
Key genes altered in glioblastoma based on bioinformatics (Review)
- Authors:
- Marcelino Al Ghafari
- Nour El Jaafari
- Mariam Mouallem
- Tala Maassarani
- Mirvat El-Sibai
- Ralph Abi-Habib
-
Affiliations: Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon - Published online on: March 24, 2025 https://doi.org/10.3892/ol.2025.14989
- Article Number: 243
-
Copyright: © Al Ghafari et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al: The epidemiology of glioma in adults: A ‘state of the science’ review. Neuro Oncol. 16:896–913. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bailey P and Cushing H: Microchemical color reactions as an aid to the identification and classification of brain tumors. Proc Natl Acad Sci USA. 11:82–84. 1925. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Masui K, Cloughesy TF and Mischel PS: Review: Molecular pathology in adult high-grade gliomas: From molecular diagnostics to target therapies. Neuropathol Appl Neurobiol. 38:271–291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Van den Bent MJ: Interobserver variation of the histopathological diagnosis in clinical trials on glioma: A clinician's perspective. Acta Neuropathol. 120:297–304. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Smith-Cohn M, Cohen AL and Colman H: Glioma subclassifications and their clinical significance. Neurotherapeutics. 14:284–297. 2017. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Perry A and Wesseling P: Histologic classification of gliomas. Handb Clin Neurol. 134:71–95. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, et al: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 372:2481–2498. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kleihues P, Burger PC and Scheithauer BW: The new WHO classification of brain tumours. Brain Pathol. 3:255–268. 1993. View Article : Google Scholar : PubMed/NCBI | |
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M, et al: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun. 11:34062020. View Article : Google Scholar : PubMed/NCBI | |
Martínez AH, Madurga R, García-Romero N and Ayuso-Sacido Á: Unraveling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett. 527:66–79. 2022. View Article : Google Scholar : PubMed/NCBI | |
Martinez R, Schackert HK, Plaschke J, Baretton G, Appelt H and Schackert G: Molecular mechanisms associated with chromosomal and microsatellite instability in sporadic glioblastoma multiforme. Oncology. 66:395–403. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tepeoglu M, Borcek P, Ozen O and Altinors N: Microsatellite instability in glioblastoma: Is it really relevant in tumor prognosis? Turk Neurosurg. 29:778–784. 2019.PubMed/NCBI | |
Agnihotri S and Zadeh G: Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 18:160–172. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deshmukh R, Allega MF and Tardito S: A map of the altered glioma metabolism. Trends Mol Med. 27:1045–1059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Virtuoso A, Giovannoni R, De Luca C, Gargano F, Cerasuolo M, Maggio N, Lavitrano M and Papa M: The glioblastoma microenvironment: Morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence. Int J Mol Sci. 22:33012021. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Kim D and Youn B: Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int J Mol Sci. 23:138182022. View Article : Google Scholar : PubMed/NCBI | |
Andersen RS, Anand A, Harwood DSL and Kristensen BW: Tumor-associated microglia and macrophages in the glioblastoma microenvironment and their implications for therapy. Cancers (Basel). 13:42552021. View Article : Google Scholar : PubMed/NCBI | |
Park JH and Lee HK: Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy. Cancers (Basel). 14:11762022. View Article : Google Scholar : PubMed/NCBI | |
Lamborn KR, Chang SM and Prados MD: Prognostic factors for survival of patients with glioblastoma: Recursive partitioning analysis. Neuro Oncol. 6:227–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stoyanov GS, Dzhenkov D, Ghenev P, Iliev B, Enchev Y and Tonchev AB: Cell biology of glioblastoma multiforme: From basic science to diagnosis and treatment. Med Oncol. 35:272018. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1608. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
Godek KM, Venere M, Wu Q, Mills KD, Hickey WF, Rich JN and Compton DA: Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells. Cancer Discov. 6:532–545. 2016. View Article : Google Scholar : PubMed/NCBI | |
