Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review)

  • Authors:
    • Lei Zhou
    • Qi Zhang
    • Qing Zhu
    • Yuan Zhan
    • Yong Li
    • Xuan Huang
  • View Affiliations / Copyright

    Affiliations: The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330036, P.R. China, The National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330036, P.R. China, Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 159
    |
    Published online on: March 7, 2023
       https://doi.org/10.3892/ol.2023.13745
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The Warburg effect indicates that cancer cells survive through glycolysis under aerobic conditions; as such, the topic of cancer metabolism has aroused interest. It is requisite to further explore cancer metabolism, as it helps to simultaneously explain the process of carcinogenesis and guide therapy. The flexible metabolism of cancer cells, which is the result of metabolic reprogramming, can meet the basic needs of cells, even in a nutrition‑deficient environment. Glutamine is the most abundant non‑essential amino acid in the circulation, and along with glucose, comprise the two basic nutrients of cancer cell metabolism. Glutamine is crucial in non‑small cell lung cancer (NSCLC) cells and serves an important role in supporting cell growth, activating signal transduction and maintaining redox homeostasis. In this perspective, the present review aims to provide a new therapeutic strategy of NSCLC through inhibiting the metabolism of glutamine. This review not only summarizes the significance of glutamine metabolism in NSCLC cells, but also enumerates traditional glutamine inhibitors along with new targets. It also puts forward the concept of combination therapy and patient stratification with the aim of comprehensively showing the effect and prospect of targeted glutamine metabolism in NSCLC therapy. This review was completed by searching for keywords including ‘glutamine’, ‘NSCLC’ and ‘therapy’ on PubMed, and screening out articles.
View Figures

Figure 1

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Schabath MB and Cote ML: Cancer progress and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev. 28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Ganti AK, Klein AB, Cotarla I, Seal B and Chou E: Update of incidence, prevalence, survival, and initial treatment in patients with non-small cell lung cancer in the US. JAMA Oncol. 7:1824–1832. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Zhou Y, Du Q, Zhao Q, Zhang M, Qin X, Jiang Y and Luan Y: A heme-regulatable chemodynamic nanodrug harnessing transcription factor Bach1 against lung cancer metastasis. J Colloid Interface Sci. 610:698–708. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Duma N, Santana-Davila R and Molina JR: Non-Small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P, Mitchell A, Bolejack V, et al: The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 11:39–51. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Otto AM: Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab. 4:52016. View Article : Google Scholar : PubMed/NCBI

8 

Boroughs LK and DeBerardinis RJ: Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 17:351–359. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Hensley CT, Wasti AT and DeBerardinis RJ: Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Mohamed A, Deng X, Khuri FR and Owonikoko TK: Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer. 15:7–15. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Meijer TWH, Looijen-Salamon MG, Lok J, van den Heuvel M, Tops B, Kaanders JHAM, Span PN and Bussink J: Glucose and glutamine metabolism in relation to mutational status in NSCLC histological subtypes. Thorac Cancer. 10:2289–2299. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI

16 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI

17 

DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016. View Article : Google Scholar : PubMed/NCBI

18 

Yoshida GJ: Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI

19 

Cruz-Bermudez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez C, et al: Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Solanki HS, Babu N, Jain AP, Bhat MY, Puttamallesh VN, Advani J, Raja R, Mangalaparthi KK, Kumar MM, Prasad TSK, et al: Cigarette smoke induces mitochondrial metabolic reprogramming in lung cells. Mitochondrion. 40:58–70. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Judd J, Abdel Karim N, Khan H, Naqash AR, Baca Y, Xiu J, VanderWalde AM, Mamdani H, Raez LE, Nagasaka M, et al: Characterization of KRAS mutation subtypes in non-small cell lung cancer. Mol Cancer Ther. 20:2577–2584. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Kawada K, Toda K and Sakai Y: Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol. 22:651–659. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M and White E: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3:1272–1285. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, et al: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497:633–637. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK, O'Brien JP, Pierce KA, et al: Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23:517–528. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Dowling CM, Zhang H, Chonghaile TN and Wong KK: Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer. 1875:1884622021. View Article : Google Scholar : PubMed/NCBI

