You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al: The epidemiology of glioma in adults: A ‘state of the science’ review. Neuro Oncol. 16:896–913. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bailey P and Cushing H: Microchemical color reactions as an aid to the identification and classification of brain tumors. Proc Natl Acad Sci USA. 11:82–84. 1925. View Article : Google Scholar : PubMed/NCBI | |
|
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Masui K, Cloughesy TF and Mischel PS: Review: Molecular pathology in adult high-grade gliomas: From molecular diagnostics to target therapies. Neuropathol Appl Neurobiol. 38:271–291. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Van den Bent MJ: Interobserver variation of the histopathological diagnosis in clinical trials on glioma: A clinician's perspective. Acta Neuropathol. 120:297–304. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen R, Smith-Cohn M, Cohen AL and Colman H: Glioma subclassifications and their clinical significance. Neurotherapeutics. 14:284–297. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Perry A and Wesseling P: Histologic classification of gliomas. Handb Clin Neurol. 134:71–95. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Research Network, . Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, et al: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 372:2481–2498. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kleihues P, Burger PC and Scheithauer BW: The new WHO classification of brain tumours. Brain Pathol. 3:255–268. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M, et al: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun. 11:34062020. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez AH, Madurga R, García-Romero N and Ayuso-Sacido Á: Unraveling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett. 527:66–79. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez R, Schackert HK, Plaschke J, Baretton G, Appelt H and Schackert G: Molecular mechanisms associated with chromosomal and microsatellite instability in sporadic glioblastoma multiforme. Oncology. 66:395–403. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Tepeoglu M, Borcek P, Ozen O and Altinors N: Microsatellite instability in glioblastoma: Is it really relevant in tumor prognosis? Turk Neurosurg. 29:778–784. 2019.PubMed/NCBI | |
|
Agnihotri S and Zadeh G: Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 18:160–172. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deshmukh R, Allega MF and Tardito S: A map of the altered glioma metabolism. Trends Mol Med. 27:1045–1059. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Virtuoso A, Giovannoni R, De Luca C, Gargano F, Cerasuolo M, Maggio N, Lavitrano M and Papa M: The glioblastoma microenvironment: Morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence. Int J Mol Sci. 22:33012021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Kim D and Youn B: Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int J Mol Sci. 23:138182022. View Article : Google Scholar : PubMed/NCBI | |
|
Andersen RS, Anand A, Harwood DSL and Kristensen BW: Tumor-associated microglia and macrophages in the glioblastoma microenvironment and their implications for therapy. Cancers (Basel). 13:42552021. View Article : Google Scholar : PubMed/NCBI | |
|
Park JH and Lee HK: Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy. Cancers (Basel). 14:11762022. View Article : Google Scholar : PubMed/NCBI | |
|
Lamborn KR, Chang SM and Prados MD: Prognostic factors for survival of patients with glioblastoma: Recursive partitioning analysis. Neuro Oncol. 6:227–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Stoyanov GS, Dzhenkov D, Ghenev P, Iliev B, Enchev Y and Tonchev AB: Cell biology of glioblastoma multiforme: From basic science to diagnosis and treatment. Med Oncol. 35:272018. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1608. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Godek KM, Venere M, Wu Q, Mills KD, Hickey WF, Rich JN and Compton DA: Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells. Cancer Discov. 6:532–545. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Buruiană A, Florian ȘI, Florian AI, Timiș TL, Mihu CM, Miclăuș M, Oșan S, Hrapșa I, Cataniciu RC, Farcaș M, et al: The roles of miRNA in glioblastoma tumor cell communication: Diplomatic and aggressive negotiations. Int J Mol Sci. 21:19502020. View Article : Google Scholar : PubMed/NCBI | |
|
Mafi A, Rahmati A, Aghdam ZB, Salami R, Salami M, Vakili O and Aghadavod E: Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett. 27:652022. View Article : Google Scholar : PubMed/NCBI | |
|
Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, Al-Khayarin R, Maccalli C and Pedersen S: Exploring the role of microRNAs in glioma progression, prognosis, and therapeutic strategies. Cancers (Basel). 15:42132023. View Article : Google Scholar : PubMed/NCBI | |
