mitochondrial metabolic
reprogramming in lung cells. Mitochondrion. 40:58–70. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pavlova NN, Zhu J and Thompson CB: The
hallmarks of cancer metabolism: Still emerging. Cell Metab.
34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Judd J, Abdel Karim N, Khan H, Naqash AR,
Baca Y, Xiu J, VanderWalde AM, Mamdani H, Raez LE, Nagasaka M, et
al: Characterization of KRAS mutation subtypes in non-small cell
lung cancer. Mol Cancer Ther. 20:2577–2584. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kawada K, Toda K and Sakai Y: Targeting
metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol.
22:651–659. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Strohecker AM, Guo JY, Karsli-Uzunbas G,
Price SM, Chen GJ, Mathew R, McMahon M and White E: Autophagy
sustains mitochondrial glutamine metabolism and growth of
BrafV600E-driven lung tumors. Cancer Discov. 3:1272–1285. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Commisso C, Davidson SM, Soydaner-Azeloglu
RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin
JA, Thompson CB, et al: Macropinocytosis of protein is an amino
acid supply route in Ras-transformed cells. Nature. 497:633–637.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Davidson SM, Papagiannakopoulos T,
Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK,
O'Brien JP, Pierce KA, et al: Environment impacts the metabolic
dependencies of ras-driven non-small cell lung cancer. Cell Metab.
23:517–528. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dowling CM, Zhang H, Chonghaile TN and
Wong KK: Shining a light on metabolic vulnerabilities in non-small
cell lung cancer. Biochim Biophys Acta Rev Cancer. 1875:1884622021.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Faubert B, Vincent EE, Griss T, Samborska
B, Izreig S, Svensson RU, Mamer OA, Avizonis D, Shackelford DB,
Shaw RJ and Jones RG: Loss of the tumor suppressor LKB1 promotes
metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad
Sci USA. 111:2554–2559. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Galan-Cobo A, Sitthideatphaiboon P, Qu X,
Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM,
Zhang W, et al: LKB1 and KEAP1/NRF2 pathways cooperatively promote
metabolic reprogramming with enhanced glutamine dependence in
KRAS-Mutant lung adenocarcinoma. Cancer Res. 79:3251–3267. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao P, Tchernyshyov I, Chang TC, Lee YS,
Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and
Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial
glutaminase expression and glutamine metabolism. Nature.
458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yuneva MO, Fan TW, Allen TD, Higashi RM,
Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, et
al: The metabolic profile of tumors depends on both the responsible
genetic lesion and tissue type. Cell Metab. 15:157–170. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hua Q, Wang D, Zhao L, Hong Z, Ni K, Shi
Y, Liu Z and Mi B: AL355338 acts as an oncogenic lncRNA by
interacting with protein ENO1 to regulate EGFR/AKT pathway in
NSCLC. Cancer Cell Int. 21:5252021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J
and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation
and glycolytic metabolism of non-small cell lung cancer by
regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Vanhove K, Derveaux E, Graulus GJ,
Mesotten L, Thomeer M, Noben JP, Guedens W and Adriaensens P:
Glutamine addiction and therapeutic strategies in lung cancer. Int
J Mol Sci. 20:2522019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Choi YK and Park KG: Targeting glutamine
metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
DeBerardinis RJ, Mancuso A, Daikhin E,
Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic
glycolysis: Transformed cells can engage in glutamine metabolism
that exceeds the requirement for protein and nucleotide synthesis.
Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xiao D, Zeng L, Yao K, Kong X, Wu G and
Yin Y: The glutamine-alpha-ketoglutarate (AKG) metabolism and its
nutritional implications. Amino Acids. 48:2067–2080. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Metallo CM, Gameiro PA, Bell EL, Mattaini
KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L,
et al: Reductive glutamine metabolism by IDH1 mediates lipogenesis
under hypoxia. Nature. 481:380–384. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kuhajda FP: Fatty acid synthase and
cancer: New application of an old pathway. Cancer Res.
66:5977–5980. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gorrini C, Harris IS and Mak TW:
Modulation of oxidative stress as an anticancer strategy. Nat Rev
Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Harris IS, Treloar AE, Inoue S, Sasaki M,
Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA,
et al: Glutathione and thioredoxin antioxidant pathways synergize
to drive cancer initiation and progression. Cancer Cell.
27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu
Z, Boggon TJ, Jin P, Yi H, Wright ER, et al: Glutamate
dehydrogenase 1 signals through antioxidant glutathione peroxidase
1 to regulate redox homeostasis and tumor growth. Cancer Cell.
