|
1
|
Pyagay P, Heroult M, Wang Q, Lehnert W,
Belden J, Liaw L, Friesel RE and Lindner V: Collagen triple helix
repeat containing 1, a novel secreted protein in injured and
diseased arteries, inhibits collagen expression and promotes cell
migration. Circ Res. 96:261–268. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Leclère L, Nir TS, Bazarsky M, Braitbard
M, Schneidman-Duhovny D and Gat U: Dynamic evolution of the Cthrc1
genes, a newly defined collagen-like family. Genome Biol Evol.
12:3957–3970. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tameda M, Sugimoto K, Shiraki K, Yamamoto
N, Okamoto R, Usui M, Ito M, Takei Y, Nobori T, Kojima T, et al:
Collagen triple helix repeat containing 1 is overexpressed in
hepatocellular carcinoma and promotes cell proliferation and
motility. Int J Oncol. 45:541–548. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
LeClair R and Lindner V: The role of
collagen triple helix repeat containing 1 in injured arteries,
collagen expression, and transforming growth factor beta signaling.
Trends Cardiovasc Med. 17:202–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Leclair RJ, Wang Q, Benson MA, Prudovsky I
and Lindner V: Intracellular localization of Cthrc1 characterizes
differentiated smooth muscle. Arterioscler Thromb Vasc Biol.
28:1332–1338. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yamamoto S, Nishimura O, Misaki K, Nishita
M, Minami Y, Yonemura S, Tarui H and Sasaki H: Cthrc1 selectively
activates the planar cell polarity pathway of Wnt signaling by
stabilizing the Wnt-receptor complex. Dev Cell. 15:23–36. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhu Z, Xu J, Li L, Ye W, Chen B, Zeng J
and Huang Z: Comprehensive analysis reveals CTHRC1, SERPINE1, VCAN
and UPK1B as the novel prognostic markers in gastric cancer. Transl
Cancer Res. 9:4093–4110. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sial N, Ahmad M, Hussain MS, Iqbal MJ,
Hameed Y, Khan M, Abbas M, Asif R, Rehman JU, Atif M, et al: CTHRC1
expression is a novel shared diagnostic and prognostic biomarker of
survival in six different human cancer subtypes. Sci Rep.
11:198732021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tsukui T, Sun KH, Wetter JB,
Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp
JC, Poli SD, Rosas IO, et al: Collagen-producing lung cell atlas
identifies multiple subsets with distinct localization and
relevance to fibrosis. Nat Commun. 11:19202020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ruiz-Villalba A, Romero JP, Hernández SC,
Vilas-Zornoza A, Fortelny N, Castro-Labrador L, San Martin-Uriz P,
Lorenzo-Vivas E, García-Olloqui P, Palacio M, et al: Single-cell
RNA sequencing analysis reveals a crucial Role for CTHRC1 (collagen
triple helix repeat containing 1) cardiac fibroblasts after
myocardial infarction. Circulation. 142:1831–1847. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou F, Shen D, Xiong Y, Cheng S, Xu H,
Wang G, Qian K, Ju L and Zhang X: CTHRC1 is a prognostic biomarker
and correlated with immune infiltrates in kidney renal papillary
cell carcinoma and kidney renal clear cell carcinoma. Front Oncol.
10:5708192021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Durmus T, LeClair RJ, Park KS, Terzic A,
Yoon JK and Lindner V: Expression analysis of the novel gene
collagen triple helix repeat containing-1 (Cthrc1). Gene Expr
Patterns. 6:935–940. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Duarte CW, Stohn JP, Wang Q, Emery IF,
Prueser A and Lindner V: Elevated plasma levels of the pituitary
hormone Cthrc1 in individuals with red hair but not in patients
with solid tumors. PLoS One. 9:e1004492014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tang L, Dai DL, Su M, Martinka M, Li G and
Zhou Y: Aberrant expression of collagen triple helix repeat
containing 1 in human solid cancers. Clin Cancer Res. 12:3716–3722.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li J, Cao J, Li M, Yu Y, Yang Y, Xiao X,
Wu Z, Wang L, Tu Y and Chen H: Collagen triple helix repeat
containing-1 inhibits transforming growth factor-b1-induced
collagen type I expression in keloid. Br J Dermatol. 164:1030–1036.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bian Z, Miao Q, Zhong W, Zhang H, Wang Q,
Peng Y, Chen X, Guo C, Shen L, Yang F, et al: Treatment of
cholestatic fibrosis by altering gene expression of Cthrc1:
Implications for autoimmune and non-autoimmune liver disease. J
Autoimmun. 63:76–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mendelsohn RD, Helmerhorst EJ, Cipollo JF
and Kukuruzinska MA: A hypomorphic allele of the first
N-glycosylation gene, ALG7, causes mitochondrial defects in yeast.
