Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2025 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Key genes altered in glioblastoma based on bioinformatics (Review)

  • Authors:
    • Marcelino Al Ghafari
    • Nour El Jaafari
    • Mariam Mouallem
    • Tala Maassarani
    • Mirvat El-Sibai
    • Ralph Abi-Habib
  • View Affiliations / Copyright

    Affiliations: Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
    Copyright: © Al Ghafari et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 243
    |
    Published online on: March 24, 2025
       https://doi.org/10.3892/ol.2025.14989
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options. 
View Figures

Figure 1

Figure 2

View References

1 

Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al: The epidemiology of glioma in adults: A ‘state of the science’ review. Neuro Oncol. 16:896–913. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Bailey P and Cushing H: Microchemical color reactions as an aid to the identification and classification of brain tumors. Proc Natl Acad Sci USA. 11:82–84. 1925. View Article : Google Scholar : PubMed/NCBI

3 

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Masui K, Cloughesy TF and Mischel PS: Review: Molecular pathology in adult high-grade gliomas: From molecular diagnostics to target therapies. Neuropathol Appl Neurobiol. 38:271–291. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Van den Bent MJ: Interobserver variation of the histopathological diagnosis in clinical trials on glioma: A clinician's perspective. Acta Neuropathol. 120:297–304. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Chen R, Smith-Cohn M, Cohen AL and Colman H: Glioma subclassifications and their clinical significance. Neurotherapeutics. 14:284–297. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Perry A and Wesseling P: Histologic classification of gliomas. Handb Clin Neurol. 134:71–95. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Cancer Genome Atlas Research Network, . Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, et al: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 372:2481–2498. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Kleihues P, Burger PC and Scheithauer BW: The new WHO classification of brain tumours. Brain Pathol. 3:255–268. 1993. View Article : Google Scholar : PubMed/NCBI

11 

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M, et al: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun. 11:34062020. View Article : Google Scholar : PubMed/NCBI

14 

Martínez AH, Madurga R, García-Romero N and Ayuso-Sacido Á: Unraveling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett. 527:66–79. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Martinez R, Schackert HK, Plaschke J, Baretton G, Appelt H and Schackert G: Molecular mechanisms associated with chromosomal and microsatellite instability in sporadic glioblastoma multiforme. Oncology. 66:395–403. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Tepeoglu M, Borcek P, Ozen O and Altinors N: Microsatellite instability in glioblastoma: Is it really relevant in tumor prognosis? Turk Neurosurg. 29:778–784. 2019.PubMed/NCBI

17 

Agnihotri S and Zadeh G: Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 18:160–172. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Deshmukh R, Allega MF and Tardito S: A map of the altered glioma metabolism. Trends Mol Med. 27:1045–1059. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Virtuoso A, Giovannoni R, De Luca C, Gargano F, Cerasuolo M, Maggio N, Lavitrano M and Papa M: The glioblastoma microenvironment: Morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence. Int J Mol Sci. 22:33012021. View Article : Google Scholar : PubMed/NCBI

20 

Lee H, Kim D and Youn B: Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int J Mol Sci. 23:138182022. View Article : Google Scholar : PubMed/NCBI

21 

Andersen RS, Anand A, Harwood DSL and Kristensen BW: Tumor-associated microglia and macrophages in the glioblastoma microenvironment and their implications for therapy. Cancers (Basel). 13:42552021. View Article : Google Scholar : PubMed/NCBI

22 

Park JH and Lee HK: Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy. Cancers (Basel). 14:11762022. View Article : Google Scholar : PubMed/NCBI

23 

Lamborn KR, Chang SM and Prados MD: Prognostic factors for survival of patients with glioblastoma: Recursive partitioning analysis. Neuro Oncol. 6:227–235. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Stoyanov GS, Dzhenkov D, Ghenev P, Iliev B, Enchev Y and Tonchev AB: Cell biology of glioblastoma multiforme: From basic science to diagnosis and treatment. Med Oncol. 35:272018. View Article : Google Scholar : PubMed/NCBI

