|
1
|
Shan C, Zhang Y, Hao X, Gao J, Chen X and
Wang K: Biogenesis, functions and clinical significance of circRNAs
in gastric cancer. Mol Cancer. 18:1362019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Matsumoto Y, Fishel R and Wickner RB:
Circular single-stranded RNA replicon in Saccharomyces cerevisiae.
Proc Natl Acad Sci USA. 87:7628–7632. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cocquerelle C, Mascrez B, Hetuin D and
Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J.
7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lei B, Tian Z, Fan W and Ni B: Circular
RNA: A novel biomarker and therapeutic target for human cancers.
Int J Med Sci. 16:292–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ouyang J, Long Z and Li G: Circular RNAs
in gastric cancer: Potential biomarkers and therapeutic targets.
Biomed Res Int. 2020:27906792020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang CM, Qiao GL, Song LN, Bao S and Ma
LJ: Circular RNAs in gastric cancer: Biomarkers for early
diagnosis. Oncol Lett. 20:465–473. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Starke S, Jost I, Rossbach O, Schneider T,
Schreiner S, Hung LH and Bindereif A: Exon circularization requires
canonical splice signals. Cell Rep. 10:103–111. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Conn SJ, Pillman KA, Toubia J, Conn VM,
Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and
Goodall GJ: The RNA binding protein quaking regulates formation of
circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fu L, Jiang Z, Li T, Hu Y and Guo J:
Circular RNAs in hepatocellular carcinoma: Functions and
implications. Cancer Med. 7:3101–3109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Noto JJ, Schmidt CA and Matera AG:
Engineering and expressing circular RNAs via tRNA splicing. RNA
Biol. 14:978–984. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Suzuki H, Zuo Y, Wang J, Zhang MQ,
Malhotra A and Mayeda A: Characterization of RNase R-digested
cellular RNA source that consists of lariat and circular RNAs from
pre-mRNA splicing. Nucleic Acids Res. 34:e632006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang PL, Bao Y, Yee MC, Barrett SP, Hogan
GJ, Olsen MN, Dinneny JR, Brown PO and Salzman J: Circular RNA is
expressed across the eukaryotic tree of life. PLoS One.
9:e908592014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jamali L, Tofigh R, Tutunchi S, Panahi G,
Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and
Mirzaei H: Circulating microRNAs as diagnostic and therapeutic
biomarkers in gastric and esophageal cancers. J Cell Physiol.
233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The rosetta stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang Y, Liu X, Wang L, Zhang Z, Li Z and
Li M: Circ_PGPEP1 serves as a sponge of miR-1297 to promote gastric
cancer progression via regulating E2F3. Dig Dis Sci. 66:4302–4313.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P
and Yang BB: Foxo3 circular RNA retards cell cycle progression via
forming ternary complexes with p21 and CDK2. Nucleic Acids Res.
44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y,
Li H, Chen Y, Wang X, Huang K, et al: Circ-HuR suppresses HuR
expression and gastric cancer progression by inhibiting CNBP
transactivation. Mol Cancer. 18:1582019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Du WW, Xu J, Yang W, Wu N, Li F, Zhou L,
Wang S, Li X, He AT, Du KY, et al: A neuroligin isoform translated
by circnlgn contributes to cardiac remodeling. Circ Res.
129:568–582. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S,
Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by
circMAPK1 inhibits progression of gastric cancer by suppressing
activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Diallo LH, Tatin F, David F, Godet AC,
Zamora A, Prats AC, Garmy-Susini B and Lacazette E: How are
circRNAs translated by non-canonical initiation mechanisms?
Biochimie. 164:45–52. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tang C, Xie Y, Yu T, Liu N, Wang Z,
Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al: m(6)A-dependent
biogenesis of circular RNAs in male germ cells. Cell Res.
30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lu D and Xu AD: Mini review: Circular RNAs
as potential clinical biomarkers for disorders in the central
nervous system. Front Genet. 7:532016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liang D, Tatomer DC, Luo Z, Wu H, Yang L,
Chen LL, Cherry S and Wilusz JE: The output of protein-coding genes
shifts to circular RNAs when the Pre-mRNA processing machinery is
limiting. Mol Cell. 68:940–954. e9432017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hansen TB, Veno MT, Damgaard CK and Kjems
J: Comparison of circular RNA prediction tools. Nucleic Acids Res.
44:e582016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gao Y, Zhang J and Zhao F: Circular RNA
identification based on multiple seed matching. Brief Bioinform.
19:803–810. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen X, Chen RX, Wei WS, Li YH, Feng ZH,
Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 Circular RNA
promotes metastasis of urothelial carcinoma of the bladder through
sponging miR-30c to induce epithelial-mesenchymal transition. Clin
Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J,
Zhang S, Wang H, Qin W, Lu ZJ, et al: Microarray is an efficient
tool for circRNA profiling. Brief Bioinform. 20:1420–1433. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kocks C, Boltengagen A, Piwecka M,
Rybak-Wolf A and Rajewsky N: Single-molecule fluorescence in situ
hybridization (FISH) of circular RNA CDR1as. Methods Mol Biol.