Buruiană A, Florian ȘI, Florian AI, Timiș TL, Mihu CM, Miclăuș M, Oșan S, Hrapșa I, Cataniciu RC, Farcaș M, et al: The roles of miRNA in glioblastoma tumor cell communication: Diplomatic and aggressive negotiations. Int J Mol Sci. 21:19502020. View Article : Google Scholar : PubMed/NCBI | |
Mafi A, Rahmati A, Aghdam ZB, Salami R, Salami M, Vakili O and Aghadavod E: Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett. 27:652022. View Article : Google Scholar : PubMed/NCBI | |
Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, Al-Khayarin R, Maccalli C and Pedersen S: Exploring the role of microRNAs in glioma progression, prognosis, and therapeutic strategies. Cancers (Basel). 15:42132023. View Article : Google Scholar : PubMed/NCBI | |
Stackhouse CT, Gillespie GY and Willey CD: Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 9:23692020. View Article : Google Scholar : PubMed/NCBI | |
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA and Siahposht-Khachaki A: New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon. 10:e397442024. View Article : Google Scholar : PubMed/NCBI | |
Hashemi M, Roshanzamir SM, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Paskeh MDA, et al: Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res. 9:508–522. 2024. View Article : Google Scholar : PubMed/NCBI | |
Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, et al: cIMPACT-NOW update 3: Recommended diagnostic criteria for ‘Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV’. Acta Neuropathol. 136:805–810. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent AJPE, Dubbink HJ, Atmodimedjo PN, Kros JM, van Duinen SG, Smits M, et al: Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: A confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 4:515–523. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T and Gao D: Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics. 12:472020. View Article : Google Scholar : PubMed/NCBI | |
Azab MA: The potential role of histone modifications in glioblastoma therapy: Review article. J Mol Pathol. 4:Article 4. 2023. View Article : Google Scholar | |
McCornack C, Woodiwiss T, Hardi A, Yano H and Kim AH: The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol. 13:11441842023. View Article : Google Scholar : PubMed/NCBI | |
Rama AR, Alvarez PJ, Madeddu R and Aranega A: ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 41:4847–4851. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ahmed M, Verreault M, Declèves X and Idbaih A: Role of multidrug resistance in glioblastoma chemoresistance: Focus on ABC transporters. Cancer sensitizing agents for chemotherapy, glioblastoma resistance to chemotherapy: Molecular mechanisms and innovative reversal strategies. Paulmurugan R and Massoud TF: Academic Press; 15. pp. 243–261. 2021 | |
Canzoneri R, Lacunza E and Abba MC: Genomics and bioinformatics as pillars of precision medicine in oncology. Medicina (B Aires). 79:587–592. 2019.PubMed/NCBI | |
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Heins ZJ, Muller JT, Katsnelson L, de Bruijn I, Abeshouse AA, Schultz N, Fenyö D and Gao J: Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the cBioPortal. Mol Cell Proteomics. 18:1893–1898. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brlek P, Kafka A, Bukovac A and Pećina-Šlaus N: Integrative cBioPortal analysis revealed molecular mechanisms that regulate EGFR-PI3K-AKT-mTOR pathway in diffuse gliomas of the brain. Cancers (Basel). 13:32472021. View Article : Google Scholar : PubMed/NCBI | |
Ahsan H, Asghar M and Malik SI: Potential diagnostic and drug target markers in glioblastoma. Sci Rep. 14:72922024. View Article : Google Scholar : PubMed/NCBI | |
Dhar C: Utilizing publicly available cancer clinicogenomic data on cBioPortal to compare epidermal growth factor receptor mutant and wildtype non-small cell lung cancer. Cureus. 13:e146832021.PubMed/NCBI | |
Reimer N, Unberath P, Busch H, Börries M, Metzger P, Ustjanzew A, Renner C, Prokosch HU and Christoph J: Challenges and experiences extending the cBioPortal for cancer genomics to a molecular tumor board platform. Stud Health Technol Inform. 18:139–143. 2021.PubMed/NCBI | |
Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI | |
Donaldson IM: Protein interaction data resources. Handbook of cell signaling. 2nd Edition. Academic Press; San Diego, CA: pp. 1375–1385. 2010, View Article : Google Scholar | |