27:257–270. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cluntun AA, Lukey MJ, Cerione RA and
Locasale JW: Glutamine metabolism in cancer: Understanding the
heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu W, Le A, Hancock C, Lane AN, Dang CV,
Fan TW and Phang JM: Reprogramming of proline and glutamine
metabolism contributes to the proliferative and metabolic responses
regulated by oncogenic transcription factor c-MYC. Proc Natl Acad
Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kerr EM, Gaude E, Turrell FK, Frezza C and
Martins CP: Mutant Kras copy number defines metabolic reprogramming
and therapeutic susceptibilities. Nature. 531:110–113. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jin L, Alesi GN and Kang S: Glutaminolysis
as a target for cancer therapy. Oncogene. 35:3619–3625. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
DeBerardinis RJ and Cheng T: Q's next: The
diverse functions of glutamine in metabolism, cell biology and
cancer. Oncogene. 29:313–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Altman BJ, Stine ZE and Dang CV: From
Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev
Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yoo HC, Yu YC, Sung Y and Han JM:
Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Alberghina L and Gaglio D: Redox control
of glutamine utilization in cancer. Cell Death Dis. 5:e15612014.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nicklin P, Bergman P, Zhang B,
Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson
C, et al: Bidirectional transport of amino acids regulates mTOR and
autophagy. Cell. 136:521–534. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jewell JL, Kim YC, Russell RC, Yu FX, Park
HW, Plouffe SW, Tagliabracci VS and Guan KL: Metabolism.
Differential regulation of mTORC1 by leucine and glutamine.
Science. 347:194–198. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Strickaert A, Saiselet M, Dom G, De Deken
X, Dumont JE, Feron O, Sonveaux P and Maenhaut C: Cancer
heterogeneity is not compatible with one unique cancer cell
metabolic map. Oncogene. 36:2637–2642. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hassanein M, Qian J, Hoeksema MD, Wang J,
Jacobovitz M, Ji X, Harris FT, Harris BK, Boyd KL, Chen H, et al:
Targeting SLC1a5-mediated glutamine dependence in non-small cell
lung cancer. Int J Cancer. 137:1587–1597. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Santarpia M, Aguilar A, Chaib I, Cardona
AF, Fancelli S, Laguia F, Bracht JWP, Cao P, Molina-Vila MA,
Karachaliou N and Rosell R: Non-Small-cell lung cancer signaling
pathways, metabolism, and PD-1/PD-L1 Antibodies. Cancers (Basel).
12:14752020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Perez-Escuredo J, Dadhich RK, Dhup S,
Cacace A, Van Hée VF, De Saedeleer CJ, Sboarina M, Rodriguez F,
Fontenille MJ, Brisson L, et al: Lactate promotes glutamine uptake
and metabolism in oxidative cancer cells. Cell Cycle. 15:72–83.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
van den Heuvel AP, Jing J, Wooster RF and
Bachman KE: Analysis of glutamine dependency in non-small cell lung
cancer: GLS1 splice variant GAC is essential for cancer cell
growth. Cancer Biol Ther. 13:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang C, Sudderth J, Dang T, Bachoo RM,
McDonald JG and DeBerardinis RJ: Glioblastoma cells require
glutamate dehydrogenase to survive impairments of glucose
metabolism or Akt signaling. Cancer Res. 69:7986–7993. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen SL, Xue N, Wu MT, Chen H, He X, Li
JP, Liu WL and Dai SQ: Influence of preoperative serum aspartate
aminotransferase (AST) level on the prognosis of patients with
non-small cell lung cancer. Int J Mol Sci. 17:14742016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Caiola E, Colombo M, Sestito G, Lupi M,
Marabese M, Pastorelli R, Broggini M and Brunelli L: Glutaminase
inhibition on NSCLC depends on extracellular alanine exploitation.
Cells. 9:17662020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sellers K, Fox MP, Bousamra M II, Slone
SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R,
et al: Pyruvate carboxylase is critical for non-small-cell lung
cancer proliferation. J Clin Invest. 125:687–698. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z,
Li J and Liu B: NOX4 supports glycolysis and promotes glutamine
metabolism in non-small cell lung cancer cells. Free Radic Biol
Med. 101:236–248. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Oh MH, Sun IH, Zhao L, Leone RD, Sun IM,
Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, et al: Targeting
glutamine metabolism enhances tumor-specific immunity by modulating
suppressive myeloid cells. J Clin Invest. 130:3865–3884. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Leone RD, Zhao L, Englert JM, Sun IM, Oh
MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, et al:
Glutamine blockade induces divergent metabolic programs to overcome
tumor immune evasion. Science. 366:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang L, Achreja A, Yeung TL, Mangala LS,
Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al:
Targeting stromal glutamine synthetase in tumors disrupts tumor
microenvironment-regulated cancer cell growth. Cell Metab.
