|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Shi H, Zhang W, Zhang L, Zheng Y and Dong
T: Comparison of different predictive biomarker testing assays for
PD-1/PD-L1 checkpoint inhibitors response: A systematic review and
network meta-analysis. Front Immunol. 14:12652022023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Qiu J, Cheng Z, Jiang Z, Gan L, Zhang Z
and Xie Z: Immunomodulatory precision: A narrative review exploring
the critical role of immune checkpoint inhibitors in cancer
treatment. Int J Mol Sci. 25:54902024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Choi SH, Mani M, Kim J, Cho WJ, Martin
TFJ, Kim JH, Chu HS, Jeong WJ, Won YW, Lee BJ, et al: DRG2 is
required for surface localization of PD-L1 and the efficacy of
anti-PD-1 therapy. Cell Death Discov. 10:2602024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shen X, Yang J, Qian G, Sheng M, Wang Y,
Li G and Yan J: Treatment-related adverse events of immune
checkpoint inhibitors in clinical trials: A systematic review and
meta-analysis. Front Oncol. 14:13917242024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway:
Current researches in cancer. Am J Cancer Res. 10:727–742.
2020.PubMed/NCBI
|
|
7
|
Chen C, Wang Z and Qin Y: CRISPR/Cas9
system: Recent applications in immuno-oncology and cancer
immunotherapy. Exp Hematol Oncol. 12:952023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guo C, Chen S, Liu W, Ma Y, Li J, Fisher
PB, Fang X and Wang XY: Immunometabolism: A new target for
improving cancer immunotherapy. Adv Cancer Res. 143:195–253. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lim SA, Su W, Chapman NM and Chi H: Lipid
metabolism in T cell signaling and function. Nat Chem Biol.
18:470–481. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mafi S, Mansoori B, Taeb S, Sadeghi H,
Abbasi R, Cho WC and Rostamzadeh D: mTOR-Mediated regulation of
immune responses in cancer and tumor microenvironment. Front
Immunol. 12:7741032021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
He J, Zeng F, Jin XI, Liang L, Gao M, Li
W, Li G and Zhou Y: YWHAH activates the HMGA1/PI3K/AKT/mTOR
signaling pathway by positively regulating Fra-1 to affect the
proliferation of gastric cancer cells. Oncol Res. 31:615–630. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liang Y, Wang X, Wang H, Yang W, Yi P,
Soong L, Cong Y, Cai J, Fan X and Sun J: IL-33 activates mTORC1 and
modulates glycolytic metabolism in CD8+ T cells. Immunology.
165:61–73. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kruse B, Buzzai AC, Shridhar N, Braun AD,
Gellert S, Knauth K, Pozniak J, Peters J, Dittmann P, Mengoni M, et
al: CD4+ T cell-induced inflammatory cell death controls
immune-evasive tumours. Nature. 618:1033–1040. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Saxena A, Dagur PK and Biancotto A:
Multiparametric flow cytometry analysis of naïve, memory, and
effector T cells. Methods Mol Biol. 2032:129–140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Notarbartolo S and Abrignani S: Human T
lymphocytes at tumor sites. Semin Immunopathol. 44:883–901. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Goronzy JJ and Weyand CM: Mechanisms
underlying T cell ageing. Nat Rev Immunol. 19:573–583. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zander R, Schauder D, Xin G, Nguyen C, Wu
X, Zajac A and Cui W: CD4+ T cell help is required for the
formation of a Cytolytic CD8+ T cell subset that protects against
chronic infection and cancer. Immunity. 51:1028–1042.e4. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Omilusik KD and Goldrath AW: Remembering
to remember: T cell memory maintenance and plasticity. Curr Opin
Immunol. 58:89–97. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fazeli P, Kalani M and Hosseini M: T
memory stem cell characteristics in autoimmune diseases and their
promising therapeutic values. Front Immunol. 14:12042312023.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu Q, Sun Z and Chen L: Memory T cells:
Strategies for optimizing tumor immunotherapy. Protein Cell.
