Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review)
- Authors:
- Lei Zhou
- Qi Zhang
- Qing Zhu
- Yuan Zhan
- Yong Li
- Xuan Huang
-
Affiliations: The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330036, P.R. China, The National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330036, P.R. China, Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: March 7, 2023 https://doi.org/10.3892/ol.2023.13745
- Article Number: 159
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schabath MB and Cote ML: Cancer progress and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev. 28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ganti AK, Klein AB, Cotarla I, Seal B and Chou E: Update of incidence, prevalence, survival, and initial treatment in patients with non-small cell lung cancer in the US. JAMA Oncol. 7:1824–1832. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Du Q, Zhao Q, Zhang M, Qin X, Jiang Y and Luan Y: A heme-regulatable chemodynamic nanodrug harnessing transcription factor Bach1 against lung cancer metastasis. J Colloid Interface Sci. 610:698–708. 2022. View Article : Google Scholar : PubMed/NCBI | |
Duma N, Santana-Davila R and Molina JR: Non-Small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P, Mitchell A, Bolejack V, et al: The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 11:39–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Otto AM: Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab. 4:52016. View Article : Google Scholar : PubMed/NCBI | |
Boroughs LK and DeBerardinis RJ: Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 17:351–359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hensley CT, Wasti AT and DeBerardinis RJ: Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mohamed A, Deng X, Khuri FR and Owonikoko TK: Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer. 15:7–15. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meijer TWH, Looijen-Salamon MG, Lok J, van den Heuvel M, Tops B, Kaanders JHAM, Span PN and Bussink J: Glucose and glutamine metabolism in relation to mutational status in NSCLC histological subtypes. Thorac Cancer. 10:2289–2299. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016. View Article : Google Scholar : PubMed/NCBI | |
Yoshida GJ: Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Bermudez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez C, et al: Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar : PubMed/NCBI | |
Solanki HS, Babu N, Jain AP, Bhat MY, Puttamallesh VN, Advani J, Raja R, Mangalaparthi KK, Kumar MM, Prasad TSK, et al: Cigarette smoke induces mitochondrial metabolic reprogramming in lung cells. Mitochondrion. 40:58–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI | |
Judd J, Abdel Karim N, Khan H, Naqash AR, Baca Y, Xiu J, VanderWalde AM, Mamdani H, Raez LE, Nagasaka M, et al: Characterization of KRAS mutation subtypes in non-small cell lung cancer. Mol Cancer Ther. 20:2577–2584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kawada K, Toda K and Sakai Y: Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol. 22:651–659. 2017. View Article : Google Scholar : PubMed/NCBI | |
Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M and White E: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3:1272–1285. 2013. View Article : Google Scholar : PubMed/NCBI | |
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, et al: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497:633–637. 2013. View Article : Google Scholar : PubMed/NCBI | |
Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK, O'Brien JP, Pierce KA, et al: Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23:517–528. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dowling CM, Zhang H, Chonghaile TN and Wong KK: Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer. 1875:1884622021. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, Mamer OA, Avizonis D, Shackelford DB, Shaw RJ and Jones RG: Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci USA. 111:2554–2559. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W, et al: LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-Mutant lung adenocarcinoma. Cancer Res. 79:3251–3267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, et al: The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15:157–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hua Q, Wang D, Zhao L, Hong Z, Ni K, Shi Y, Liu Z and Mi B: AL355338 acts as an oncogenic lncRNA by interacting with protein ENO1 to regulate EGFR/AKT pathway in NSCLC. Cancer Cell Int. 21:5252021. View Article : Google Scholar : PubMed/NCBI | |
Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vanhove K, Derveaux E, Graulus GJ, Mesotten L, Thomeer M, Noben JP, Guedens W and Adriaensens P: Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci. 20:2522019. View Article : Google Scholar : PubMed/NCBI | |
Choi YK and Park KG: Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28. 2018. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xiao D, Zeng L, Yao K, Kong X, Wu G and Yin Y: The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids. 48:2067–2080. 2016. View Article : Google Scholar : PubMed/NCBI | |