24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hensley CT, Faubert B, Yuan Q, Lev-Cohain
N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al:
Metabolic heterogeneity in human lung tumors. Cell. 164:681–694.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bhutia YD and Ganapathy V: Glutamine
transporters in mammalian cells and their functions in physiology
and cancer. Biochim Biophys Acta. 1863:2531–2539. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hassanein M, Hoeksema MD, Shiota M, Qian
J, Harris BK, Chen H, Clark JE, Alborn WE, Eisenberg R and Massion
PP: SLC1A5 mediates glutamine transport required for lung cancer
cell growth and survival. Clin Cancer Res. 19:560–570. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chiu M, Sabino C, Taurino G, Bianchi MG,
Andreoli R, Giuliani N and Bussolati O: GPNA inhibits the
sodium-independent transport system L for neutral amino acids.
Amino Acids. 49:1365–1372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wise DR and Thompson CB: Glutamine
addiction: A new therapeutic target in cancer. Trends Biochem Sci.
35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hu K, Li K, Lv J, Feng J, Chen J, Wu H,
Cheng F, Jiang W, Wang J, Pei H, et al: Suppression of the
SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant
lung adenocarcinoma. J Clin Invest. 130:1752–1766. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Katt WP and Cerione RA: Glutaminase
regulation in cancer cells: A druggable chain of events. Drug
Discov Today. 19:450–457. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Magill GB, Myers WP, Reilly HC, Putnam RC,
Magill JW, Sykes MP, Escher GC, Karnofsky DA and Burchenal JH:
Pharmacological and initial therapeutic observations on
6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease.
Cancer. 10:1138–1150. 1957. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dang CV, Le A and Gao P: MYC-induced
cancer cell energy metabolism and therapeutic opportunities. Clin
Cancer Res. 15:6479–6483. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lemberg KM, Vornov JJ, Rais R and Slusher
BS: We're Not ‘DON’ Yet: Optimal dosing and prodrug delivery of
6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther. 17:1824–1832. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Robinson MM, McBryant SJ, Tsukamoto T,
Rojas C, Ferraris DV, Hamilton SK, Hansen JC and Curthoys NP: Novel
mechanism of inhibition of rat kidney-type glutaminase by
bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide
(BPTES). Biochem J. 406:407–414. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Shukla K, Ferraris DV, Thomas AG, Stathis
M, Duvall B, Delahanty G, Alt J, Rais R, Rojas C, Gao P, et al:
Design, synthesis, and pharmacological evaluation of
bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3
(BPTES) analogs as glutaminase inhibitors. J Med Chem.
55:10551–10563. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gross MI, Demo SD, Dennison JB, Chen L,
Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, et
al: Antitumor activity of the glutaminase inhibitor CB-839 in
triple-negative breast cancer. Mol Cancer Ther. 13:890–901. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xie C, Jin J, Bao X, Zhan WH, Han TY, Gan
M, Zhang C and Wang J: Inhibition of mitochondrial glutaminase
activity reverses acquired erlotinib resistance in non-small cell
lung cancer. Oncotarget. 7:610–621. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Boysen G, Jamshidi-Parsian A, Davis MA,
Siegel ER, Simecka CM, Kore RA, Dings RPM and Griffin RJ:
Glutaminase inhibitor CB-839 increases radiation sensitivity of
lung tumor cells and human lung tumor xenografts in mice. Int J
Radiat Biol. 95:436–442. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xia M, Li X, Diao Y, Du B and Li Y:
Targeted inhibition of glutamine metabolism enhances the antitumor
effect of selumetinib in KRAS-mutant NSCLC. Transl Oncol.
14:1009202021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Momcilovic M, Bailey ST, Lee JT, Fishbein
MC, Magyar C, Braas D, Graeber T, Jackson NJ, Czernin J, Emberley
E, et al: Targeted Inhibition of EGFR and glutaminase induces
metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18:601–610.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Momcilovic M, Bailey ST, Lee JT, Fishbein
MC, Braas D, Go J, Graeber TG, Parlati F, Demo S, Li R, et al: The
GSK3 signaling axis regulates adaptive glutamine metabolism in lung
squamous cell carcinoma. Cancer Cell. 33:905–921. –e5. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yu W, Yang X, Zhang Q, Sun L, Yuan S and
Xin Y: Targeting GLS1 to cancer therapy through glutamine
metabolism. Clin Transl Oncol. 23:2253–2268. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lee JS, Kang JH, Lee SH, Hong D, Son J,
Hong KM, Song J and Kim SY: Dual targeting of glutaminase 1 and
thymidylate synthase elicits death synergistically in NSCLC. Cell
Death Dis. 7:e25112016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yoneda K, Imanishi N, Ichiki Y and Tanaka
F: Treatment of non-small cell lung cancer with EGFR-mutations. J
UOEH. 41:153–163. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu Y, Ge X, Pang J, Zhang Y, Zhang H, Wu
H, Fan F and Liu H: Restricting glutamine uptake enhances NSCLC
Sensitivity to Third-Generation EGFR-TKI Almonertinib. Front
Pharmacol. 12:6713282021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sazeides C and Le A: Metabolic
relationship between cancer-associated fibroblasts and cancer
cells. Adv Exp Med Biol. 1063:149–165. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cerezo M and Rocchi S: Cancer cell
metabolic reprogramming: A keystone for the response to
immunotherapy. Cell Death Dis. 11:9642020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee YZ, Yang CW, Chang HY, Hsu HY, Chen
IS, Chang HS, Lee CH, Lee JC, Kumar CR, Qiu YQ, et al: Discovery of
selective inhibitors of Glutaminase-2, which inhibit mTORC1,
activate autophagy and inhibit proliferation in cancer cells.