11:549–564. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang G, Liu A, Yang Y, Xia Y, Li W, Liu
Y, Zhang J, Cui Q, Wang D, Liu X, et al: Clinical predictive value
of naïve and memory T cells in advanced NSCLC. Front Immunol.
13:9963482022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Reina-Campos M, Scharping NE and Goldrath
AW: CD8+ T cell metabolism in infection and cancer. Nat Rev
Immunol. 21:718–738. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wißfeld J, Werner A, Yan X, Ten Bosch N
and Cui G: Metabolic regulation of immune responses to cancer.
Cancer Biol Med. 19:1528–1542. 2022.PubMed/NCBI
|
|
24
|
Ma S, Ming Y, Wu J and Cui G: Cellular
metabolism regulates the differentiation and function of T-cell
subsets. Cell Mol Immunol. 21:419–435. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Araujo L, Khim P, Mkhikian H, Mortales CL
and Demetriou M: Glycolysis and glutaminolysis cooperatively
control T cell function by limiting metabolite supply to
N-glycosylation. Elife. 6:e213302017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kumar A and Chamoto K: Immune metabolism
in PD-1 blockade-based cancer immunotherapy. Int Immunol. 33:17–26.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li F, Liu H, Zhang D, Ma Y and Zhu B:
Metabolic plasticity and regulation of T cell exhaustion.
Immunology. 167:482–494. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Upadhyay S, Khan S and Hassan MI:
Exploring the diverse role of pyruvate kinase M2 in cancer:
Navigating beyond glycolysis and the Warburg effect. Biochim
Biophys Acta Rev Cancer. 1879:1890892024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Barba I, Carrillo-Bosch L and Seoane J:
Targeting the Warburg effect in cancer: Where do we stand? Int J
Mol Sci. 25:31422024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
von Meyenn L, Bertschi NL and Schlapbach
C: Targeting T cell metabolism in inflammatory skin disease. Front
Immunol. 10:22852019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang Z and Li X, Yang F, Chen C, Liu P,
Ren Y, Sun P, Wang Z, You Y, Zeng YX and Li X: DHHC9-mediated GLUT1
S-palmitoylation promotes glioblastoma glycolysis and
tumorigenesis. Nat Commun. 12:58722021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gerriets VA, Kishton RJ, Nichols AG,
Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini
B, Slawinska ME, et al: Metabolic programming and PDHK1 control
CD4+ T cell subsets and inflammation. J Clin Invest. 125:194–207.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Adeva-Andany MM, Pérez-Felpete N,
Fernández-Fernández C, Donapetry-García C and Pazos-García C: Liver
glucose metabolism in humans. Biosci Rep. 36:e004162016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Icard P, Alifano M, Donnadieu E and Simula
L: Fructose-1,6-bisphosphate promotes PI3K and glycolysis in T
cells? Trends Endocrinol Metab. 32:540–543. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bilanges B, Posor Y and Vanhaesebroeck B:
PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev
Mol Cell Biol. 20:515–534. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shen Q, Han Y, Wu K, He Y, Jiang X, Liu P,
Xia C, Xiong Q, Liu R, Chen Q, et al: MrgprF acts as a tumor
suppressor in cutaneous melanoma by restraining PI3K/Akt signaling.
Signal Transduct Target Ther. 7:1472022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Akhtar N and Jabeen I: Pharmacoinformatic
approaches to design novel inhibitors of protein kinase B pathways
in cancer. Curr Cancer Drug Targets. 18:830–846. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sun K, Luo J, Guo J, Yao X, Jing X and Guo
F: The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A
narrative review. Osteoarthritis Cartilage. 28:400–409. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jhanwar-Uniyal M, Wainwright JV, Mohan AL,
Tobias ME, Murali R, Gandhi CD and Schmidt MH: Diverse signaling
mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a
formidable relationship. Adv Biol Regul. 72:51–62. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen Y and Zhou X: Research progress of
mTOR inhibitors. Eur J Med Chem. 208:1128202020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dwyer CJ, Arhontoulis DC, Rangel Rivera
GO, Knochelmann HM, Smith AS, Wyatt MM, Rubinstein MP, Atkinson C,
Thaxton JE, Neskey DM and Paulos CM: Ex vivo blockade of PI3K gamma
or delta signaling enhances the antitumor potency of adoptively
transferred CD8+ T cells. Eur J Immunol. 50:1386–1399. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Preite S, Gomez-Rodriguez J, Cannons JL
and Schwartzberg PL: T and B-cell signaling in activated PI3K delta
syndrome: From immunodeficiency to autoimmunity. Immunol Rev.