Jean-Quartier C, Jeanquartier F and Holzinger A: Open data for differential network analysis in glioma. Int J Mol Sci. 21:5472020. View Article : Google Scholar : PubMed/NCBI | |
Ma T and Zhang A: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE). BMC Genomics. 20 (Suppl 11):S9442019. View Article : Google Scholar : PubMed/NCBI | |
Picard M, Scott-Boyer MP, Bodein A, Périn O and Droit A: Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 19:3735–3746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sanches PHG, de Melo NC, Porcari AM and de Carvalho LM: Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology (Basel). 13:8482024.PubMed/NCBI | |
Zhou Y, Yang L, Zhang X, Chen R, Chen X, Tang W and Zhang M: Identification of potential biomarkers in glioblastoma through bioinformatic analysis and evaluating their prognostic value. Biomed Res Int. 2019:65815762019. View Article : Google Scholar : PubMed/NCBI | |
Erasimus H, Gobin M, Niclou S and Van Dyck E: DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 769:19–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI | |
Stockhausen MT, Kristoffersen K and Poulsen HS: The functional role of notch signaling in human gliomas. Neuro Oncol. 12:199–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bazzoni R and Bentivegna A: Role of notch signaling pathway in glioblastoma pathogenesis. Cancers (Basel). 11:2922019. View Article : Google Scholar : PubMed/NCBI | |
Stenson PD, Mort M, Ball EV, Shaw K, Phillips A and Cooper DN: The human gene mutation database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 133:1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
1,000 Genomes Project Consortium, . Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT and McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature. 491:56–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garcia FAO, de Andrade ES and Palmero EI: Insights on variant analysis in silico tools for pathogenicity prediction. Front Genet. 13:10103272022. View Article : Google Scholar : PubMed/NCBI | |
Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM and Seelow D: MutationTaster2021. Nucleic Acids Res. 49:W446–W451. 2021. View Article : Google Scholar : PubMed/NCBI | |
Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A and Tabernero MD: Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang PH, Xu AM and White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal. 2:re62009. View Article : Google Scholar : PubMed/NCBI | |
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, et al: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell. 34:163–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu KV, Zhu S, Cvrljevic A, Huang TT, Sarkaria S, Ahkavan D, Dang J, Dinca EB, Plaisier SB, Oderberg I, et al: Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients. Cancer Res. 69:6889–6898. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nagane M, Coufal F, Lin H, Bögler O, Cavenee WK and Huang HJ: A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res. 56:5079–5086. 1996.PubMed/NCBI | |
Jain A, Penuel E, Mink S, Schmidt J, Hodge A, Favero K, Tindell C and Agus DB: HER kinase axis receptor dimer partner switching occurs in response to EGFR tyrosine kinase inhibition despite failure to block cellular proliferation. Cancer Res. 70:1989–1999. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sathornsumetee S and Rich JN: Designer therapies for glioblastoma multiforme. Ann N Y Acad Sci. 1142:108–132. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang TT, Sarkaria SM, Cloughesy TF and Mischel PS: Targeted therapy for malignant glioma patients: Lessons learned and the road ahead. Neurotherapeutics. 6:500–512. 2009. View Article : Google Scholar : PubMed/NCBI | |
El Atat O, Naser R, Abdelkhalek M, Habib RA and El Sibai M: Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett. 25:462022. View Article : Google Scholar : PubMed/NCBI | |
Ezzati S, Salib S, Balasubramaniam M and Aboud O: Epidermal growth factor receptor inhibitors in glioblastoma: Current status and future possibilities. Int J Mol Sci. 25:23162024. View Article : Google Scholar : PubMed/NCBI | |
Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL, Kubek S, Oldrini B, Chheda MG, Yannuzzi N, et al: Differential sensitivity of glioma-versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2:458–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MCM, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, et al: Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib-A phase II trial. Mol Cancer Ther. 10:1102–1112. 2011. View Article : Google Scholar : PubMed/NCBI | |
Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, D'Hondt L, Strauven T, Chaskis C, Veld PI, et al: Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol. 20:1596–1603. 2009. View Article : Google Scholar : PubMed/NCBI | |
Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, Schulz D, Simon M, Schlegel U, Senft C, et al: A randomized, open-label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 51:522–532. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nitta Y, Shimizu S, Shishido-Hara Y, Suzuki K, Shiokawa Y and Nagane M: Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 5:486–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sorensen M, Kosteljanetz M, Broholm H, Stockhausen MT and Poulsen HS: Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: A phase II trial. Neuro Oncol. 12:508–516. 2010.PubMed/NCBI | |
McCrea HJ, Ivanidze J, O'Connor A, Hersh EH, Boockvar JA, Gobin YP, Knopman J and Greenfield JP: Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: Results of a phase I trial. J Neurosurg Pediatr. 28:371–379. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Soler R, Delord JP, Halpern A, Kelly K, Krueger J, Sureda BM, von Pawel J, Temel J, Siena S, Soulières D, et al: HER1/EGFR inhibitor-associated rash: Future directions for management and investigation outcomes from the HER1/EGFR inhibitor rash management forum. Oncologist. 10:345–356. 2005. View Article : Google Scholar : PubMed/NCBI | |
Thomas M: Cetuximab: Adverse event profile and recommendations for toxicity management. Clin J Oncol Nurs. 9:332–338. 2005. View Article : Google Scholar : PubMed/NCBI | |
Keir ST, Chandramohan V, Hemphill CD, Grandal MM, Melander MC, Pedersen MW, Horak ID, Kragh M, Desjardins A, Friedman HS and Bigner DD: Sym004-induced EGFR elimination is associated with profound anti-tumor activity in EGFRvIII patient-derived glioblastoma models. J Neurooncol. 138:489–498. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shikalov A, Koman I and Kogan NM: Targeted glioma therapy-clinical trials and future directions. Pharmaceutics. 16:1002024. View Article : Google Scholar : PubMed/NCBI | |
Lim Y, Yoo J, Kim MS, Hur M, Lee EH, Hur HS, Lee JC, Lee SN, Park TW, Lee K, et al: GC1118, an anti-EGFR antibody with a distinct binding epitope and superior inhibitory activity against high-affinity EGFR ligands. Mol Cancer Ther. 15:251–263. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi SW, Jung HA, Cho H, Kim TM, Park CK, Nam DH and Lee SH: A multicenter, phase II trial of GC1118, a novel anti-EGFR antibody, for recurrent glioblastoma patients with EGFR amplification. Cancer Med. 12:15788–15796. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, et al: Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international Phase I multicenter trial. Neuro Oncol. 21:106–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Desjardins A, Chandramohan V, Landi DB, Johnson MO, Khasraw M, Peters KB, Low J, Herndon JE, Threatt S, Bullock CA, et al: A phase I trial of D2C7-IT in combination with an Fc-engineered anti-CD40 monoclonal antibody (2141-V11) administered intratumorally via convection-enhanced delivery for adult patients with recurrent malignant glioma (MG). J Clin Oncol. 40 (Suppl):e140152022. View Article : Google Scholar | |
Kowalewski A, Durślewicz J, Zdrenka M, Grzanka D and Szylberg Ł: Clinical relevance of BRAF V600E mutation status in brain tumors with a focus on a novel management algorithm. Target Oncol. 15:531–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ohgaki H and Kleihues P: Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453. 2007. View Article : Google Scholar : PubMed/NCBI | |
Etcheverry A, Aubry M, de Tayrac M, Vauleon E, Boniface R, Guenot F, Saikali S, Hamlat A, Riffaud L, Menei P, et al: DNA methylation in glioblastoma: Impact on gene expression and clinical outcome. BMC Genomics. 11:7012010. View Article : Google Scholar : PubMed/NCBI | |
Klughammer J, Kiesel B, Roetzer T, Fortelny N, Kuchler A, Nenning KH, Furtner J, Sheffield NC, Datlinger P, Peter N, et al: The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med. 24:1611–1624. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mao YK, Liu ZB and Cai L: Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol Lett. 20:1619–1628. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Yuan W, Hao F and Zhuang W: Promoter methylation of RASSF1A indicates prognosis for patients with stage II and III colorectal cancer treated with oxaliplatin-based chemotherapy. Med Sci Monit. 23:5389–5395. 2017. View Article : Google Scholar : PubMed/NCBI | |