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, et al: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 481:380–384. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kuhajda FP: Fatty acid synthase and cancer: New application of an old pathway. Cancer Res. 66:5977–5980. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, et al: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z, Boggon TJ, Jin P, Yi H, Wright ER, et al: Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 27:257–270. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW and Phang JM: Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kerr EM, Gaude E, Turrell FK, Frezza C and Martins CP: Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 531:110–113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Alesi GN and Kang S: Glutaminolysis as a target for cancer therapy. Oncogene. 35:3619–3625. 2016. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ and Cheng T: Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 29:313–324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoo HC, Yu YC, Sung Y and Han JM: Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alberghina L and Gaglio D: Redox control of glutamine utilization in cancer. Cell Death Dis. 5:e15612014. View Article : Google Scholar : PubMed/NCBI | |
Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 136:521–534. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS and Guan KL: Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 347:194–198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Strickaert A, Saiselet M, Dom G, De Deken X, Dumont JE, Feron O, Sonveaux P and Maenhaut C: Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene. 36:2637–2642. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, Harris FT, Harris BK, Boyd KL, Chen H, et al: Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. 137:1587–1597. 2015. View Article : Google Scholar : PubMed/NCBI | |
Santarpia M, Aguilar A, Chaib I, Cardona AF, Fancelli S, Laguia F, Bracht JWP, Cao P, Molina-Vila MA, Karachaliou N and Rosell R: Non-Small-cell lung cancer signaling pathways, metabolism, and PD-1/PD-L1 Antibodies. Cancers (Basel). 12:14752020. View Article : Google Scholar : PubMed/NCBI | |
Perez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hée VF, De Saedeleer CJ, Sboarina M, Rodriguez F, Fontenille MJ, Brisson L, et al: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle. 15:72–83. 2016. View Article : Google Scholar : PubMed/NCBI | |
van den Heuvel AP, Jing J, Wooster RF and Bachman KE: Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther. 13:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG and DeBerardinis RJ: Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 69:7986–7993. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen SL, Xue N, Wu MT, Chen H, He X, Li JP, Liu WL and Dai SQ: Influence of preoperative serum aspartate aminotransferase (AST) level on the prognosis of patients with non-small cell lung cancer. Int J Mol Sci. 17:14742016. View Article : Google Scholar : PubMed/NCBI | |
Caiola E, Colombo M, Sestito G, Lupi M, Marabese M, Pastorelli R, Broggini M and Brunelli L: Glutaminase inhibition on NSCLC depends on extracellular alanine exploitation. Cells. 9:17662020. View Article : Google Scholar : PubMed/NCBI | |
Sellers K, Fox MP, Bousamra M II, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, et al: Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. 125:687–698. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, Li J and Liu B: NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 101:236–248. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, et al: Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest. 130:3865–3884. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, et al: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 366:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al: Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhutia YD and Ganapathy V: Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 1863:2531–2539. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, Chen H, Clark JE, Alborn WE, Eisenberg R and Massion PP: SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res. 19:560–570. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chiu M, Sabino C, Taurino G, Bianchi MG, Andreoli R, Giuliani N and Bussolati O: GPNA inhibits the sodium-independent transport system L for neutral amino acids. Amino Acids. 49:1365–1372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Li K, Lv J, Feng J, Chen J, Wu H, Cheng F, Jiang W, Wang J, Pei H, et al: Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 130:1752–1766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Katt WP and Cerione RA: Glutaminase regulation in cancer cells: A druggable chain of events. Drug Discov Today. 19:450–457. 2014. View Article : Google Scholar : PubMed/NCBI | |
Magill GB, Myers WP, Reilly HC, Putnam RC, Magill JW, Sykes MP, Escher GC, Karnofsky DA and Burchenal JH: Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease. Cancer. 10:1138–1150. 1957. View Article : Google Scholar : PubMed/NCBI | |
Dang CV, Le A and Gao P: MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 15:6479–6483. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lemberg KM, Vornov JJ, Rais R and Slusher BS: We're Not ‘DON’ Yet: Optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther. 17:1824–1832. 2018. View Article : Google Scholar : PubMed/NCBI | |
Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC and Curthoys NP: Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J. 406:407–414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G, Alt J, Rais R, Rojas C, Gao P, et al: Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem. 55:10551–10563. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, et al: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 13:890–901. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Jin J, Bao X, Zhan WH, Han TY, Gan M, Zhang C and Wang J: Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer. Oncotarget. 7:610–621. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boysen G, Jamshidi-Parsian A, Davis MA, Siegel ER, Simecka CM, Kore RA, Dings RPM and Griffin RJ: Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. Int J Radiat Biol. 95:436–442. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia M, Li X, Diao Y, Du B and Li Y: Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Transl Oncol. 14:1009202021. View Article : Google Scholar : PubMed/NCBI | |
Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Magyar C, Braas D, Graeber T, Jackson NJ, Czernin J, Emberley E, et al: Targeted Inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18:601–610. 2017. View Article : Google Scholar : PubMed/NCBI | |
Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Braas D, Go J, Graeber TG, Parlati F, Demo S, Li R, et al: The GSK3 signaling axis regulates adaptive glutamine metabolism in lung squamous cell carcinoma. Cancer Cell. 33:905–921. –e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Yang X, Zhang Q, Sun L, Yuan S and Xin Y: Targeting GLS1 to cancer therapy through glutamine metabolism. Clin Transl Oncol. 23:2253–2268. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Kang JH, Lee SH, Hong D, Son J, Hong KM, Song J and Kim SY: Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7:e25112016. View Article : Google Scholar : PubMed/NCBI | |
Yoneda K, Imanishi N, Ichiki Y and Tanaka F: Treatment of non-small cell lung cancer with EGFR-mutations. J UOEH. 41:153–163. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ge X, Pang J, Zhang Y, Zhang H, Wu H, Fan F and Liu H: Restricting glutamine uptake enhances NSCLC Sensitivity to Third-Generation EGFR-TKI Almonertinib. Front Pharmacol. 12:6713282021. View Article : Google Scholar : PubMed/NCBI | |
Sazeides C and Le A: Metabolic relationship between cancer-associated fibroblasts and cancer cells. Adv Exp Med Biol. 1063:149–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cerezo M and Rocchi S: Cancer cell metabolic reprogramming: A keystone for the response to immunotherapy. Cell Death Dis. 11:9642020. View Article : Google Scholar : PubMed/NCBI | |
Lee YZ, Yang CW, Chang HY, Hsu HY, Chen IS, Chang HS, Lee CH, Lee JC, Kumar CR, Qiu YQ, et al: Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget. 5:6087–6101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Imai H, Kaira K, Oriuchi N, Shimizu K, Tominaga H, Yanagitani N, Sunaga N, Ishizuka T, Nagamori S, Promchan K, et al: Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 30:4819–4828. 2010.PubMed/NCBI | |
Lukey MJ, Cluntun AA, Katt WP, Lin MJ, Druso JE, Ramachandran S, Erickson JW, Le HH, Wang ZE, Blank B, et al: Liver-Type Glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer. Cell Rep. 29:76–88. –e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB and Thompson CB: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Moreadith RW and Lehninger AL: The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 259:6215–6221. 1984. View Article : Google Scholar : PubMed/NCBI | |
Estrela JM, Ortega A and Obrador E: Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci. 43:143–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang WH, Qiu Y, Stamatatos O, Janowitz T and Lukey MJ: Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 7:790–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Clay TD, Russell PA, Do H, Sundararajan V, Conron M, Wright GM, Dobrovic A, Moore MM and McLachlan SA: Associations between the IASLC/ATS/ERS lung adenocarcinoma classification and EGFR and KRAS mutations. Pathology. 48:17–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, et al: Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA. 107:7461–7466. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang T and Xu G: Transcription Factor p53 suppresses tumor growth by prompting pyroptosis in non-small-cell lung cancer. Oxid Med Cell Longev. 2019:87468952019. View Article : Google Scholar : PubMed/NCBI | |
Jung S, Kim DH, Choi YJ, Kim SY, Park H, Lee H, Choi CM, Sung YH, Lee JC and Rho JK: Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 11:196672021. View Article : Google Scholar : PubMed/NCBI | |
Rekhtman N, Ang DC, Riely GJ, Ladanyi M and Moreira AL: KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol. 26:1307–1319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Toth LN, de Abreu FB and Tafe LJ: Non-small cell lung cancers with isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations. Hum Pathol. 78:138–143. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, Tominaga H, Nagamori S, Kanai Y, Yamada M, et al: ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer. 110:2030–2039. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chakrabarti G: Mutant KRAS associated malic enzyme 1 expression is a predictive marker for radiation therapy response in non-small cell lung cancer. Radiat Oncol. 10:1452015. View Article : Google Scholar : PubMed/NCBI | |
Almuhaideb A, Papathanasiou N and Bomanji J: 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 31:3–13. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qu W, Oya S, Lieberman BP, Ploessl K, Wang L, Wise DR, Divgi CR, Chodosh LA, Thompson CB and Kung HF: Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med. 53:98–105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anderson PM and Lalla RV: Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients. 12:16752020. View Article : Google Scholar : PubMed/NCBI |