CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review)
- Authors:
- Ya-Juan Liu
- Jing Du
- Jie Li
- Xiao-Ping Tan
- Qing Zhang
-
Affiliations: Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China - Published online on: May 3, 2023 https://doi.org/10.3892/ol.2023.13852
- Article Number: 266
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, Friesel RE and Lindner V: Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res. 96:261–268. 2005. View Article : Google Scholar : PubMed/NCBI | |
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D and Gat U: Dynamic evolution of the Cthrc1 genes, a newly defined collagen-like family. Genome Biol Evol. 12:3957–3970. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tameda M, Sugimoto K, Shiraki K, Yamamoto N, Okamoto R, Usui M, Ito M, Takei Y, Nobori T, Kojima T, et al: Collagen triple helix repeat containing 1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation and motility. Int J Oncol. 45:541–548. 2014. View Article : Google Scholar : PubMed/NCBI | |
LeClair R and Lindner V: The role of collagen triple helix repeat containing 1 in injured arteries, collagen expression, and transforming growth factor beta signaling. Trends Cardiovasc Med. 17:202–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leclair RJ, Wang Q, Benson MA, Prudovsky I and Lindner V: Intracellular localization of Cthrc1 characterizes differentiated smooth muscle. Arterioscler Thromb Vasc Biol. 28:1332–1338. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, Tarui H and Sasaki H: Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell. 15:23–36. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Xu J, Li L, Ye W, Chen B, Zeng J and Huang Z: Comprehensive analysis reveals CTHRC1, SERPINE1, VCAN and UPK1B as the novel prognostic markers in gastric cancer. Transl Cancer Res. 9:4093–4110. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sial N, Ahmad M, Hussain MS, Iqbal MJ, Hameed Y, Khan M, Abbas M, Asif R, Rehman JU, Atif M, et al: CTHRC1 expression is a novel shared diagnostic and prognostic biomarker of survival in six different human cancer subtypes. Sci Rep. 11:198732021. View Article : Google Scholar : PubMed/NCBI | |
Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, et al: Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun. 11:19202020. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Villalba A, Romero JP, Hernández SC, Vilas-Zornoza A, Fortelny N, Castro-Labrador L, San Martin-Uriz P, Lorenzo-Vivas E, García-Olloqui P, Palacio M, et al: Single-cell RNA sequencing analysis reveals a crucial Role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation. 142:1831–1847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Shen D, Xiong Y, Cheng S, Xu H, Wang G, Qian K, Ju L and Zhang X: CTHRC1 is a prognostic biomarker and correlated with immune infiltrates in kidney renal papillary cell carcinoma and kidney renal clear cell carcinoma. Front Oncol. 10:5708192021. View Article : Google Scholar : PubMed/NCBI | |
Durmus T, LeClair RJ, Park KS, Terzic A, Yoon JK and Lindner V: Expression analysis of the novel gene collagen triple helix repeat containing-1 (Cthrc1). Gene Expr Patterns. 6:935–940. 2006. View Article : Google Scholar : PubMed/NCBI | |
Duarte CW, Stohn JP, Wang Q, Emery IF, Prueser A and Lindner V: Elevated plasma levels of the pituitary hormone Cthrc1 in individuals with red hair but not in patients with solid tumors. PLoS One. 9:e1004492014. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Dai DL, Su M, Martinka M, Li G and Zhou Y: Aberrant expression of collagen triple helix repeat containing 1 in human solid cancers. Clin Cancer Res. 12:3716–3722. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao J, Li M, Yu Y, Yang Y, Xiao X, Wu Z, Wang L, Tu Y and Chen H: Collagen triple helix repeat containing-1 inhibits transforming growth factor-b1-induced collagen type I expression in keloid. Br J Dermatol. 164:1030–1036. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Miao Q, Zhong W, Zhang H, Wang Q, Peng Y, Chen X, Guo C, Shen L, Yang F, et al: Treatment of cholestatic fibrosis by altering gene expression of Cthrc1: Implications for autoimmune and non-autoimmune liver disease. J Autoimmun. 63:76–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mendelsohn RD, Helmerhorst EJ, Cipollo JF and Kukuruzinska MA: A hypomorphic allele of the first N-glycosylation gene, ALG7, causes mitochondrial defects in yeast. Biochim Biophys Acta. 1723:33–44. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Sengupta PK, Jamal B, Yang HY, Bouchie MP, Lindner V, Varelas X and Kukuruzinska MA: N-glycosylation induces the CTHRC1 protein and drives oral cancer cell migration. J Biol Chem. 288:20217–20227. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Cao Y, Bai L, Zhu C, Li R, He H, Liu Y, Wu K, Liu F and Wu J: The collagen triple helix repeat containing 1 facilitates hepatitis B virus-associated hepatocellular carcinoma progression by regulating multiple cellular factors and signal cascades. Mol Carcinog. 54:1554–1566. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bai L, Zhang W, Tan L, Yang H, Ge M, Zhu C, Zhang R, Cao Y, Chen J, Luo Z, et al: Hepatitis B virus hijacks CTHRC1 to evade host immunity and maintain replication. J Mol Cell Biol. 7:543–556. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cadigan KM and Nusse R: Wnt signaling: A common theme in animal development. Genes Dev. 11:3286–3305. 1997. View Article : Google Scholar : PubMed/NCBI | |
Han W, Cui H, Liang J and Su X: Role of MicroRNA-30c in cancer progression. J Cancer. 11:2593–2601. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lai YH, Chen J, Wang XP, Wu YQ, Peng HT, Lin XH and Wang WJ: Collagen triple helix repeat containing-1 negatively regulated by microRNA-30c promotes cell proliferation and metastasis and indicates poor prognosis in breast cancer. J Exp Clin Cancer Res. 36:922017. View Article : Google Scholar : PubMed/NCBI | |
Xi C, Wang J, Sun H, Zhang X and Kang H: RETRACTED: Loss of microRNA-30e induced by extracellular vesicles from cancer-associated fibroblasts promotes breast cancer progression by binding to CTHRC1. Exp Mol Pathol. 118:1045862021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Feng J, Zhi X, Tang J, Li Z, Xu Y, Yang L, Hu Z and Xu Z: Let-7b inhibits cell proliferation, migration, and invasion through targeting Cthrc1 in gastric cancer. Tumour Biol. 36:3221–3229. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Fu Y, Gao Y, Li H, Ma L, Shu C, Li N and Ma C: microRNA-134 inhibits melanoma growth and metastasis by negatively regulating collagen triple helix repeat containing-1 (CTHRC1). Int J Clin Exp Pathol. 11:4319–4330. 2018.PubMed/NCBI | |
Yuan K, Sun Y and Ji Y: miR-509-3p suppresses migration, invasion, and epithelial-mesenchymal transition in melanoma cells by targeting collagen triple helix repeat containing 1. Balkan Med J. 38:177–182. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhou J, Wang J, Chen X, Zhu Y and Chen Y: Mir-30b-3p affects the migration and invasion function of ovarian cancer cells by targeting the CTHRC1 gene. Biol Res. 53:102020. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Chao F, Wang S, Song Z, Zhuo Z, Zhang J, Xu G and Chen G: CTHRC1 affects malignant tumor cell behavior and is regulated by miR-30e-5p in human prostate cancer. Biochem Biophys Res Commun. 525:418–424. 2020. View Article : Google Scholar : PubMed/NCBI | |
LeClair RJ, Durmus T, Wang Q, Pyagay P, Terzic A and Lindner V: Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circ Res. 100:826–833. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Zheng JH, Xia ZH, Qian J, Deng CL and Yang SL: CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways. Biomed Pharmacother. 113:1085942019. View Article : Google Scholar : PubMed/NCBI | |
Kelley MW: Leading Wnt down a PCP path: Cthrc1 acts as a coreceptor in the Wnt-PCP pathway. Dev Cell. 15:7–8. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fu SW, Chen HY, Lin XL, Yang L and Ge ZZ: Collagen triple helix repeat containing 1 promotes tumor angiogenesis in gastrointestinal stromal tumors. Oncol Lett. 14:7499–7505. 2017.PubMed/NCBI | |
Zheng M, Zhou Q, Liu X, Wang C and Liu G: CTHRC1 overexpression promotes cervical carcinoma progression by activating the Wnt/PCP signaling pathway. Oncol Rep. 41:1531–1538. 2019.PubMed/NCBI | |
Li Y, Xing BX, Wang YH, Yu S, Zhao H, Lv QQ and Lu CX: CTHRC1 promotes growth, migration and invasion of trophoblasts via reciprocal Wnt/β-catenin regulation. J Cell Commun Signal. 16:63–74. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu W, Zhang X and Wang Y: Cancer-associated fibroblast-secreted collagen triple helix repeat containing-1 promotes breast cancer cell migration, invasiveness and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway. Oncol Lett. 22:8142021.PubMed/NCBI | |