28 

Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, Mamer OA, Avizonis D, Shackelford DB, Shaw RJ and Jones RG: Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci USA. 111:2554–2559. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W, et al: LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-Mutant lung adenocarcinoma. Cancer Res. 79:3251–3267. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, et al: The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15:157–170. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Hua Q, Wang D, Zhao L, Hong Z, Ni K, Shi Y, Liu Z and Mi B: AL355338 acts as an oncogenic lncRNA by interacting with protein ENO1 to regulate EGFR/AKT pathway in NSCLC. Cancer Cell Int. 21:5252021. View Article : Google Scholar : PubMed/NCBI

33 

Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Vanhove K, Derveaux E, Graulus GJ, Mesotten L, Thomeer M, Noben JP, Guedens W and Adriaensens P: Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci. 20:2522019. View Article : Google Scholar : PubMed/NCBI

35 

Choi YK and Park KG: Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28. 2018. View Article : Google Scholar : PubMed/NCBI

36 

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Xiao D, Zeng L, Yao K, Kong X, Wu G and Yin Y: The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids. 48:2067–2080. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, et al: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 481:380–384. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Kuhajda FP: Fatty acid synthase and cancer: New application of an old pathway. Cancer Res. 66:5977–5980. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, et al: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z, Boggon TJ, Jin P, Yi H, Wright ER, et al: Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 27:257–270. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW and Phang JM: Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Kerr EM, Gaude E, Turrell FK, Frezza C and Martins CP: Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 531:110–113. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Jin L, Alesi GN and Kang S: Glutaminolysis as a target for cancer therapy. Oncogene. 35:3619–3625. 2016. View Article : Google Scholar : PubMed/NCBI

47 

DeBerardinis RJ and Cheng T: Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 29:313–324. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Yoo HC, Yu YC, Sung Y and Han JM: Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Alberghina L and Gaglio D: Redox control of glutamine utilization in cancer. Cell Death Dis. 5:e15612014. View Article : Google Scholar : PubMed/NCBI

51 

Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 136:521–534. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS and Guan KL: Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 347:194–198. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Strickaert A, Saiselet M, Dom G, De Deken X, Dumont JE, Feron O, Sonveaux P and Maenhaut C: Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene. 36:2637–2642. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, Harris FT, Harris BK, Boyd KL, Chen H, et al: Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. 137:1587–1597. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Santarpia M, Aguilar A, Chaib I, Cardona AF, Fancelli S, Laguia F, Bracht JWP, Cao P, Molina-Vila MA, Karachaliou N and Rosell R: Non-Small-cell lung cancer signaling pathways, metabolism, and PD-1/PD-L1 Antibodies. Cancers (Basel). 12:14752020. View Article : Google Scholar : PubMed/NCBI

57 

Perez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hée VF, De Saedeleer CJ, Sboarina M, Rodriguez F, Fontenille MJ, Brisson L, et al: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle. 15:72–83. 2016. View Article : Google Scholar : PubMed/NCBI

58 

van den Heuvel AP, Jing J, Wooster RF and Bachman KE: Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther. 13:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG and DeBerardinis RJ: Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 69:7986–7993. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Chen SL, Xue N, Wu MT, Chen H, He X, Li JP, Liu WL and Dai SQ: Influence of preoperative serum aspartate aminotransferase (AST) level on the prognosis of patients with non-small cell lung cancer. Int J Mol Sci. 17:14742016. View Article : Google Scholar : PubMed/NCBI

61 

Caiola E, Colombo M, Sestito G, Lupi M, Marabese M, Pastorelli R, Broggini M and Brunelli L: Glutaminase inhibition on NSCLC depends on extracellular alanine exploitation. Cells. 9:17662020. View Article : Google Scholar : PubMed/NCBI