291:154–173. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chapman NM, Yoder AN, Barbón KM, Bilal MY,
Connolly SF and Houtman JC: Proline-rich tyrosine kinase 2 controls
PI3-kinase activation downstream of the T cell antigen receptor in
human T cells. J Leukoc Biol. 97:285–296. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Coppola C, Hopkins B, Huhn S, Du Z, Huang
Z and Kelly WJ: Investigation of the Impact from IL-2, IL-7, and
IL-15 on the growth and signaling of activated CD4+ T Cells. Int J
Mol Sci. 21:78142020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mossmann D, Park S and Hall MN: mTOR
signalling and cellular metabolism are mutual determinants in
cancer. Nat Rev Cancer. 18:744–757. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Werlen G, Jain R and Jacinto E: MTOR
signaling and metabolism in Early T cell development. Genes
(Basel). 12:7282021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wen L: The tumor immunotherapy effect of
dendritic cells carrying anti CD40 single chain antibodies and the
expression and role of CD40 on CD4+T cell surface D. Suzhou
University; 2012
|
|
48
|
Zappasodi R, Serganova I, Cohen IJ, Maeda
M, Shindo M, Senbabaoglu Y, Watson MJ, Leftin A, Maniyar R, Verma
S, et al: CTLA-4 blockade drives loss of Treg stability in
glycolysis-low tumours. Nature. 591:652–658. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Beckermann KE, Hongo R, Ye X, Young K,
Carbonell K, Healey DCC, Siska PJ, Barone S, Roe CE, Smith CC, et
al: CD28 costimulation drives tumor-infiltrating T cell glycolysis
to promote inflammation. JCI Insight. 5:e1387292020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sugiura D, Okazaki IM, Maeda TK, Maruhashi
T, Shimizu K, Arakaki R, Takemoto T, Ishimaru N and Okazaki T: PD-1
agonism by anti-CD80 inhibits T cell activation and alleviates
autoimmunity. Nat Immunol. 23:399–410. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sun C, Mezzadra R and Schumacher TN:
Regulation and function of the PD-L1 checkpoint. Immunity.
48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ribas A and Wolchok JD: Cancer
immunotherapy using checkpoint blockade. Science. 359:1350–1355.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin F, Chen Y, Huang B, Ruan S, Lin J,
Chen Z, Huang C and Zhao B: Application of immune checkpoint
inhibitors for resectable gastric/gastroesophageal cancer. Front
Pharmacol. 15:13915622024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Oyewole-Said D, Konduri V, Vazquez-Perez
J, Weldon SA, Levitt JM and Decker WK: Beyond T-cells: Functional
characterization of CTLA-4 expression in immune and non-immune cell
types. Front Immunol. 11:6080242020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xia S, Chen Q and Niu B: CD28: A new drug
target for immune disease. Curr Drug Targets. 21:589–598. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kumagai S, Koyama S, Itahashi K,
Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono
H, et al: Lactic acid promotes PD-1 expression in regulatory T
cells in highly glycolytic tumor microenvironments. Cancer Cell.