25 

Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1608. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Godek KM, Venere M, Wu Q, Mills KD, Hickey WF, Rich JN and Compton DA: Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells. Cancer Discov. 6:532–545. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Buruiană A, Florian ȘI, Florian AI, Timiș TL, Mihu CM, Miclăuș M, Oșan S, Hrapșa I, Cataniciu RC, Farcaș M, et al: The roles of miRNA in glioblastoma tumor cell communication: Diplomatic and aggressive negotiations. Int J Mol Sci. 21:19502020. View Article : Google Scholar : PubMed/NCBI

30 

Mafi A, Rahmati A, Aghdam ZB, Salami R, Salami M, Vakili O and Aghadavod E: Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett. 27:652022. View Article : Google Scholar : PubMed/NCBI

31 

Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, Al-Khayarin R, Maccalli C and Pedersen S: Exploring the role of microRNAs in glioma progression, prognosis, and therapeutic strategies. Cancers (Basel). 15:42132023. View Article : Google Scholar : PubMed/NCBI

32 

Stackhouse CT, Gillespie GY and Willey CD: Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 9:23692020. View Article : Google Scholar : PubMed/NCBI

33 

Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA and Siahposht-Khachaki A: New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon. 10:e397442024. View Article : Google Scholar : PubMed/NCBI

34 

Hashemi M, Roshanzamir SM, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Paskeh MDA, et al: Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res. 9:508–522. 2024. View Article : Google Scholar : PubMed/NCBI

35 

Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, et al: cIMPACT-NOW update 3: Recommended diagnostic criteria for ‘Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV’. Acta Neuropathol. 136:805–810. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent AJPE, Dubbink HJ, Atmodimedjo PN, Kros JM, van Duinen SG, Smits M, et al: Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: A confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 4:515–523. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T and Gao D: Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics. 12:472020. View Article : Google Scholar : PubMed/NCBI

38 

Azab MA: The potential role of histone modifications in glioblastoma therapy: Review article. J Mol Pathol. 4:Article 4. 2023. View Article : Google Scholar

39 

McCornack C, Woodiwiss T, Hardi A, Yano H and Kim AH: The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol. 13:11441842023. View Article : Google Scholar : PubMed/NCBI

40 

Rama AR, Alvarez PJ, Madeddu R and Aranega A: ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 41:4847–4851. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Ahmed M, Verreault M, Declèves X and Idbaih A: Role of multidrug resistance in glioblastoma chemoresistance: Focus on ABC transporters. Cancer sensitizing agents for chemotherapy, glioblastoma resistance to chemotherapy: Molecular mechanisms and innovative reversal strategies. Paulmurugan R and Massoud TF: Academic Press; 15. pp. 243–261. 2021

42 

Canzoneri R, Lacunza E and Abba MC: Genomics and bioinformatics as pillars of precision medicine in oncology. Medicina (B Aires). 79:587–592. 2019.PubMed/NCBI

43 

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI

44 

Wu P, Heins ZJ, Muller JT, Katsnelson L, de Bruijn I, Abeshouse AA, Schultz N, Fenyö D and Gao J: Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the cBioPortal. Mol Cell Proteomics. 18:1893–1898. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Brlek P, Kafka A, Bukovac A and Pećina-Šlaus N: Integrative cBioPortal analysis revealed molecular mechanisms that regulate EGFR-PI3K-AKT-mTOR pathway in diffuse gliomas of the brain. Cancers (Basel). 13:32472021. View Article : Google Scholar : PubMed/NCBI

46 

Ahsan H, Asghar M and Malik SI: Potential diagnostic and drug target markers in glioblastoma. Sci Rep. 14:72922024. View Article : Google Scholar : PubMed/NCBI

47 

Dhar C: Utilizing publicly available cancer clinicogenomic data on cBioPortal to compare epidermal growth factor receptor mutant and wildtype non-small cell lung cancer. Cureus. 13:e146832021.PubMed/NCBI