Biochim Biophys Acta. 1723:33–44. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu G, Sengupta PK, Jamal B, Yang HY,
Bouchie MP, Lindner V, Varelas X and Kukuruzinska MA:
N-glycosylation induces the CTHRC1 protein and drives oral cancer
cell migration. J Biol Chem. 288:20217–20227. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang R, Cao Y, Bai L, Zhu C, Li R, He H,
Liu Y, Wu K, Liu F and Wu J: The collagen triple helix repeat
containing 1 facilitates hepatitis B virus-associated
hepatocellular carcinoma progression by regulating multiple
cellular factors and signal cascades. Mol Carcinog. 54:1554–1566.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bai L, Zhang W, Tan L, Yang H, Ge M, Zhu
C, Zhang R, Cao Y, Chen J, Luo Z, et al: Hepatitis B virus hijacks
CTHRC1 to evade host immunity and maintain replication. J Mol Cell
Biol. 7:543–556. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cadigan KM and Nusse R: Wnt signaling: A
common theme in animal development. Genes Dev. 11:3286–3305. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Han W, Cui H, Liang J and Su X: Role of
MicroRNA-30c in cancer progression. J Cancer. 11:2593–2601. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lai YH, Chen J, Wang XP, Wu YQ, Peng HT,
Lin XH and Wang WJ: Collagen triple helix repeat containing-1
negatively regulated by microRNA-30c promotes cell proliferation
and metastasis and indicates poor prognosis in breast cancer. J Exp
Clin Cancer Res. 36:922017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xi C, Wang J, Sun H, Zhang X and Kang H:
RETRACTED: Loss of microRNA-30e induced by extracellular vesicles
from cancer-associated fibroblasts promotes breast cancer
progression by binding to CTHRC1. Exp Mol Pathol. 118:1045862021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yu J, Feng J, Zhi X, Tang J, Li Z, Xu Y,
Yang L, Hu Z and Xu Z: Let-7b inhibits cell proliferation,
migration, and invasion through targeting Cthrc1 in gastric cancer.
Tumour Biol. 36:3221–3229. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li Y, Fu Y, Gao Y, Li H, Ma L, Shu C, Li N
and Ma C: microRNA-134 inhibits melanoma growth and metastasis by
negatively regulating collagen triple helix repeat containing-1
(CTHRC1). Int J Clin Exp Pathol. 11:4319–4330. 2018.PubMed/NCBI
|
|
27
|
Yuan K, Sun Y and Ji Y: miR-509-3p
suppresses migration, invasion, and epithelial-mesenchymal
transition in melanoma cells by targeting collagen triple helix
repeat containing 1. Balkan Med J. 38:177–182. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li Y, Zhou J, Wang J, Chen X, Zhu Y and
Chen Y: Mir-30b-3p affects the migration and invasion function of
ovarian cancer cells by targeting the CTHRC1 gene. Biol Res.
53:102020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ma Z, Chao F, Wang S, Song Z, Zhuo Z,
Zhang J, Xu G and Chen G: CTHRC1 affects malignant tumor cell
behavior and is regulated by miR-30e-5p in human prostate cancer.
Biochem Biophys Res Commun. 525:418–424. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
LeClair RJ, Durmus T, Wang Q, Pyagay P,
Terzic A and Lindner V: Cthrc1 is a novel inhibitor of transforming
growth factor-beta signaling and neointimal lesion formation. Circ
Res. 100:826–833. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Qin S, Zheng JH, Xia ZH, Qian J, Deng CL
and Yang SL: CTHRC1 promotes wound repair by increasing M2
macrophages via regulating the TGF-β and notch pathways. Biomed
Pharmacother. 113:1085942019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kelley MW: Leading Wnt down a PCP path:
Cthrc1 acts as a coreceptor in the Wnt-PCP pathway. Dev Cell.