62 

Sellers K, Fox MP, Bousamra M II, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, et al: Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. 125:687–698. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, Li J and Liu B: NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 101:236–248. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, et al: Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest. 130:3865–3884. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, et al: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 366:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al: Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Bhutia YD and Ganapathy V: Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 1863:2531–2539. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, Chen H, Clark JE, Alborn WE, Eisenberg R and Massion PP: SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res. 19:560–570. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Chiu M, Sabino C, Taurino G, Bianchi MG, Andreoli R, Giuliani N and Bussolati O: GPNA inhibits the sodium-independent transport system L for neutral amino acids. Amino Acids. 49:1365–1372. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Hu K, Li K, Lv J, Feng J, Chen J, Wu H, Cheng F, Jiang W, Wang J, Pei H, et al: Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 130:1752–1766. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Katt WP and Cerione RA: Glutaminase regulation in cancer cells: A druggable chain of events. Drug Discov Today. 19:450–457. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Magill GB, Myers WP, Reilly HC, Putnam RC, Magill JW, Sykes MP, Escher GC, Karnofsky DA and Burchenal JH: Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease. Cancer. 10:1138–1150. 1957. View Article : Google Scholar : PubMed/NCBI

76 

Dang CV, Le A and Gao P: MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 15:6479–6483. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Lemberg KM, Vornov JJ, Rais R and Slusher BS: We're Not ‘DON’ Yet: Optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther. 17:1824–1832. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC and Curthoys NP: Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J. 406:407–414. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G, Alt J, Rais R, Rojas C, Gao P, et al: Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem. 55:10551–10563. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, et al: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 13:890–901. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Xie C, Jin J, Bao X, Zhan WH, Han TY, Gan M, Zhang C and Wang J: Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer. Oncotarget. 7:610–621. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Boysen G, Jamshidi-Parsian A, Davis MA, Siegel ER, Simecka CM, Kore RA, Dings RPM and Griffin RJ: Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. Int J Radiat Biol. 95:436–442. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Xia M, Li X, Diao Y, Du B and Li Y: Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Transl Oncol. 14:1009202021. View Article : Google Scholar : PubMed/NCBI

84 

Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Magyar C, Braas D, Graeber T, Jackson NJ, Czernin J, Emberley E, et al: Targeted Inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18:601–610. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Momcilovic M, Bailey ST, Lee JT, Fishbein MC, Braas D, Go J, Graeber TG, Parlati F, Demo S, Li R, et al: The GSK3 signaling axis regulates adaptive glutamine metabolism in lung squamous cell carcinoma. Cancer Cell. 33:905–921. –e5. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Yu W, Yang X, Zhang Q, Sun L, Yuan S and Xin Y: Targeting GLS1 to cancer therapy through glutamine metabolism. Clin Transl Oncol. 23:2253–2268. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Lee JS, Kang JH, Lee SH, Hong D, Son J, Hong KM, Song J and Kim SY: Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7:e25112016. View Article : Google Scholar : PubMed/NCBI

88 

Yoneda K, Imanishi N, Ichiki Y and Tanaka F: Treatment of non-small cell lung cancer with EGFR-mutations. J UOEH. 41:153–163. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Liu Y, Ge X, Pang J, Zhang Y, Zhang H, Wu H, Fan F and Liu H: Restricting glutamine uptake enhances NSCLC Sensitivity to Third-Generation EGFR-TKI Almonertinib. Front Pharmacol. 12:6713282021. View Article : Google Scholar : PubMed/NCBI

90 

Sazeides C and Le A: Metabolic relationship between cancer-associated fibroblasts and cancer cells. Adv Exp Med Biol. 1063:149–165. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Cerezo M and Rocchi S: Cancer cell metabolic reprogramming: A keystone for the response to immunotherapy. Cell Death Dis. 11:9642020. View Article : Google Scholar : PubMed/NCBI

92 

Lee YZ, Yang CW, Chang HY, Hsu HY, Chen IS, Chang HS, Lee CH, Lee JC, Kumar CR, Qiu YQ, et al: Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget. 5:6087–6101. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Imai H, Kaira K, Oriuchi N, Shimizu K, Tominaga H, Yanagitani N, Sunaga N, Ishizuka T, Nagamori S, Promchan K, et al: Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 30:4819–4828. 2010.PubMed/NCBI