48 

Reimer N, Unberath P, Busch H, Börries M, Metzger P, Ustjanzew A, Renner C, Prokosch HU and Christoph J: Challenges and experiences extending the cBioPortal for cancer genomics to a molecular tumor board platform. Stud Health Technol Inform. 18:139–143. 2021.PubMed/NCBI

49 

Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

51 

Donaldson IM: Protein interaction data resources. Handbook of cell signaling. 2nd Edition. Academic Press; San Diego, CA: pp. 1375–1385. 2010, View Article : Google Scholar

52 

Jean-Quartier C, Jeanquartier F and Holzinger A: Open data for differential network analysis in glioma. Int J Mol Sci. 21:5472020. View Article : Google Scholar : PubMed/NCBI

53 

Ma T and Zhang A: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE). BMC Genomics. 20 (Suppl 11):S9442019. View Article : Google Scholar : PubMed/NCBI

54 

Picard M, Scott-Boyer MP, Bodein A, Périn O and Droit A: Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 19:3735–3746. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Sanches PHG, de Melo NC, Porcari AM and de Carvalho LM: Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology (Basel). 13:8482024.PubMed/NCBI

56 

Zhou Y, Yang L, Zhang X, Chen R, Chen X, Tang W and Zhang M: Identification of potential biomarkers in glioblastoma through bioinformatic analysis and evaluating their prognostic value. Biomed Res Int. 2019:65815762019. View Article : Google Scholar : PubMed/NCBI

57 

Erasimus H, Gobin M, Niclou S and Van Dyck E: DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 769:19–35. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI

59 

Stockhausen MT, Kristoffersen K and Poulsen HS: The functional role of notch signaling in human gliomas. Neuro Oncol. 12:199–211. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Bazzoni R and Bentivegna A: Role of notch signaling pathway in glioblastoma pathogenesis. Cancers (Basel). 11:2922019. View Article : Google Scholar : PubMed/NCBI

61 

Stenson PD, Mort M, Ball EV, Shaw K, Phillips A and Cooper DN: The human gene mutation database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 133:1–9. 2014. View Article : Google Scholar : PubMed/NCBI

62 

1,000 Genomes Project Consortium, . Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT and McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature. 491:56–65. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Garcia FAO, de Andrade ES and Palmero EI: Insights on variant analysis in silico tools for pathogenicity prediction. Front Genet. 13:10103272022. View Article : Google Scholar : PubMed/NCBI

64 

Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM and Seelow D: MutationTaster2021. Nucleic Acids Res. 49:W446–W451. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A and Tabernero MD: Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Huang PH, Xu AM and White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal. 2:re62009. View Article : Google Scholar : PubMed/NCBI

67 

Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, et al: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell. 34:163–177. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Lu KV, Zhu S, Cvrljevic A, Huang TT, Sarkaria S, Ahkavan D, Dang J, Dinca EB, Plaisier SB, Oderberg I, et al: Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients. Cancer Res. 69:6889–6898. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Nagane M, Coufal F, Lin H, Bögler O, Cavenee WK and Huang HJ: A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res. 56:5079–5086. 1996.PubMed/NCBI

70 

Jain A, Penuel E, Mink S, Schmidt J, Hodge A, Favero K, Tindell C and Agus DB: HER kinase axis receptor dimer partner switching occurs in response to EGFR tyrosine kinase inhibition despite failure to block cellular proliferation. Cancer Res. 70:1989–1999. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Sathornsumetee S and Rich JN: Designer therapies for glioblastoma multiforme. Ann N Y Acad Sci. 1142:108–132. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Huang TT, Sarkaria SM, Cloughesy TF and Mischel PS: Targeted therapy for malignant glioma patients: Lessons learned and the road ahead. Neurotherapeutics. 6:500–512. 2009. View Article : Google Scholar : PubMed/NCBI