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M and Mańdziuk S: New directions in the therapy of glioblastoma. Cancers (Basel). 14:53772022. View Article : Google Scholar : PubMed/NCBI | |
Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F and Generali D: BRAF signaling inhibition in glioblastoma: Which clinical perspectives? Front Oncol. 11:7720522021. View Article : Google Scholar : PubMed/NCBI | |
Shannon S, Jia D, Entersz I, Beelen P, Yu M, Carcione C, Carcione J, Mahtabfar A, Vaca C, Weaver M, et al: Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer. 17:1212017. View Article : Google Scholar : PubMed/NCBI | |
Peng P, Wei W, Long C and Li J: Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylation-dependent inhibition of ras signaling. Biochem Biophys Res Commun. 489:293–298. 2017. View Article : Google Scholar : PubMed/NCBI | |
Altwairgi AK, Alghareeb WA, AlNajjar FH, Alhussain H, Alsaeed E, Balbaid AAO, Aldanan S, Orz Y and Alsharm AA: Atorvastatin in combination with radiotherapy and temozolomide for glioblastoma: A prospective phase II study. Invest New Drugs. 39:226–231. 2021. View Article : Google Scholar : PubMed/NCBI | |
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ranjbar R, Mohammadpour S, Esfahani AT, Namazian S, Yaghob-Taleghani M, Baghaei K, Tabatabaei SA, Pasharavesh L and Nazemalhosseini-Mojarad E: Prevalence and prognostic role of PIK3CA E545K mutation in iranian colorectal cancer patients. Gastroenterol Hepatol Bed Bench. 12:S22–S29. 2019.PubMed/NCBI | |
Liang J and Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2:339–345. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F and Ciccarelli R: The role of Wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes (Basel). 9:1052018. View Article : Google Scholar : PubMed/NCBI | |
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR and Carraway KL: A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett. 567:2162802023. View Article : Google Scholar : PubMed/NCBI | |
Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, Wiencke JK, McBride SM, Cowdrey C, Prados MD, Weiss WA, et al: PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol. 14:1146–1152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang H, Cai Z and Roberts TM: The Mechanisms underlying PTEN loss in human tumors suggest potential therapeutic opportunities. Biomolecules. 9:7132019. View Article : Google Scholar : PubMed/NCBI | |
Carico C, Nuño M, Mukherjee D, Elramsisy A, Dantis J, Hu J, Rudnick J, Yu JS, Black KL, Bannykh SI and Patil CG: Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS One. 7:e336842012. View Article : Google Scholar : PubMed/NCBI | |
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To ST and Li WP: Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol Cancer. 16:1002017. View Article : Google Scholar : PubMed/NCBI | |
Wen PY, Wen PY, Yung WKA, Mellinghoff IK, Ramkissoon S, Alexander B, Rinne M, Colman H, Omuro AM, DeAngelis LM, et al: Rockich Xu Lager Mellinghoff Phase II trial of the phosphatidyinositol-3 kinase (PI3K) inhibitor buparlisib (bkm120) in recurrent glioblastoma conducted by the ivy foundation early phase clinical trials consortium. Neuro Oncol. 16 (Suppl 3):iii472014. View Article : Google Scholar | |
Cloughesy TF, Mischel PS, Omuro AMP, Prados M, Wen PY and Wu B K Y JJ IK: Tumor pharmacokinetics (PK) and pharmacodynamics (PD) of SAR245409 (XL765) and SAR245408 (XL147) administered as single agents to patients with recurrent glioblastoma (GBM): An Ivy Foundation early-phase clinical trials consortium study. J Clin Oncol. 31:2012. 2013. View Article : Google Scholar | |
Papavassiliou KA and Papavassiliou AG: The bumpy road towards mTOR inhibition in glioblastoma: Quo vadis? Biomedicines. 9:18092021. View Article : Google Scholar : PubMed/NCBI | |
England B, Huang T and Karsy M: Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 34:2063–2074. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohgaki H: Genetic pathways to glioblastomas. Neuropathology. 25:1–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, Wang J, Almeida JS, Aldape K and Yung WK: Identification of prognostic gene signatures of glioblastoma: A study based on TCGA data analysis. Neuro Oncol. 15:829–839. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kyritsis AP, Bondy ML, Rao JS and Sioka C: Inherited predisposition to glioma. Neuro Oncol. 12:104–113. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rice T, Lachance DH, Molinaro AM, Eckel-Passow JE, Walsh KM, Barnholtz-Sloan J, Ostrom QT, Francis SS, Wiemels J, Jenkins RB, et al: Understanding inherited genetic risk of adult glioma: A review. Neurooncol Pract. 3:10–16. 2016.PubMed/NCBI | |