40:201–218.e9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Palaskas NJ, Garcia JD, Shirazi R, Shin
DS, Puig-Saus C, Braas D, Ribas A and Graeber TG: Global alteration
of T-lymphocyte metabolism by PD-L1 checkpoint involves a block of
de novo nucleoside phosphate synthesis. Cell Discov. 5:622019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dong S, Guo X, Han F, He Z and Wang Y:
Emerging role of natural products in cancer immunotherapy. Acta
Pharm Sin B. 12:1163–1185. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan
DT and Zang X: Recent advancements in the B7/CD28 immune checkpoint
families: New biology and clinical therapeutic strategies. Cell Mol
Immunol. 20:694–713. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sharma P, Goswami S, Raychaudhuri D,
Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant
KL, et al: Immune checkpoint therapy-current perspectives and
future directions. Cell. 186:1652–1669. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang J, Wei X, Zhang Q, Jiao X, Li K,
Geng M, Cao Y, Wang D, Cheng J and Yang J: Fish uses CTLA-4 immune
checkpoint to suppress mTORC1-Controlled T-cell glycolysis and
immunity. J Immunol. 212:1113–1128. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hellmann MD, Paz-Ares L, Bernabe Caro R,
Zurawski B, Kim SW, Carcereny Costa E, Park K, Alexandru A,
Lupinacci L, de la Mora Jimenez E, et al: Nivolumab plus Ipilimumab
in Advanced Non-Small-Cell Lung Cancer. N Engl J Med.
381:2020–2031. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
VanderWalde A, Bellasea SL, Kendra KL,
Khushalani NI, Campbell KM, Scumpia PO, Kuklinski LF, Collichio F,
Sosman JA, Ikeguchi A, et al: Ipilimumab with or without nivolumab
in PD-1 or PD-L1 blockade refractory metastatic melanoma: A
randomized phase 2 trial. Nat Med. 29:2278–2285. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cascone T, Leung CH, Weissferdt A, Pataer
A, Carter BW, Godoy MCB, Feldman H, William WN Jr, Xi Y, Basu S, et
al: Neoadjuvant chemotherapy plus nivolumab with or without
ipilimumab in operable non-small cell lung cancer: The phase 2
platform NEOSTAR Trial. Nat Med. 29:593–604. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Grimm MO, Esteban E, Barthélémy P,
Schmidinger M, Busch J, Valderrama BP, Charnley N, Schmitz M,
Schumacher U, Leucht K, et al: Tailored immunotherapy approach with
nivolumab with or without nivolumab plus ipilimumab as
immunotherapeutic boost in patients with metastatic renal cell
carcinoma (TITAN-RCC): A multicentre, single-arm, phase 2 trial.
Lancet Oncol. 24:1252–1265. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu L, Cheng Y, Zhang Z, Li J, Geng Y, Li
Q, Luo D, Liang L, Liu W, Hu J and Ouyang W: Study on the
allosteric activation mechanism of SHP2 via elastic network models
and neural relational inference molecular dynamics simulation. Phys
Chem Chem Phys. 25:23588–23601. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ai L, Xu A and Xu J: Roles of PD-1/PD-L1
pathway: Signaling, cancer, and beyond. Adv Exp Med Biol.
1248:33–59. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and
Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med.
19:1997–2007. 2020.PubMed/NCBI
|
|
69
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J,
Ning Y and Fan S: Clinical implications of the interaction between
PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment
of non-small cell lung cancer. J Cancer. 13:3434–3443. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Huang Q, Wu X, Wang Z, Chen X, Wang L, Lu
Y, Xiong D, Liu Q, Tian Y, Lin H, et al: The primordial
differentiation of tumor-specific memory CD8+ T cells as bona fide
responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell.
185:4049–4066.e25. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Patel SP and Kurzrock R: PD-L1 Expression
as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther.
14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Karim S, Mirza Z, Chaudhary AG, Abuzenadah
AM, Gari M and Al-Qahtani MH: Assessment of radiation induced
therapeutic effect and cytotoxicity in cancer patients based on
transcriptomic profiling. Int J Mol Sci. 17:2502016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ascierto ML, McMiller TL, Berger AE,
Danilova L, Anders RA, Netto GJ, Xu H, Pritchard TS, Fan J, Cheadle
C, et al: The intratumoral balance between metabolic and
immunologic gene expression is associated with Anti-PD-1 response
in patients with renal cell carcinoma. Cancer Immunol Res.