15:7–8. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fu SW, Chen HY, Lin XL, Yang L and Ge ZZ:
Collagen triple helix repeat containing 1 promotes tumor
angiogenesis in gastrointestinal stromal tumors. Oncol Lett.
14:7499–7505. 2017.PubMed/NCBI
|
|
34
|
Zheng M, Zhou Q, Liu X, Wang C and Liu G:
CTHRC1 overexpression promotes cervical carcinoma progression by
activating the Wnt/PCP signaling pathway. Oncol Rep. 41:1531–1538.
2019.PubMed/NCBI
|
|
35
|
Li Y, Xing BX, Wang YH, Yu S, Zhao H, Lv
QQ and Lu CX: CTHRC1 promotes growth, migration and invasion of
trophoblasts via reciprocal Wnt/β-catenin regulation. J Cell Commun
Signal. 16:63–74. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li H, Liu W, Zhang X and Wang Y:
Cancer-associated fibroblast-secreted collagen triple helix repeat
containing-1 promotes breast cancer cell migration, invasiveness
and epithelial-mesenchymal transition by activating the
Wnt/β-catenin pathway. Oncol Lett. 22:8142021.PubMed/NCBI
|
|
37
|
Ma MZ, Zhuang C, Yang XM, Zhang ZZ, Ma H,
Zhang WM, You H, Qin W, Gu J, Yang S, et al: CTHRC1 acts as a
prognostic factor and promotes invasiveness of gastrointestinal
stromal tumors by activating Wnt/PCP-Rho signaling. Neoplasia.
16:265–278. 278.e1–13. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kimball AS, Joshi AD, Boniakowski AE,
Schaller M, Chung J, Allen R, Bermick J, Carson WF IV, Henke PK,
Maillard I, et al: Notch regulates macrophage-mediated inflammation
in diabetic wound healing. Front Immunol. 8:6352017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang C, Li Z, Shao F, Yang X, Feng X, Shi
S, Gao Y and He J: High expression of Collagen Triple Helix Repeat
Containing 1 (CTHRC1) facilitates progression of oesophageal
squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. J
Exp Clin Cancer Res. 36:842017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hu X, Bian Y, Wen X, Wang M, Li Y and Wan
X: Collagen triple helix repeat containing 1 promotes endometrial
cancer cell migration by activating the focal adhesion kinase
signaling pathway. Exp Ther Med. 20:1405–1414. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Guo B, Yan H, Li L, Yin K, Ji F and Zhang
S: Collagen triple helix repeat containing 1 (CTHRC1) activates
Integrin β3/FAK signaling and promotes metastasis in ovarian
cancer. J Ovarian Res. 10:692017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Park EH, Kim S, Jo JY, Kim SJ, Hwang Y,
Kim JM, Song SY, Lee DK and Koh SS: Collagen triple helix repeat
containing-1 promotes pancreatic cancer progression by regulating
migration and adhesion of tumor cells. Carcinogenesis. 34:694–702.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lee J, Song J, Kwon ES, Jo S, Kang MK, Kim
YJ, Hwang Y, Bae H, Kang TH, Chang S, et al: CTHRC1 promotes
angiogenesis by recruiting Tie2-expressing monocytes to pancreatic
tumors. Exp Mol Med. 48:e2612016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Spector I, Zilberstein Y, Lavy A, Genin O,
Barzilai-Tutsch H, Bodanovsky A, Halevy O and Pines M: The
involvement of collagen triple helix repeat containing 1 in
muscular dystrophies. Am J Pathol. 182:905–916. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Stohn JP, Perreault NG, Wang Q, Liaw L and
Lindner V: Cthrc1, a novel circulating hormone regulating
metabolism. PLoS One. 7:e471422012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kimura H, Kwan KM, Zhang Z, Deng JM,
Darnay BG, Behringer RR, Nakamura T, de Crombrugghe B and Akiyama
H: Cthrc1 is a positive regulator of osteoblastic bone formation.