94 

Lukey MJ, Cluntun AA, Katt WP, Lin MJ, Druso JE, Ramachandran S, Erickson JW, Le HH, Wang ZE, Blank B, et al: Liver-Type Glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer. Cell Rep. 29:76–88. –e7. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB and Thompson CB: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Moreadith RW and Lehninger AL: The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 259:6215–6221. 1984. View Article : Google Scholar : PubMed/NCBI

97 

Estrela JM, Ortega A and Obrador E: Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci. 43:143–181. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Yang WH, Qiu Y, Stamatatos O, Janowitz T and Lukey MJ: Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 7:790–804. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Clay TD, Russell PA, Do H, Sundararajan V, Conron M, Wright GM, Dobrovic A, Moore MM and McLachlan SA: Associations between the IASLC/ATS/ERS lung adenocarcinoma classification and EGFR and KRAS mutations. Pathology. 48:17–24. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, et al: Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA. 107:7461–7466. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang T and Xu G: Transcription Factor p53 suppresses tumor growth by prompting pyroptosis in non-small-cell lung cancer. Oxid Med Cell Longev. 2019:87468952019. View Article : Google Scholar : PubMed/NCBI

102 

Jung S, Kim DH, Choi YJ, Kim SY, Park H, Lee H, Choi CM, Sung YH, Lee JC and Rho JK: Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 11:196672021. View Article : Google Scholar : PubMed/NCBI

103 

Rekhtman N, Ang DC, Riely GJ, Ladanyi M and Moreira AL: KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol. 26:1307–1319. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Toth LN, de Abreu FB and Tafe LJ: Non-small cell lung cancers with isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations. Hum Pathol. 78:138–143. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, Tominaga H, Nagamori S, Kanai Y, Yamada M, et al: ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer. 110:2030–2039. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Chakrabarti G: Mutant KRAS associated malic enzyme 1 expression is a predictive marker for radiation therapy response in non-small cell lung cancer. Radiat Oncol. 10:1452015. View Article : Google Scholar : PubMed/NCBI

107 

Almuhaideb A, Papathanasiou N and Bomanji J: 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 31:3–13. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Qu W, Oya S, Lieberman BP, Ploessl K, Wang L, Wise DR, Divgi CR, Chodosh LA, Thompson CB and Kung HF: Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med. 53:98–105. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Anderson PM and Lalla RV: Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients. 12:16752020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou L, Zhang Q, Zhu Q, Zhan Y, Li Y and Huang X: Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review). Oncol Lett 25: 159, 2023.
APA
Zhou, L., Zhang, Q., Zhu, Q., Zhan, Y., Li, Y., & Huang, X. (2023). Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review). Oncology Letters, 25, 159. https://doi.org/10.3892/ol.2023.13745
MLA
Zhou, L., Zhang, Q., Zhu, Q., Zhan, Y., Li, Y., Huang, X."Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review)". Oncology Letters 25.4 (2023): 159.
Chicago
Zhou, L., Zhang, Q., Zhu, Q., Zhan, Y., Li, Y., Huang, X."Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review)". Oncology Letters 25, no. 4 (2023): 159. https://doi.org/10.3892/ol.2023.13745
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou L, Zhang Q, Zhu Q, Zhan Y, Li Y and Huang X: Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review). Oncol Lett 25: 159, 2023.
APA
Zhou, L., Zhang, Q., Zhu, Q., Zhan, Y., Li, Y., & Huang, X. (2023). Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review). Oncology Letters, 25, 159. https://doi.org/10.3892/ol.2023.13745
MLA
Zhou, L., Zhang, Q., Zhu, Q., Zhan, Y., Li, Y., Huang, X."Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review)". Oncology Letters 25.4 (2023): 159.
Chicago
Zhou, L., Zhang, Q., Zhu, Q., Zhan, Y., Li, Y., Huang, X."Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review)". Oncology Letters 25, no. 4 (2023): 159. https://doi.org/10.3892/ol.2023.13745
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team