73 

El Atat O, Naser R, Abdelkhalek M, Habib RA and El Sibai M: Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett. 25:462022. View Article : Google Scholar : PubMed/NCBI

74 

Ezzati S, Salib S, Balasubramaniam M and Aboud O: Epidermal growth factor receptor inhibitors in glioblastoma: Current status and future possibilities. Int J Mol Sci. 25:23162024. View Article : Google Scholar : PubMed/NCBI

75 

Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL, Kubek S, Oldrini B, Chheda MG, Yannuzzi N, et al: Differential sensitivity of glioma-versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2:458–471. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MCM, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, et al: Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib-A phase II trial. Mol Cancer Ther. 10:1102–1112. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, D'Hondt L, Strauven T, Chaskis C, Veld PI, et al: Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol. 20:1596–1603. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, Schulz D, Simon M, Schlegel U, Senft C, et al: A randomized, open-label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 51:522–532. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Nitta Y, Shimizu S, Shishido-Hara Y, Suzuki K, Shiokawa Y and Nagane M: Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 5:486–499. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sorensen M, Kosteljanetz M, Broholm H, Stockhausen MT and Poulsen HS: Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: A phase II trial. Neuro Oncol. 12:508–516. 2010.PubMed/NCBI

81 

McCrea HJ, Ivanidze J, O'Connor A, Hersh EH, Boockvar JA, Gobin YP, Knopman J and Greenfield JP: Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: Results of a phase I trial. J Neurosurg Pediatr. 28:371–379. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Pérez-Soler R, Delord JP, Halpern A, Kelly K, Krueger J, Sureda BM, von Pawel J, Temel J, Siena S, Soulières D, et al: HER1/EGFR inhibitor-associated rash: Future directions for management and investigation outcomes from the HER1/EGFR inhibitor rash management forum. Oncologist. 10:345–356. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Thomas M: Cetuximab: Adverse event profile and recommendations for toxicity management. Clin J Oncol Nurs. 9:332–338. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Keir ST, Chandramohan V, Hemphill CD, Grandal MM, Melander MC, Pedersen MW, Horak ID, Kragh M, Desjardins A, Friedman HS and Bigner DD: Sym004-induced EGFR elimination is associated with profound anti-tumor activity in EGFRvIII patient-derived glioblastoma models. J Neurooncol. 138:489–498. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Shikalov A, Koman I and Kogan NM: Targeted glioma therapy-clinical trials and future directions. Pharmaceutics. 16:1002024. View Article : Google Scholar : PubMed/NCBI

86 

Lim Y, Yoo J, Kim MS, Hur M, Lee EH, Hur HS, Lee JC, Lee SN, Park TW, Lee K, et al: GC1118, an anti-EGFR antibody with a distinct binding epitope and superior inhibitory activity against high-affinity EGFR ligands. Mol Cancer Ther. 15:251–263. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Choi SW, Jung HA, Cho H, Kim TM, Park CK, Nam DH and Lee SH: A multicenter, phase II trial of GC1118, a novel anti-EGFR antibody, for recurrent glioblastoma patients with EGFR amplification. Cancer Med. 12:15788–15796. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, et al: Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international Phase I multicenter trial. Neuro Oncol. 21:106–114. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Desjardins A, Chandramohan V, Landi DB, Johnson MO, Khasraw M, Peters KB, Low J, Herndon JE, Threatt S, Bullock CA, et al: A phase I trial of D2C7-IT in combination with an Fc-engineered anti-CD40 monoclonal antibody (2141-V11) administered intratumorally via convection-enhanced delivery for adult patients with recurrent malignant glioma (MG). J Clin Oncol. 40 (Suppl):e140152022. View Article : Google Scholar