PLoS One. 3:e31742008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Takeshita S, Fumoto T, Matsuoka K, Park
KA, Aburatani H, Kato S, Ito M and Ikeda K: Osteoclast-secreted
CTHRC1 in the coupling of bone resorption to formation. J Clin
Invest. 123:3914–3924. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Parrinello S, Napoli I, Ribeiro S,
Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RD, Nakayama
M, Adams RH and Lloyd AC: EphB signaling directs peripheral nerve
regeneration through Sox2-dependent Schwann cell sorting. Cell.
143:145–155. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Apra C, Richard L, Coulpier F, Blugeon C,
Gilardi-Hebenstreit P, Vallat JM, Lindner V, Charnay P and Decker
L: Cthrc1 is a negative regulator of myelination in Schwann cells.
Glia. 60:393–403. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pan B, Shi ZJ, Yan JY, Li JH and Feng SQ:
Long non-coding RNA NONMMUG014387 promotes Schwann cell
proliferation after peripheral nerve injury. Neural Regen Res.
12:2084–2091. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhou S, Gao R, Hu W, Qian T, Wang N, Ding
G, Ding F, Yu B and Gu X: MiR-9 inhibits Schwann cell migration by
targeting Cthrc1 following sciatic nerve injury. J Cell Sci.
127:967–976. 2014.PubMed/NCBI
|
|
52
|
Li Y, Zhang Y, Ma C, Wang S, Li N, Wang J,
Ma G and Zhang L: Overexpression of CTHRC1 in human melanoma
promotes tumorigenesis targeted by miRNA155. Int J Clin Exp Pathol.
10:8199–8210. 2017.PubMed/NCBI
|
|
53
|
Kim JH, Baek TH, Yim HS, Kim KH, Jeong SH,
Kang HB, Oh SS, Lee HG, Kim JW and Kim KD: Collagen triple helix
repeat containing-1 (CTHRC1) expression in invasive ductal
carcinoma of the breast: the impact on prognosis and correlation to
clinicopathologic features. Pathol Oncol Res. 19:731–737. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ni S, Ren F, Xu M, Tan C, Weng W, Huang Z,
Sheng W and Huang D: CTHRC1 overexpression predicts poor survival
and enhances epithelial-mesenchymal transition in colorectal
cancer. Cancer Med. 7:5643–5654. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang XL, Hu LP, Yang Q, Qin WT, Wang X,
Xu CJ, Tian GA, Yang XM, Yao LL, Zhu L, et al: CTHRC1 promotes
liver metastasis by reshaping infiltrated macrophages through
physical interactions with TGF-β receptors in colorectal cancer.
Oncogene. 40:3959–3973. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ding X, Huang R, Zhong Y, Cui N, Wang Y,
Weng J, Chen L and Zang M: CTHRC1 promotes gastric cancer
metastasis via HIF-1α/CXCR4 signaling pathway. Biomed Pharmacother.
123:1097422020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wei G, Dong Y, He Z, Qiu H, Wu Y and Chen
Y: Identification of hub genes and construction of an
mRNA-miRNA-lncRNA network of gastric carcinoma using integrated
bioinformatics analysis. PLoS One. 16:e02617282021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gu L, Liu L, Zhong L, Bai Y, Sui H, Wei X,
Zhang W, Huang P, Gao D, Kong Y and Lou G: Cthrc1 overexpression is
an independent prognostic marker in gastric cancer. Hum Pathol.
45:1031–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang T, Wen W, Liu H, Zhang J, Zhang X and
Wang Y: Development and validation of a novel prognosis prediction
model for patients with stomach adenocarcinoma. Front Med
(Lausanne). 8:7934012021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen G, Wang D, Zhao X, Cao J, Zhao Y,
Wang F, Bai J, Luo D and Li L: miR-155-5p modulates malignant
behaviors of hepatocellular carcinoma by directly targeting CTHRC1
and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling.