|
Stackhouse CT, Gillespie GY and Willey CD: Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 9:23692020. View Article : Google Scholar : PubMed/NCBI | |
|
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA and Siahposht-Khachaki A: New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon. 10:e397442024. View Article : Google Scholar : PubMed/NCBI | |
|
Hashemi M, Roshanzamir SM, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Paskeh MDA, et al: Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res. 9:508–522. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, et al: cIMPACT-NOW update 3: Recommended diagnostic criteria for ‘Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV’. Acta Neuropathol. 136:805–810. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent AJPE, Dubbink HJ, Atmodimedjo PN, Kros JM, van Duinen SG, Smits M, et al: Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: A confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 4:515–523. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T and Gao D: Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics. 12:472020. View Article : Google Scholar : PubMed/NCBI | |
|
Azab MA: The potential role of histone modifications in glioblastoma therapy: Review article. J Mol Pathol. 4:Article 4. 2023. View Article : Google Scholar | |
|
McCornack C, Woodiwiss T, Hardi A, Yano H and Kim AH: The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol. 13:11441842023. View Article : Google Scholar : PubMed/NCBI | |
|
Rama AR, Alvarez PJ, Madeddu R and Aranega A: ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 41:4847–4851. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed M, Verreault M, Declèves X and Idbaih A: Role of multidrug resistance in glioblastoma chemoresistance: Focus on ABC transporters. Cancer sensitizing agents for chemotherapy, glioblastoma resistance to chemotherapy: Molecular mechanisms and innovative reversal strategies. Paulmurugan R and Massoud TF: Academic Press; 15. pp. 243–261. 2021 | |
|
Canzoneri R, Lacunza E and Abba MC: Genomics and bioinformatics as pillars of precision medicine in oncology. Medicina (B Aires). 79:587–592. 2019.PubMed/NCBI | |
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu P, Heins ZJ, Muller JT, Katsnelson L, de Bruijn I, Abeshouse AA, Schultz N, Fenyö D and Gao J: Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the cBioPortal. Mol Cell Proteomics. 18:1893–1898. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brlek P, Kafka A, Bukovac A and Pećina-Šlaus N: Integrative cBioPortal analysis revealed molecular mechanisms that regulate EGFR-PI3K-AKT-mTOR pathway in diffuse gliomas of the brain. Cancers (Basel). 13:32472021. View Article : Google Scholar : PubMed/NCBI | |
|
Ahsan H, Asghar M and Malik SI: Potential diagnostic and drug target markers in glioblastoma. Sci Rep. 14:72922024. View Article : Google Scholar : PubMed/NCBI | |
|
Dhar C: Utilizing publicly available cancer clinicogenomic data on cBioPortal to compare epidermal growth factor receptor mutant and wildtype non-small cell lung cancer. Cureus. 13:e146832021.PubMed/NCBI | |
|
Reimer N, Unberath P, Busch H, Börries M, Metzger P, Ustjanzew A, Renner C, Prokosch HU and Christoph J: Challenges and experiences extending the cBioPortal for cancer genomics to a molecular tumor board platform. Stud Health Technol Inform. 18:139–143. 2021.PubMed/NCBI | |
|
Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Donaldson IM: Protein interaction data resources. Handbook of cell signaling. 2nd Edition. Academic Press; San Diego, CA: pp. 1375–1385. 2010, View Article : Google Scholar | |
|
Jean-Quartier C, Jeanquartier F and Holzinger A: Open data for differential network analysis in glioma. Int J Mol Sci. 21:5472020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T and Zhang A: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE). BMC Genomics. 20 (Suppl 11):S9442019. View Article : Google Scholar : PubMed/NCBI | |
|
Picard M, Scott-Boyer MP, Bodein A, Périn O and Droit A: Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 19:3735–3746. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sanches PHG, de Melo NC, Porcari AM and de Carvalho LM: Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology (Basel). 13:8482024.PubMed/NCBI | |
|
Zhou Y, Yang L, Zhang X, Chen R, Chen X, Tang W and Zhang M: Identification of potential biomarkers in glioblastoma through bioinformatic analysis and evaluating their prognostic value. Biomed Res Int. 2019:65815762019. View Article : Google Scholar : PubMed/NCBI | |
|
Erasimus H, Gobin M, Niclou S and Van Dyck E: DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 769:19–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI | |
|
Stockhausen MT, Kristoffersen K and Poulsen HS: The functional role of notch signaling in human gliomas. Neuro Oncol. 12:199–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bazzoni R and Bentivegna A: Role of notch signaling pathway in glioblastoma pathogenesis. Cancers (Basel). 11:2922019. View Article : Google Scholar : PubMed/NCBI | |