90 

Kowalewski A, Durślewicz J, Zdrenka M, Grzanka D and Szylberg Ł: Clinical relevance of BRAF V600E mutation status in brain tumors with a focus on a novel management algorithm. Target Oncol. 15:531–540. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Ohgaki H and Kleihues P: Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Etcheverry A, Aubry M, de Tayrac M, Vauleon E, Boniface R, Guenot F, Saikali S, Hamlat A, Riffaud L, Menei P, et al: DNA methylation in glioblastoma: Impact on gene expression and clinical outcome. BMC Genomics. 11:7012010. View Article : Google Scholar : PubMed/NCBI

93 

Klughammer J, Kiesel B, Roetzer T, Fortelny N, Kuchler A, Nenning KH, Furtner J, Sheffield NC, Datlinger P, Peter N, et al: The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med. 24:1611–1624. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Mao YK, Liu ZB and Cai L: Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol Lett. 20:1619–1628. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Sun X, Yuan W, Hao F and Zhuang W: Promoter methylation of RASSF1A indicates prognosis for patients with stage II and III colorectal cancer treated with oxaliplatin-based chemotherapy. Med Sci Monit. 23:5389–5395. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M and Mańdziuk S: New directions in the therapy of glioblastoma. Cancers (Basel). 14:53772022. View Article : Google Scholar : PubMed/NCBI

97 

Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F and Generali D: BRAF signaling inhibition in glioblastoma: Which clinical perspectives? Front Oncol. 11:7720522021. View Article : Google Scholar : PubMed/NCBI

98 

Shannon S, Jia D, Entersz I, Beelen P, Yu M, Carcione C, Carcione J, Mahtabfar A, Vaca C, Weaver M, et al: Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer. 17:1212017. View Article : Google Scholar : PubMed/NCBI

99 

Peng P, Wei W, Long C and Li J: Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylation-dependent inhibition of ras signaling. Biochem Biophys Res Commun. 489:293–298. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Altwairgi AK, Alghareeb WA, AlNajjar FH, Alhussain H, Alsaeed E, Balbaid AAO, Aldanan S, Orz Y and Alsharm AA: Atorvastatin in combination with radiotherapy and temozolomide for glioblastoma: A prospective phase II study. Invest New Drugs. 39:226–231. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Ranjbar R, Mohammadpour S, Esfahani AT, Namazian S, Yaghob-Taleghani M, Baghaei K, Tabatabaei SA, Pasharavesh L and Nazemalhosseini-Mojarad E: Prevalence and prognostic role of PIK3CA E545K mutation in iranian colorectal cancer patients. Gastroenterol Hepatol Bed Bench. 12:S22–S29. 2019.PubMed/NCBI

103 

Liang J and Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2:339–345. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F and Ciccarelli R: The role of Wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes (Basel). 9:1052018. View Article : Google Scholar : PubMed/NCBI

105 

Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR and Carraway KL: A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett. 567:2162802023. View Article : Google Scholar : PubMed/NCBI

106 

Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, Wiencke JK, McBride SM, Cowdrey C, Prados MD, Weiss WA, et al: PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol. 14:1146–1152. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Chang H, Cai Z and Roberts TM: The Mechanisms underlying PTEN loss in human tumors suggest potential therapeutic opportunities. Biomolecules. 9:7132019. View Article : Google Scholar : PubMed/NCBI

108 

Carico C, Nuño M, Mukherjee D, Elramsisy A, Dantis J, Hu J, Rudnick J, Yu JS, Black KL, Bannykh SI and Patil CG: Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS One. 7:e336842012. View Article : Google Scholar : PubMed/NCBI

109 

Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To ST and Li WP: Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol Cancer. 16:1002017. View Article : Google Scholar : PubMed/NCBI

110 

Wen PY, Wen PY, Yung WKA, Mellinghoff IK, Ramkissoon S, Alexander B, Rinne M, Colman H, Omuro AM, DeAngelis LM, et al: Rockich Xu Lager Mellinghoff Phase II trial of the phosphatidyinositol-3 kinase (PI3K) inhibitor buparlisib (bkm120) in recurrent glioblastoma conducted by the ivy foundation early phase clinical trials consortium. Neuro Oncol. 16 (Suppl 3):iii472014. View Article : Google Scholar