Cancer Cell Int. 17:1182017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhou H, Su L, Liu C, Li B, Li H, Xie Y and
Sun D: CTHRC1 may serve as a prognostic biomarker for
hepatocellular carcinoma. Onco Targets Ther. 12:7823–7831. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li J, Wang Y, Ma M, Jiang S, Zhang X,
Zhang Y, Yang X, Xu C, Tian G, Li Q, et al: Autocrine CTHRC1
activates hepatic stellate cells and promotes liver fibrosis by
activating TGF-β signaling. EBioMedicine. 40:43–55. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xu YJ, He MK, Liu S, Huang LC, Bu XY, Kan
A and Shi M: Construction of a single nucleotide variant
score-related gene-based prognostic model in hepatocellular
carcinoma: Analysis of multi-independent databases and validation
in vitro. Cancer Cell Int. 21:6102021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Peng D, Wei C, Zhang X, Li S, Liang H,
Zheng X, Jiang S and Han L: Pan-cancer analysis combined with
experiments predicts CTHRC1 as a therapeutic target for human
cancers. Cancer Cell Int. 21:5662021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ke Z, He W, Lai Y, Guo X, Chen S, Li S,
Wang Y and Wang L: Overexpression of collagen triple helix repeat
containing 1 (CTHRC1) is associated with tumour aggressiveness and
poor prognosis in human non-small cell lung cancer. Oncotarget.
5:9410–9424. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
He W, Zhang H, Wang Y, Zhou Y, Luo Y, Cui
Y, Jiang N, Jiang W, Wang H, Xu D, et al: CTHRC1 induces non-small
cell lung cancer (NSCLC) invasion through upregulating MMP-7/MMP-9.
BMC Cancer. 18:4002018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu X, Liu B, Cui Y, Wang F, Sun H and Lv
F: Collagen triple helix repeat containing 1 (Cthrc1) is an
independently prognostic biomarker of non-small cell lung cancers
with cigarette smoke. Tumour Biol. 35:11677–11683. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhou Q, Xiong W, Zhou X, Gao RS, Lin QF,
Liu HY, Li JN and Tian XF: CTHRC1 and PD-1/PD-L1 expression
predicts tumor recurrence in prostate cancer. Mol Med Rep.
20:4244–4252. 2019.PubMed/NCBI
|
|
69
|
Bacolod MD and Barany F: A unified
transcriptional, pharmacogenomic, and gene dependency approach to
decipher the biology, diagnostic markers, and therapeutic targets
associated with prostate cancer metastasis. Cancers (Basel).
13:51582021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Neophytou CM, Panagi M, Stylianopoulos T
and Papageorgis P: The role of tumor microenvironment in cancer
metastasis: Molecular mechanisms and therapeutic opportunities.
Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cox TR: The matrix in cancer. Nat Rev
Cancer. 21:217–238. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Y: Wnt/Planar cell polarity
signaling: A new paradigm for cancer therapy. Mol Cancer Ther.
8:2103–2109. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wansleeben C and Meijlink F: The planar
cell polarity pathway in vertebrate development. Dev Dyn.
240:616–626. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Babayeva S, Zilber Y and Torban E: Planar
cell polarity pathway regulates actin rearrangement, cell shape,
motility, and nephrin distribution in podocytes. Am J Physiol Renal
Physiol. 300:F549–F560. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gupta GP and Massagué J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Orloff M, Peterson C, He X, Ganapathi S,
Heald B, Yang YR, Bebek G, Romigh T, Song JH, Wu W, et al: Germline
mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett
esophagus and esophageal adenocarcinoma. JAMA. 306:410–419. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Buhrmann C, Mobasheri A, Busch F, Aldinger
C, Stahlmann R, Montaseri A and Shakibaei M: Curcumin modulates
nuclear factor kappaB (NF-kappaB)-mediated inflammation in human
tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt
pathway. J Biol Chem. 286:28556–28566. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Caporali S, Levati L, Graziani G, Muzi A,
Atzori MG, Bonmassar E, Palmieri G, Ascierto PA and D'Atri S: NF-κB
is activated in response to temozolomide in an AKT-dependent manner
and confers protection against the growth suppressive effect of the
drug. J Transl Med. 10:2522012. View Article : Google Scholar : PubMed/NCBI
|