Ma MZ, Zhuang C, Yang XM, Zhang ZZ, Ma H, Zhang WM, You H, Qin W, Gu J, Yang S, et al: CTHRC1 acts as a prognostic factor and promotes invasiveness of gastrointestinal stromal tumors by activating Wnt/PCP-Rho signaling. Neoplasia. 16:265–278. 278.e1–13. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kimball AS, Joshi AD, Boniakowski AE, Schaller M, Chung J, Allen R, Bermick J, Carson WF IV, Henke PK, Maillard I, et al: Notch regulates macrophage-mediated inflammation in diabetic wound healing. Front Immunol. 8:6352017. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li Z, Shao F, Yang X, Feng X, Shi S, Gao Y and He J: High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. J Exp Clin Cancer Res. 36:842017. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Bian Y, Wen X, Wang M, Li Y and Wan X: Collagen triple helix repeat containing 1 promotes endometrial cancer cell migration by activating the focal adhesion kinase signaling pathway. Exp Ther Med. 20:1405–1414. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo B, Yan H, Li L, Yin K, Ji F and Zhang S: Collagen triple helix repeat containing 1 (CTHRC1) activates Integrin β3/FAK signaling and promotes metastasis in ovarian cancer. J Ovarian Res. 10:692017. View Article : Google Scholar : PubMed/NCBI | |
Park EH, Kim S, Jo JY, Kim SJ, Hwang Y, Kim JM, Song SY, Lee DK and Koh SS: Collagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells. Carcinogenesis. 34:694–702. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Song J, Kwon ES, Jo S, Kang MK, Kim YJ, Hwang Y, Bae H, Kang TH, Chang S, et al: CTHRC1 promotes angiogenesis by recruiting Tie2-expressing monocytes to pancreatic tumors. Exp Mol Med. 48:e2612016. View Article : Google Scholar : PubMed/NCBI | |
Spector I, Zilberstein Y, Lavy A, Genin O, Barzilai-Tutsch H, Bodanovsky A, Halevy O and Pines M: The involvement of collagen triple helix repeat containing 1 in muscular dystrophies. Am J Pathol. 182:905–916. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stohn JP, Perreault NG, Wang Q, Liaw L and Lindner V: Cthrc1, a novel circulating hormone regulating metabolism. PLoS One. 7:e471422012. View Article : Google Scholar : PubMed/NCBI | |
Kimura H, Kwan KM, Zhang Z, Deng JM, Darnay BG, Behringer RR, Nakamura T, de Crombrugghe B and Akiyama H: Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS One. 3:e31742008. View Article : Google Scholar : PubMed/NCBI | |
Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M and Ikeda K: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest. 123:3914–3924. 2013. View Article : Google Scholar : PubMed/NCBI | |
Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH and Lloyd AC: EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell. 143:145–155. 2010. View Article : Google Scholar : PubMed/NCBI | |
Apra C, Richard L, Coulpier F, Blugeon C, Gilardi-Hebenstreit P, Vallat JM, Lindner V, Charnay P and Decker L: Cthrc1 is a negative regulator of myelination in Schwann cells. Glia. 60:393–403. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Shi ZJ, Yan JY, Li JH and Feng SQ: Long non-coding RNA NONMMUG014387 promotes Schwann cell proliferation after peripheral nerve injury. Neural Regen Res. 12:2084–2091. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, Ding F, Yu B and Gu X: MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci. 127:967–976. 2014.PubMed/NCBI | |
Li Y, Zhang Y, Ma C, Wang S, Li N, Wang J, Ma G and Zhang L: Overexpression of CTHRC1 in human melanoma promotes tumorigenesis targeted by miRNA155. Int J Clin Exp Pathol. 10:8199–8210. 2017.PubMed/NCBI | |
Kim JH, Baek TH, Yim HS, Kim KH, Jeong SH, Kang HB, Oh SS, Lee HG, Kim JW and Kim KD: Collagen triple helix repeat containing-1 (CTHRC1) expression in invasive ductal carcinoma of the breast: the impact on prognosis and correlation to clinicopathologic features. Pathol Oncol Res. 19:731–737. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Ren F, Xu M, Tan C, Weng W, Huang Z, Sheng W and Huang D: CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Med. 7:5643–5654. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang XL, Hu LP, Yang Q, Qin WT, Wang X, Xu CJ, Tian GA, Yang XM, Yao LL, Zhu L, et al: CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene. 40:3959–3973. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Huang R, Zhong Y, Cui N, Wang Y, Weng J, Chen L and Zang M: CTHRC1 promotes gastric cancer metastasis via HIF-1α/CXCR4 signaling pathway. Biomed Pharmacother. 123:1097422020. View Article : Google Scholar : PubMed/NCBI | |