111 

Cloughesy TF, Mischel PS, Omuro AMP, Prados M, Wen PY and Wu B K Y JJ IK: Tumor pharmacokinetics (PK) and pharmacodynamics (PD) of SAR245409 (XL765) and SAR245408 (XL147) administered as single agents to patients with recurrent glioblastoma (GBM): An Ivy Foundation early-phase clinical trials consortium study. J Clin Oncol. 31:2012. 2013. View Article : Google Scholar

112 

Papavassiliou KA and Papavassiliou AG: The bumpy road towards mTOR inhibition in glioblastoma: Quo vadis? Biomedicines. 9:18092021. View Article : Google Scholar : PubMed/NCBI

113 

England B, Huang T and Karsy M: Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 34:2063–2074. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Ohgaki H: Genetic pathways to glioblastomas. Neuropathology. 25:1–7. 2005. View Article : Google Scholar : PubMed/NCBI

115 

Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, Wang J, Almeida JS, Aldape K and Yung WK: Identification of prognostic gene signatures of glioblastoma: A study based on TCGA data analysis. Neuro Oncol. 15:829–839. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Kyritsis AP, Bondy ML, Rao JS and Sioka C: Inherited predisposition to glioma. Neuro Oncol. 12:104–113. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Rice T, Lachance DH, Molinaro AM, Eckel-Passow JE, Walsh KM, Barnholtz-Sloan J, Ostrom QT, Francis SS, Wiemels J, Jenkins RB, et al: Understanding inherited genetic risk of adult glioma: A review. Neurooncol Pract. 3:10–16. 2016.PubMed/NCBI

118 

Mohyeldin A and Chiocca EA: Gene and viral therapy for glioblastoma: A review of clinical trials and future directions. Cancer J. 18:82–88. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Olafson LR, Gunawardena M, Nixdorf S, McDonald KL and Rapkins RW: The role of TP53 gain-of-function mutation in multifocal glioblastoma. J Neurooncol. 147:37–47. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI

121 

Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW and Baker SJ: Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 19:305–316. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Muller PA and Vousden KH: Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, et al: The p53 pathway in glioblastoma. Cancers (Basel). 10:2972018. View Article : Google Scholar : PubMed/NCBI

124 

Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI

126 

Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, Fersht AR, Hainaut P, Wiman KG and Bykov VJ: PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 15:376–388. 2009. View Article : Google Scholar : PubMed/NCBI

127 

Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G and Wiman KG: PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene. 24:3484–3491. 2005. View Article : Google Scholar : PubMed/NCBI

128 

Zache N, Lambert JM, Wiman KG and Bykov VJ: PRIMA-1MET inhibits growth of mouse tumors carrying mutant p53. Cell Oncol. 30:411–418. 2008.PubMed/NCBI

129 

Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B and Sabri S: Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget. 7:60245–60269. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, et al: Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 30:3633–3639. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F and Chandra J: Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro Oncol. 17:1463–1473. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Liffers K, Kolbe K, Westphal M, Lamszus K and Schulte A: Histone deacetylase inhibitors resensitize EGFR/EGFRvIII-overexpressing, erlotinib-resistant glioblastoma cells to tyrosine kinase inhibition. Target Oncol. 11:29–40. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Staberg M, Michaelsen SR, Rasmussen RD, Villingshoj M, Poulsen HS and Hamerlik P: Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr). 40:21–32. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, et al: Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res. 78:4007–4021. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, et al: Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res. 18:4070–4079. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Rasmussen RD, Gajjar MK, Jensen KE and Hamerlik P: Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol. 10:751–763. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Choi SA, Kwak PA, Park CK, Wang KC, Phi JH, Lee JY, Lee CS, Lee JH and Kim SK: A novel histone deacetylase inhibitor, CKD5, has potent anti-cancer effects in glioblastoma. Oncotarget. 8:9123–9133. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Yang XF, Zhao ZJ, Liu JJ, Yang XH, Gao Y, Zhao S, Shi S, Huang KQ and Zheng HC: SAHA and/or MG132 reverse the aggressive phenotypes of glioma cells: An in vitro and vivo study. Oncotarget. 8:3156–3169. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Reifenberger G, Liu L, Ichimura K, Schmidt EE and Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53:2736–2739. 1993.PubMed/NCBI