4:726–733. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Van Damme H, Dombrecht B, Kiss M, Roose H,
Allen E, Van Overmeire E, Kancheva D, Martens L, Murgaski A, Bardet
PMR, et al: Therapeutic depletion of CCR8+ tumor-infiltrating
regulatory T cells elicits antitumor immunity and synergizes with
anti-PD-1 therapy. J Immunother Cancer. 9:e0017492021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zou Z, Tao T, Li H and Zhu X: mTOR
signaling pathway and mTOR inhibitors in cancer: Progress and
challenges. Cell Biosci. 10:312020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lim LM, Kung LF, Kuo MC, Huang AM and Kuo
HT: Timing of mTORI usage and outcomes in kidney transplant
recipients. Int J Med Sci. 18:1179–1184. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kumari A, Gesumaria L, Liu YJ, Hughitt VK,
Zhang X, Ceribelli M, Wilson KM, Klumpp-Thomas C, Chen L, McKnight
C, et al: mTOR inhibition overcomes RSK3-mediated resistance to BET
inhibitors in small cell lung cancer. JCI Insight. 8:e1566572023.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Daenthanasanmak A, Lin Y, Zhang M, Bryant
BR, Petrus MN, Bamford RN, Thomas CJ, Miljkovic MD, Conlon KC and
Waldmann TA: Enhanced efficacy of JAK1 inhibitor with mTORC1/C2
targeting in smoldering/chronic adult T cell leukemia. Transl
Oncol. 14:1009132021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bai S, Taylor SE, Jamalruddin MA,
McGonigal S, Grimley E, Yang D, Bernstein KA and Buckanovich RJ:
Targeting therapeutic resistance and multinucleate giant cells in
CCNE1-Amplified HR-Proficient ovarian cancer. Mol Cancer Ther.
21:1473–1484. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sawaki M, Muramatsu Y, Togo K and Iwata H:
Real-world treatment patterns of subsequent therapy after
palbociclib in patients with advanced breast cancer in Japan
Breast. 70:1–7. 2023.PubMed/NCBI
|
|
81
|
Qiu HY, Wang PF and Zhang M: A patent
review of mTOR inhibitors for cancer therapy (2011–2020). Expert
Opin Ther Pat. 31:965–975. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vidigal AC, de Lucena DD, Beyerstedt S and
Rangel ÉB: A comprehensive update of the metabolic and
toxicological considerations for immunosuppressive drugs used
during pancreas transplantation. Expert Opin Drug Metab Toxicol.
19:405–427. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Franzin R, Netti GS, Spadaccino F, Porta
C, Gesualdo L, Stallone G, Castellano G and Ranieri E: The use of
immune checkpoint inhibitors in oncology and the occurrence of AKI:
Where do we stand? Front Immunol. 11:5742712020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang Y and Zhang Z: The history and
advances in cancer immunotherapy: Understanding the characteristics
of tumor-infiltrating immune cells and their therapeutic
implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Catalano M, Iannone LF, Nesi G, Nobili S,
Mini E and Roviello G: Immunotherapy-related biomarkers:
Confirmations and uncertainties. Crit Rev Oncol Hematol.
192:1041352023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Al-Hussainy A, Adams J, Simmons J and
Kennedy J: Immune checkpoint inhibitor associated diarrhoea. BMJ
Case Rep. 17:e2590572024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Blum SM, Rouhani SJ and Sullivan RJ:
Effects of immune-related adverse events (irAEs) and their
treatment on antitumor immune responses. Immunol Rev. 318:167–178.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ma S, Lei J and Lai X: Modeling tumour
heterogeneity of PD-L1 expression in tumour progression and
adaptive therapy. J Math Biol. 86:382023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu
K: Combination strategies with PD-1/PD-L1 blockade: Current
advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen Z, Yue Z, Wang R, Yang K and Li S:
Nanomaterials: A powerful tool for tumor immunotherapy. Front
Immunol. 13:9794692022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li J, Zeng H, Li L, Yang Q, He L and Dong
M: Advanced generation therapeutics: Biomimetic nanodelivery system
for tumor immunotherapy. ACS Nano. 17:24593–24618. 2023. View Article : Google Scholar : PubMed/NCBI
|