1724:77–96. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Luo Z, Rong Z, Zhang J, Zhu Z, Yu Z, Li T,
Fu Z, Qiu Z and Huang C: Circular RNA circCCDC9 acts as a
miR-6792-3p sponge to suppress the progression of gastric cancer
through regulating CAV1 expression. Mol Cancer. 19:862020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang S, Zhang X, Li Z, Wang W, Li B, Huang
X, Sun G, Xu J, Li Q, Xu Z, et al: Circular RNA profile identifies
circOSBPL10 as an oncogenic factor and prognostic marker in gastric
cancer. Oncogene. 38:6985–7001. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shen Y, Zhang J, Fu Z, Zhang B, Chen M,
Ling X and Zou X: Gene microarray analysis of the circular RNAs
expression profile in human gastric cancer. Oncol Lett.
15:9965–9972. 2018.PubMed/NCBI
|
|
35
|
Chen J, Li Y, Zheng Q, Bao C, He J, Chen
B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile
identifies circPVT1 as a proliferative factor and prognostic marker
in gastric cancer. Cancer Lett. 388:208–219. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shao Y, Li J, Lu R, Li T, Yang Y, Xiao B
and Guo J: Global circular RNA expression profile of human gastric
cancer and its clinical significance. Cancer Med. 6:1173–1180.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dang Y, Ouyang X, Zhang F, Wang K, Lin Y,
Sun B, Wang Y, Wang L and Huang Q: Circular RNAs expression
profiles in human gastric cancer. Sci Rep. 7:90602017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen H, Wang K, Pei D and Xu H: Appraising
circular RNAs as novel biomarkers for the diagnosis and prognosis
of gastric cancer: A pair-wise meta-analysis. J Clin Lab Anal.
34:e233032020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The eighth edition AJCC cancer staging manual:
Continuing to build a bridge from a population-based to a more
‘personalized’ approach to cancer staging. CA Cancer J Clin.
67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhang X, Wang S, Wang H, Cao J, Huang X,
Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1
acts as a microRNA-149-5p sponge to promote gastric cancer
progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Qiu S, Li B, Xia Y, Xuan Z, Li Z, Xie L,
Gu C, Lv J, Lu C, Jiang T, et al: CircTHBS1 drives gastric cancer
progression by increasing INHBA mRNA expression and stability in a
ceRNA- and RBP-dependent manner. Cell Death Dis. 13:2662022.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rong D, Lu C, Zhang B, Fu K, Zhao S, Tang
W and Cao H: CircPSMC3 suppresses the proliferation and metastasis
of gastric cancer by acting as a competitive endogenous RNA through
sponging miR-296-5p. Mol Cancer. 18:252019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zang X, Jiang J, Gu J, Chen Y, Wang M,
Zhang Y, Fu M, Shi H, Cai H, Qian H, et al: Circular RNA EIF4G3
suppresses gastric cancer progression through inhibition of
beta-catenin by promoting delta-catenin ubiquitin degradation and
upregulating SIK1. Mol Cancer. 21:1412022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu
X, Li Z, Wei J, Liu M and Li G: Circular RNA circ-DONSON
facilitates gastric cancer growth and invasion via NURF complex
dependent activation of transcription factor SOX4. Mol Cancer.
18:452019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q,
Tang Q, Shan C, Lv Y, Zhang K, et al: CircMRPS35 suppresses gastric
cancer progression via recruiting KAT7 to govern histone
modification. Mol Cancer. 19:562020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Henry NL and Hayes DF: Cancer biomarkers.
Mol Oncol. 6:140–146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wei J, Wei W, Xu H, Wang Z, Gao W, Wang T,
Zheng Q, Shu Y and De W: Circular RNA hsa_circRNA_102958 may serve
as a diagnostic marker for gastric cancer. Cancer Biomark.
27:139–145. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xu Y, Kong S, Qin X and Ju S:
Comprehensive assessment of plasma Circ_0004771 as a novel
diagnostic and dynamic monitoring biomarker in gastric cancer. Onco
Targets Ther. 13:10063–10074. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ye Q, Qi C, Xi M and Ye G: Circular RNA
hsa_circ_0001874 is an indicator for gastric cancer. J Clin Lab
Anal. 35:e238512021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao Q, Chen S, Li T, Xiao B and Zhang X:
Clinical values of circular RNA 0000181 in the screening of gastric
cancer. J Clin Lab Anal. 32:e223332018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tang W, Fu K, Sun H, Rong D, Wang H and
Cao H: CircRNA microarray profiling identifies a novel circulating
biomarker for detection of gastric cancer. Mol Cancer. 17:1372018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu X, Abraham JM, Cheng Y, Wang Z, Wang
Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al:
Synthetic circular RNA functions as a miR-21 sponge to suppress
gastric carcinoma cell proliferation. Mol Ther Nucleic Acids.