Wei G, Dong Y, He Z, Qiu H, Wu Y and Chen Y: Identification of hub genes and construction of an mRNA-miRNA-lncRNA network of gastric carcinoma using integrated bioinformatics analysis. PLoS One. 16:e02617282021. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Liu L, Zhong L, Bai Y, Sui H, Wei X, Zhang W, Huang P, Gao D, Kong Y and Lou G: Cthrc1 overexpression is an independent prognostic marker in gastric cancer. Hum Pathol. 45:1031–1038. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Wen W, Liu H, Zhang J, Zhang X and Wang Y: Development and validation of a novel prognosis prediction model for patients with stomach adenocarcinoma. Front Med (Lausanne). 8:7934012021. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Wang D, Zhao X, Cao J, Zhao Y, Wang F, Bai J, Luo D and Li L: miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling. Cancer Cell Int. 17:1182017. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Su L, Liu C, Li B, Li H, Xie Y and Sun D: CTHRC1 may serve as a prognostic biomarker for hepatocellular carcinoma. Onco Targets Ther. 12:7823–7831. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, Yang X, Xu C, Tian G, Li Q, et al: Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine. 40:43–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu YJ, He MK, Liu S, Huang LC, Bu XY, Kan A and Shi M: Construction of a single nucleotide variant score-related gene-based prognostic model in hepatocellular carcinoma: Analysis of multi-independent databases and validation in vitro. Cancer Cell Int. 21:6102021. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Wei C, Zhang X, Li S, Liang H, Zheng X, Jiang S and Han L: Pan-cancer analysis combined with experiments predicts CTHRC1 as a therapeutic target for human cancers. Cancer Cell Int. 21:5662021. View Article : Google Scholar : PubMed/NCBI | |
Ke Z, He W, Lai Y, Guo X, Chen S, Li S, Wang Y and Wang L: Overexpression of collagen triple helix repeat containing 1 (CTHRC1) is associated with tumour aggressiveness and poor prognosis in human non-small cell lung cancer. Oncotarget. 5:9410–9424. 2014. View Article : Google Scholar : PubMed/NCBI | |
He W, Zhang H, Wang Y, Zhou Y, Luo Y, Cui Y, Jiang N, Jiang W, Wang H, Xu D, et al: CTHRC1 induces non-small cell lung cancer (NSCLC) invasion through upregulating MMP-7/MMP-9. BMC Cancer. 18:4002018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liu B, Cui Y, Wang F, Sun H and Lv F: Collagen triple helix repeat containing 1 (Cthrc1) is an independently prognostic biomarker of non-small cell lung cancers with cigarette smoke. Tumour Biol. 35:11677–11683. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Xiong W, Zhou X, Gao RS, Lin QF, Liu HY, Li JN and Tian XF: CTHRC1 and PD-1/PD-L1 expression predicts tumor recurrence in prostate cancer. Mol Med Rep. 20:4244–4252. 2019.PubMed/NCBI | |
Bacolod MD and Barany F: A unified transcriptional, pharmacogenomic, and gene dependency approach to decipher the biology, diagnostic markers, and therapeutic targets associated with prostate cancer metastasis. Cancers (Basel). 13:51582021. View Article : Google Scholar : PubMed/NCBI | |
Neophytou CM, Panagi M, Stylianopoulos T and Papageorgis P: The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI | |
Cox TR: The matrix in cancer. Nat Rev Cancer. 21:217–238. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y: Wnt/Planar cell polarity signaling: A new paradigm for cancer therapy. Mol Cancer Ther. 8:2103–2109. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wansleeben C and Meijlink F: The planar cell polarity pathway in vertebrate development. Dev Dyn. 240:616–626. 2011. View Article : Google Scholar : PubMed/NCBI | |
Babayeva S, Zilber Y and Torban E: Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. Am J Physiol Renal Physiol. 300:F549–F560. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Orloff M, Peterson C, He X, Ganapathi S, Heald B, Yang YR, Bebek G, Romigh T, Song JH, Wu W, et al: Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett esophagus and esophageal adenocarcinoma. JAMA. 306:410–419. 2011. View Article : Google Scholar : PubMed/NCBI | |
Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A and Shakibaei M: Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 286:28556–28566. 2011. View Article : Google Scholar : PubMed/NCBI | |
Caporali S, Levati L, Graziani G, Muzi A, Atzori MG, Bonmassar E, Palmieri G, Ascierto PA and D'Atri S: NF-κB is activated in response to temozolomide in an AKT-dependent manner and confers protection against the growth suppressive effect of the drug. J Transl Med. 10:2522012. View Article : Google Scholar : PubMed/NCBI |