Oncotarget. 5:6087–6101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Imai H, Kaira K, Oriuchi N, Shimizu K,
Tominaga H, Yanagitani N, Sunaga N, Ishizuka T, Nagamori S,
Promchan K, et al: Inhibition of L-type amino acid transporter 1
has antitumor activity in non-small cell lung cancer. Anticancer
Res. 30:4819–4828. 2010.PubMed/NCBI
|
|
94
|
Lukey MJ, Cluntun AA, Katt WP, Lin MJ,
Druso JE, Ramachandran S, Erickson JW, Le HH, Wang ZE, Blank B, et
al: Liver-Type Glutaminase GLS2 is a druggable metabolic node in
luminal-subtype breast cancer. Cell Rep. 29:76–88. –e7. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wise DR, DeBerardinis RJ, Mancuso A, Sayed
N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon
SB and Thompson CB: Myc regulates a transcriptional program that
stimulates mitochondrial glutaminolysis and leads to glutamine
addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Moreadith RW and Lehninger AL: The
pathways of glutamate and glutamine oxidation by tumor cell
mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme.
J Biol Chem. 259:6215–6221. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Estrela JM, Ortega A and Obrador E:
Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci.
43:143–181. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yang WH, Qiu Y, Stamatatos O, Janowitz T
and Lukey MJ: Enhancing the efficacy of glutamine metabolism
inhibitors in cancer therapy. Trends Cancer. 7:790–804. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Clay TD, Russell PA, Do H, Sundararajan V,
Conron M, Wright GM, Dobrovic A, Moore MM and McLachlan SA:
Associations between the IASLC/ATS/ERS lung adenocarcinoma
classification and EGFR and KRAS mutations. Pathology. 48:17–24.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Suzuki S, Tanaka T, Poyurovsky MV, Nagano
H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y,
et al: Phosphate-activated glutaminase (GLS2), a p53-inducible
regulator of glutamine metabolism and reactive oxygen species. Proc
Natl Acad Sci USA. 107:7461–7466. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang
T and Xu G: Transcription Factor p53 suppresses tumor growth by
prompting pyroptosis in non-small-cell lung cancer. Oxid Med Cell
Longev. 2019:87468952019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jung S, Kim DH, Choi YJ, Kim SY, Park H,
Lee H, Choi CM, Sung YH, Lee JC and Rho JK: Contribution of p53 in
sensitivity to EGFR tyrosine kinase inhibitors in non-small cell
lung cancer. Sci Rep. 11:196672021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Rekhtman N, Ang DC, Riely GJ, Ladanyi M
and Moreira AL: KRAS mutations are associated with solid growth
pattern and tumor-infiltrating leukocytes in lung adenocarcinoma.
Mod Pathol. 26:1307–1319. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Toth LN, de Abreu FB and Tafe LJ:
Non-small cell lung cancers with isocitrate dehydrogenase 1 or 2
(IDH1/2) mutations. Hum Pathol. 78:138–143. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Shimizu K, Kaira K, Tomizawa Y, Sunaga N,
Kawashima O, Oriuchi N, Tominaga H, Nagamori S, Kanai Y, Yamada M,
et al: ASC amino-acid transporter 2 (ASCT2) as a novel prognostic
marker in non-small cell lung cancer. Br J Cancer. 110:2030–2039.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chakrabarti G: Mutant KRAS associated
malic enzyme 1 expression is a predictive marker for radiation
therapy response in non-small cell lung cancer. Radiat Oncol.
10:1452015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Almuhaideb A, Papathanasiou N and Bomanji
J: 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 31:3–13.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Qu W, Oya S, Lieberman BP, Ploessl K, Wang
L, Wise DR, Divgi CR, Chodosh LA, Thompson CB and Kung HF:
Preparation and characterization of L-[5-11C]-glutamine for
metabolic imaging of tumors. J Nucl Med. 53:98–105. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Anderson PM and Lalla RV: Glutamine for
amelioration of radiation and chemotherapy associated mucositis
during cancer therapy. Nutrients. 12:16752020. View Article : Google Scholar : PubMed/NCBI
|