|
Stenson PD, Mort M, Ball EV, Shaw K, Phillips A and Cooper DN: The human gene mutation database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 133:1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
1,000 Genomes Project Consortium, . Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT and McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature. 491:56–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia FAO, de Andrade ES and Palmero EI: Insights on variant analysis in silico tools for pathogenicity prediction. Front Genet. 13:10103272022. View Article : Google Scholar : PubMed/NCBI | |
|
Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM and Seelow D: MutationTaster2021. Nucleic Acids Res. 49:W446–W451. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A and Tabernero MD: Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang PH, Xu AM and White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal. 2:re62009. View Article : Google Scholar : PubMed/NCBI | |
|
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, et al: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell. 34:163–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lu KV, Zhu S, Cvrljevic A, Huang TT, Sarkaria S, Ahkavan D, Dang J, Dinca EB, Plaisier SB, Oderberg I, et al: Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients. Cancer Res. 69:6889–6898. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nagane M, Coufal F, Lin H, Bögler O, Cavenee WK and Huang HJ: A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res. 56:5079–5086. 1996.PubMed/NCBI | |
|
Jain A, Penuel E, Mink S, Schmidt J, Hodge A, Favero K, Tindell C and Agus DB: HER kinase axis receptor dimer partner switching occurs in response to EGFR tyrosine kinase inhibition despite failure to block cellular proliferation. Cancer Res. 70:1989–1999. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sathornsumetee S and Rich JN: Designer therapies for glioblastoma multiforme. Ann N Y Acad Sci. 1142:108–132. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Huang TT, Sarkaria SM, Cloughesy TF and Mischel PS: Targeted therapy for malignant glioma patients: Lessons learned and the road ahead. Neurotherapeutics. 6:500–512. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
El Atat O, Naser R, Abdelkhalek M, Habib RA and El Sibai M: Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett. 25:462022. View Article : Google Scholar : PubMed/NCBI | |
|
Ezzati S, Salib S, Balasubramaniam M and Aboud O: Epidermal growth factor receptor inhibitors in glioblastoma: Current status and future possibilities. Int J Mol Sci. 25:23162024. View Article : Google Scholar : PubMed/NCBI | |
|
Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL, Kubek S, Oldrini B, Chheda MG, Yannuzzi N, et al: Differential sensitivity of glioma-versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2:458–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MCM, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, et al: Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib-A phase II trial. Mol Cancer Ther. 10:1102–1112. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, D'Hondt L, Strauven T, Chaskis C, Veld PI, et al: Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol. 20:1596–1603. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, Schulz D, Simon M, Schlegel U, Senft C, et al: A randomized, open-label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 51:522–532. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nitta Y, Shimizu S, Shishido-Hara Y, Suzuki K, Shiokawa Y and Nagane M: Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 5:486–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sorensen M, Kosteljanetz M, Broholm H, Stockhausen MT and Poulsen HS: Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: A phase II trial. Neuro Oncol. 12:508–516. 2010.PubMed/NCBI | |
|
McCrea HJ, Ivanidze J, O'Connor A, Hersh EH, Boockvar JA, Gobin YP, Knopman J and Greenfield JP: Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: Results of a phase I trial. J Neurosurg Pediatr. 28:371–379. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Soler R, Delord JP, Halpern A, Kelly K, Krueger J, Sureda BM, von Pawel J, Temel J, Siena S, Soulières D, et al: HER1/EGFR inhibitor-associated rash: Future directions for management and investigation outcomes from the HER1/EGFR inhibitor rash management forum. Oncologist. 10:345–356. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas M: Cetuximab: Adverse event profile and recommendations for toxicity management. Clin J Oncol Nurs. 9:332–338. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Keir ST, Chandramohan V, Hemphill CD, Grandal MM, Melander MC, Pedersen MW, Horak ID, Kragh M, Desjardins A, Friedman HS and Bigner DD: Sym004-induced EGFR elimination is associated with profound anti-tumor activity in EGFRvIII patient-derived glioblastoma models. J Neurooncol. 138:489–498. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shikalov A, Koman I and Kogan NM: Targeted glioma therapy-clinical trials and future directions. Pharmaceutics. 16:1002024. View Article : Google Scholar : PubMed/NCBI | |