13:312–321. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guan E, Liu H and Xu N: Lidocaine
suppresses gastric cancer development through
Circ_ANO5/miR-21-5p/LIFR axis. Dig Dis Sci. 67:2244–2256. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Piwecka M, Glazar P, Hernandez-Miranda LR,
Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Jara
CAS, Fenske P, et al: Loss of a mammalian circular RNA locus causes
miRNA deregulation and affects brain function. Science.
357:eaam85262017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lin D, Lin X, He T and Xie G: Gambogic
acid inhibits the progression of gastric cancer via
circRNA_ASAP2/miR-33a-5p/CDK7 axis. Cancer Manag Res. 12:9221–9233.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang
L, Xu Z, Zeng A, Zhang X, Zhang X, et al: Circular RNA AKT3
upregulates PIK3R1 to enhance cisplatin resistance in gastric
cancer via miR-198 suppression. Mol Cancer. 18:712019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X,
Li X, Dang Y and Zhang G: circCUL2 regulates gastric cancer
malignant transformation and cisplatin resistance by modulating
autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 19:1562020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang X, Zhang Q and Guan B: Circ_0110805
knockdown enhances cisplatin sensitivity and inhibits gastric
cancer progression by miR-299-3p/ENDOPDI axis. Onco Targets Ther.
13:11445–11457. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu Y, Xu J, Jiang M, Ni L and Ling Y:
CircRNA DONSON contributes to cisplatin resistance in gastric
cancer cells by regulating miR-802/BMI1 axis. Cancer Cell Int.
20:2612020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Z, Yu X, Zhou B, Zhang J and Chang
J: Circular RNA circ_0026359 enhances cisplatin resistance in
gastric cancer via targeting miR-1200/POLD4 pathway. Biomed Res
Int. 2020:51032722020.PubMed/NCBI
|
|
61
|
Xue M, Li G, Fang X, Wang L, Jin Y and
Zhou Q: hsa_circ_0081143 promotes cisplatin resistance in gastric
cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int.
19:252019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sun G, Li Z, He Z, Wang W, Wang S, Zhang
X, Cao J, Xu P, Wang H, Huang X, et al: Circular RNA MCTP2 inhibits
cisplatin resistance in gastric cancer by miR-99a-5p-mediated
induction of MTMR3 expression. J Exp Clin Cancer Res. 39:2462020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang X, Zhang Y, Li W and Liu X: Knockdown
of cir_RNA PVT1 elevates gastric cancer cisplatin sensitivity via
sponging miR-152-3p. J Surg Res. 261:185–195. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Deng P, Sun M, Zhao WY, Hou B, Li K, Zhang
T and Gu F: Circular RNA circVAPA promotes chemotherapy drug
resistance in gastric cancer progression by regulating
miR-125b-5p/STAT3 axis. World J Gastroenterol. 27:487–500. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sun Y, Ma J, Lin J, Sun D, Song P, Shi L,
Li H, Wang R, Wang Z and Liu S: Circular RNA circ_ASAP2 regulates
drug sensitivity and functional behaviors of cisplatin-resistant
gastric cancer cells by the miR-330-3p/NT5E axis. Anticancer Drugs.
32:950–961. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yao W, Guo P, Mu Q and Wang Y:
Exosome-derived circ-PVT1 contributes to cisplatin resistance by
regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1
axis in gastric cancer cells. Cancer Biother Radiopharm.
36:347–359. 2020.PubMed/NCBI
|
|
67
|
Liu YY, Zhang LY and Du WZ: Circular RNA
circ-PVT1 contributes to paclitaxel resistance of gastric cancer
cells through the regulation of ZEB1 expression by sponging
miR-124-3p. Biosci Rep. 39:BSR201930452019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhong Y, Wang D, Ding Y, Tian G and Jiang
B: Circular RNA circ_0032821 contributes to oxaliplatin (OXA)
resistance of gastric cancer cells by regulating SOX9 via
miR-515-5p. Biotechnol Lett. 43:339–351. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xu G, Li M, Wu J, Qin C, Tao Y and He H:
Circular RNA circNRIP1 sponges microRNA-138-5p to maintain
hypoxia-induced resistance to 5-fluorouracil through
HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer
Manag Res. 12:2789–2802. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fang L, Lv J, Xuan Z, Li B, Li Z, He Z, Li
F, Xu J, Wang S, Xia Y, et al: Circular CPM promotes
chemoresistance of gastric cancer via activating PRKAA2-mediated
autophagy. Clin Transl Med. 12:e7082022. View Article : Google Scholar : PubMed/NCBI
|