Mohyeldin A and Chiocca EA: Gene and viral therapy for glioblastoma: A review of clinical trials and future directions. Cancer J. 18:82–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Olafson LR, Gunawardena M, Nixdorf S, McDonald KL and Rapkins RW: The role of TP53 gain-of-function mutation in multifocal glioblastoma. J Neurooncol. 147:37–47. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW and Baker SJ: Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 19:305–316. 2011. View Article : Google Scholar : PubMed/NCBI | |
Muller PA and Vousden KH: Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, et al: The p53 pathway in glioblastoma. Cancers (Basel). 10:2972018. View Article : Google Scholar : PubMed/NCBI | |
Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, Fersht AR, Hainaut P, Wiman KG and Bykov VJ: PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 15:376–388. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G and Wiman KG: PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene. 24:3484–3491. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zache N, Lambert JM, Wiman KG and Bykov VJ: PRIMA-1MET inhibits growth of mouse tumors carrying mutant p53. Cell Oncol. 30:411–418. 2008.PubMed/NCBI | |
Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B and Sabri S: Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget. 7:60245–60269. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, et al: Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 30:3633–3639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F and Chandra J: Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro Oncol. 17:1463–1473. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liffers K, Kolbe K, Westphal M, Lamszus K and Schulte A: Histone deacetylase inhibitors resensitize EGFR/EGFRvIII-overexpressing, erlotinib-resistant glioblastoma cells to tyrosine kinase inhibition. Target Oncol. 11:29–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
Staberg M, Michaelsen SR, Rasmussen RD, Villingshoj M, Poulsen HS and Hamerlik P: Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr). 40:21–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, et al: Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res. 78:4007–4021. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, et al: Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res. 18:4070–4079. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen RD, Gajjar MK, Jensen KE and Hamerlik P: Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol. 10:751–763. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi SA, Kwak PA, Park CK, Wang KC, Phi JH, Lee JY, Lee CS, Lee JH and Kim SK: A novel histone deacetylase inhibitor, CKD5, has potent anti-cancer effects in glioblastoma. Oncotarget. 8:9123–9133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang XF, Zhao ZJ, Liu JJ, Yang XH, Gao Y, Zhao S, Shi S, Huang KQ and Zheng HC: SAHA and/or MG132 reverse the aggressive phenotypes of glioma cells: An in vitro and vivo study. Oncotarget. 8:3156–3169. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reifenberger G, Liu L, Ichimura K, Schmidt EE and Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53:2736–2739. 1993.PubMed/NCBI | |
Riemenschneider MJ, Büschges R, Wolter M, Reifenberger J, Boström J, Kraus JA, Schlegel U and Reifenberger G: Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res. 59:6091–6096. 1999.PubMed/NCBI | |
Biernat W, Kleihues P, Yonekawa Y and Ohgaki H: Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol. 56:180–185. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wade M, Li YC and Wahl GM: MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 13:83–96. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, et al: Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett. 4:466–469. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miles X, Vandevoorde C, Hunter A and Bolcaen J: MDM2/X inhibitors as radiosensitizers for glioblastoma targeted therapy. Front Oncol. 11:7034422021. View Article : Google Scholar : PubMed/NCBI | |
Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, Eksterowicz J, Ye Q, Jin L, Chen A, et al: The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 14:649–658. 2015. View Article : Google Scholar : PubMed/NCBI | |
Her NG, Oh JW, Oh YJ, Han S, Cho HJ, Lee Y, Ryu GH and Nam DH: Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 9:7922018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Cai S, Bailey BJ, Saadatzadeh MR, Ding J, Tonsing-Carter E, Georgiadis TM, Gunter TZ, Long EC, Minto RE, et al: Combination therapy in a xenograft model of glioblastoma: Enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg. 126:446–459. 2017. View Article : Google Scholar : PubMed/NCBI | |
Daniele S, Taliani S, Da Pozzo E, Giacomelli C, Costa B, Trincavelli ML, Rossi L, La Pietra V, Barresi E, Carotenuto A, et al: Apoptosis therapy in cancer: The first single-molecule co-activating p53 and the translocator protein in glioblastoma. Sci Rep. 4:47492014. View Article : Google Scholar : PubMed/NCBI | |
Mosrati MA, Malmström A, Lysiak M, Krysztofiak A, Hallbeck M, Milos P, Hallbeck AL, Bratthäll C, Strandéus M, Stenmark-Askmalm M and Söderkvist P: TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 6:16663–16673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Xu FP, Liu ZH, Cui Q, Zhang KP and Li Z: The correlation analysis of TERT promoter mutations with IDH1/2 mutations and 1p/19q detected in human gliomas. Medicine (Baltimore). 101:e296682022. View Article : Google Scholar : PubMed/NCBI | |
Yaltirik CK, Yilmaz SG, Ozdogan S, Bilgin EY, Barut Z, Ture U and Isbir T: Determination of IDH1, IDH2, MGMT, TERT and ATRX gene mutations in glial tumors. In Vivo. 36:1694–1702. 2022. View Article : Google Scholar : PubMed/NCBI | |
Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, et al: TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 110:6021–6026. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem. 277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bryan C, Rice C, Hoffman H, Harkisheimer M, Sweeney M and Skordalakes E: Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure. 23:1934–1942. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakashima M, Nandakumar J, Sullivan KD, Espinosa JM and Cech TR: Inhibition of telomerase recruitment and cancer cell death. J Biol Chem. 288:33171–33180. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aquilanti E, Kageler L, Wen PY and Meyerson M: Telomerase as a therapeutic target in glioblastoma. Neuro Oncol. 23:2004–2013. 2021. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Miki S, Fujimoto K, Fukuoka K, Matsushita Y, Maida Y, Yasukawa M, Hayashi M, Shinkyo R, Kikuchi K, et al: Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Sci. 110:2247–2257. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Miki S, Fukuoka K, Maida Y, Hayashi M, Hamada A, Nishikawa R, Nagane M, Maruyama T, Mukasa A, et al: EXTH-50. Development of investigator initiated clinical trial of TERT-targeting therapy using eribulin mesylate in patients with recurrent glioblastoma. Neuro Oncol. 19 (Suppl 6):vi832017. View Article : Google Scholar | |
Zanetti M: A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 14:115–128. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI | |
Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, Coxon F, Ross P, Madhusudan S, Roques T, et al: Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol. 15:829–840. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Pankhong P, Shin TH, Obeng-Adjei N, Morrow MP, Walters JN, Khan AS, Sardesai NY and Weiner DB: Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol Res. 1:179–189. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA, Brem S, Desai AS, Bagley SJ, Kurz SC, De La Fuente MI, Nagpal S, Welch MR, Hormigo A, Forsyth P, et al: LTBK-01. INO-5401 AND INO-9012 delivered intramuscularly (IM) with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma. Neuro Oncol. 22:ii2372020. View Article : Google Scholar | |
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL and Griffith M: Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 11:562019. View Article : Google Scholar : PubMed/NCBI | |
You Y, Ru X, Lei W, Li T, Xiao M, Zheng H, Chen Y and Zhang L: Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics. 21 (Suppl 13):S3832020. View Article : Google Scholar | |
Shi J: Machine learning and bioinformatics approaches for classification and clinical detection of bevacizumab responsive glioblastoma subtypes based on miRNA expression. Sci Rep. 12:86852022. View Article : Google Scholar : PubMed/NCBI |