141 

Riemenschneider MJ, Büschges R, Wolter M, Reifenberger J, Boström J, Kraus JA, Schlegel U and Reifenberger G: Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res. 59:6091–6096. 1999.PubMed/NCBI

142 

Biernat W, Kleihues P, Yonekawa Y and Ohgaki H: Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol. 56:180–185. 1997. View Article : Google Scholar : PubMed/NCBI

143 

Wade M, Li YC and Wahl GM: MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 13:83–96. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, et al: Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett. 4:466–469. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Miles X, Vandevoorde C, Hunter A and Bolcaen J: MDM2/X inhibitors as radiosensitizers for glioblastoma targeted therapy. Front Oncol. 11:7034422021. View Article : Google Scholar : PubMed/NCBI

146 

Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, Eksterowicz J, Ye Q, Jin L, Chen A, et al: The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 14:649–658. 2015. View Article : Google Scholar : PubMed/NCBI

147 

Her NG, Oh JW, Oh YJ, Han S, Cho HJ, Lee Y, Ryu GH and Nam DH: Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 9:7922018. View Article : Google Scholar : PubMed/NCBI

148 

Wang H, Cai S, Bailey BJ, Saadatzadeh MR, Ding J, Tonsing-Carter E, Georgiadis TM, Gunter TZ, Long EC, Minto RE, et al: Combination therapy in a xenograft model of glioblastoma: Enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg. 126:446–459. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Daniele S, Taliani S, Da Pozzo E, Giacomelli C, Costa B, Trincavelli ML, Rossi L, La Pietra V, Barresi E, Carotenuto A, et al: Apoptosis therapy in cancer: The first single-molecule co-activating p53 and the translocator protein in glioblastoma. Sci Rep. 4:47492014. View Article : Google Scholar : PubMed/NCBI

150 

Mosrati MA, Malmström A, Lysiak M, Krysztofiak A, Hallbeck M, Milos P, Hallbeck AL, Bratthäll C, Strandéus M, Stenmark-Askmalm M and Söderkvist P: TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 6:16663–16673. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Xu J, Xu FP, Liu ZH, Cui Q, Zhang KP and Li Z: The correlation analysis of TERT promoter mutations with IDH1/2 mutations and 1p/19q detected in human gliomas. Medicine (Baltimore). 101:e296682022. View Article : Google Scholar : PubMed/NCBI

152 

Yaltirik CK, Yilmaz SG, Ozdogan S, Bilgin EY, Barut Z, Ture U and Isbir T: Determination of IDH1, IDH2, MGMT, TERT and ATRX gene mutations in glial tumors. In Vivo. 36:1694–1702. 2022. View Article : Google Scholar : PubMed/NCBI

153 

Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, et al: TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 110:6021–6026. 2013. View Article : Google Scholar : PubMed/NCBI

154 

Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem. 277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI

155 

Bryan C, Rice C, Hoffman H, Harkisheimer M, Sweeney M and Skordalakes E: Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure. 23:1934–1942. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Nakashima M, Nandakumar J, Sullivan KD, Espinosa JM and Cech TR: Inhibition of telomerase recruitment and cancer cell death. J Biol Chem. 288:33171–33180. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Aquilanti E, Kageler L, Wen PY and Meyerson M: Telomerase as a therapeutic target in glioblastoma. Neuro Oncol. 23:2004–2013. 2021. View Article : Google Scholar : PubMed/NCBI

158 

Takahashi M, Miki S, Fujimoto K, Fukuoka K, Matsushita Y, Maida Y, Yasukawa M, Hayashi M, Shinkyo R, Kikuchi K, et al: Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Sci. 110:2247–2257. 2019. View Article : Google Scholar : PubMed/NCBI

159 

Takahashi M, Miki S, Fukuoka K, Maida Y, Hayashi M, Hamada A, Nishikawa R, Nagane M, Maruyama T, Mukasa A, et al: EXTH-50. Development of investigator initiated clinical trial of TERT-targeting therapy using eribulin mesylate in patients with recurrent glioblastoma. Neuro Oncol. 19 (Suppl 6):vi832017. View Article : Google Scholar

160 

Zanetti M: A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 14:115–128. 2017. View Article : Google Scholar : PubMed/NCBI

161 

Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI

162 

Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, Coxon F, Ross P, Madhusudan S, Roques T, et al: Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol. 15:829–840. 2014. View Article : Google Scholar : PubMed/NCBI

163 

Yan J, Pankhong P, Shin TH, Obeng-Adjei N, Morrow MP, Walters JN, Khan AS, Sardesai NY and Weiner DB: Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol Res. 1:179–189. 2013. View Article : Google Scholar : PubMed/NCBI

164 

Reardon DA, Brem S, Desai AS, Bagley SJ, Kurz SC, De La Fuente MI, Nagpal S, Welch MR, Hormigo A, Forsyth P, et al: LTBK-01. INO-5401 AND INO-9012 delivered intramuscularly (IM) with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma. Neuro Oncol. 22:ii2372020. View Article : Google Scholar

165 

Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL and Griffith M: Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 11:562019. View Article : Google Scholar : PubMed/NCBI

166 

You Y, Ru X, Lei W, Li T, Xiao M, Zheng H, Chen Y and Zhang L: Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics. 21 (Suppl 13):S3832020. View Article : Google Scholar

167 

Shi J: Machine learning and bioinformatics approaches for classification and clinical detection of bevacizumab responsive glioblastoma subtypes based on miRNA expression. Sci Rep. 12:86852022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M and Abi-Habib R: Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 29: 243, 2025.
APA
Al Ghafari, M., El Jaafari, N., Mouallem, M., Maassarani, T., El-Sibai, M., & Abi-Habib, R. (2025). Key genes altered in glioblastoma based on bioinformatics (Review). Oncology Letters, 29, 243. https://doi.org/10.3892/ol.2025.14989
MLA
Al Ghafari, M., El Jaafari, N., Mouallem, M., Maassarani, T., El-Sibai, M., Abi-Habib, R."Key genes altered in glioblastoma based on bioinformatics (Review)". Oncology Letters 29.5 (2025): 243.
Chicago
Al Ghafari, M., El Jaafari, N., Mouallem, M., Maassarani, T., El-Sibai, M., Abi-Habib, R."Key genes altered in glioblastoma based on bioinformatics (Review)". Oncology Letters 29, no. 5 (2025): 243. https://doi.org/10.3892/ol.2025.14989
Copy and paste a formatted citation
x
Spandidos Publications style
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M and Abi-Habib R: Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 29: 243, 2025.
APA
Al Ghafari, M., El Jaafari, N., Mouallem, M., Maassarani, T., El-Sibai, M., & Abi-Habib, R. (2025). Key genes altered in glioblastoma based on bioinformatics (Review). Oncology Letters, 29, 243. https://doi.org/10.3892/ol.2025.14989
MLA
Al Ghafari, M., El Jaafari, N., Mouallem, M., Maassarani, T., El-Sibai, M., Abi-Habib, R."Key genes altered in glioblastoma based on bioinformatics (Review)". Oncology Letters 29.5 (2025): 243.
Chicago
Al Ghafari, M., El Jaafari, N., Mouallem, M., Maassarani, T., El-Sibai, M., Abi-Habib, R."Key genes altered in glioblastoma based on bioinformatics (Review)". Oncology Letters 29, no. 5 (2025): 243. https://doi.org/10.3892/ol.2025.14989
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team