|
Lim Y, Yoo J, Kim MS, Hur M, Lee EH, Hur HS, Lee JC, Lee SN, Park TW, Lee K, et al: GC1118, an anti-EGFR antibody with a distinct binding epitope and superior inhibitory activity against high-affinity EGFR ligands. Mol Cancer Ther. 15:251–263. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SW, Jung HA, Cho H, Kim TM, Park CK, Nam DH and Lee SH: A multicenter, phase II trial of GC1118, a novel anti-EGFR antibody, for recurrent glioblastoma patients with EGFR amplification. Cancer Med. 12:15788–15796. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, et al: Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international Phase I multicenter trial. Neuro Oncol. 21:106–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Desjardins A, Chandramohan V, Landi DB, Johnson MO, Khasraw M, Peters KB, Low J, Herndon JE, Threatt S, Bullock CA, et al: A phase I trial of D2C7-IT in combination with an Fc-engineered anti-CD40 monoclonal antibody (2141-V11) administered intratumorally via convection-enhanced delivery for adult patients with recurrent malignant glioma (MG). J Clin Oncol. 40 (Suppl):e140152022. View Article : Google Scholar | |
|
Kowalewski A, Durślewicz J, Zdrenka M, Grzanka D and Szylberg Ł: Clinical relevance of BRAF V600E mutation status in brain tumors with a focus on a novel management algorithm. Target Oncol. 15:531–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ohgaki H and Kleihues P: Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Etcheverry A, Aubry M, de Tayrac M, Vauleon E, Boniface R, Guenot F, Saikali S, Hamlat A, Riffaud L, Menei P, et al: DNA methylation in glioblastoma: Impact on gene expression and clinical outcome. BMC Genomics. 11:7012010. View Article : Google Scholar : PubMed/NCBI | |
|
Klughammer J, Kiesel B, Roetzer T, Fortelny N, Kuchler A, Nenning KH, Furtner J, Sheffield NC, Datlinger P, Peter N, et al: The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med. 24:1611–1624. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mao YK, Liu ZB and Cai L: Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol Lett. 20:1619–1628. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Yuan W, Hao F and Zhuang W: Promoter methylation of RASSF1A indicates prognosis for patients with stage II and III colorectal cancer treated with oxaliplatin-based chemotherapy. Med Sci Monit. 23:5389–5395. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M and Mańdziuk S: New directions in the therapy of glioblastoma. Cancers (Basel). 14:53772022. View Article : Google Scholar : PubMed/NCBI | |
|
Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F and Generali D: BRAF signaling inhibition in glioblastoma: Which clinical perspectives? Front Oncol. 11:7720522021. View Article : Google Scholar : PubMed/NCBI | |
|
Shannon S, Jia D, Entersz I, Beelen P, Yu M, Carcione C, Carcione J, Mahtabfar A, Vaca C, Weaver M, et al: Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer. 17:1212017. View Article : Google Scholar : PubMed/NCBI | |
|
Peng P, Wei W, Long C and Li J: Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylation-dependent inhibition of ras signaling. Biochem Biophys Res Commun. 489:293–298. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Altwairgi AK, Alghareeb WA, AlNajjar FH, Alhussain H, Alsaeed E, Balbaid AAO, Aldanan S, Orz Y and Alsharm AA: Atorvastatin in combination with radiotherapy and temozolomide for glioblastoma: A prospective phase II study. Invest New Drugs. 39:226–231. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ranjbar R, Mohammadpour S, Esfahani AT, Namazian S, Yaghob-Taleghani M, Baghaei K, Tabatabaei SA, Pasharavesh L and Nazemalhosseini-Mojarad E: Prevalence and prognostic role of PIK3CA E545K mutation in iranian colorectal cancer patients. Gastroenterol Hepatol Bed Bench. 12:S22–S29. 2019.PubMed/NCBI | |
|
Liang J and Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2:339–345. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F and Ciccarelli R: The role of Wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes (Basel). 9:1052018. View Article : Google Scholar : PubMed/NCBI | |
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR and Carraway KL: A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett. 567:2162802023. View Article : Google Scholar : PubMed/NCBI | |
|
Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, Wiencke JK, McBride SM, Cowdrey C, Prados MD, Weiss WA, et al: PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol. 14:1146–1152. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chang H, Cai Z and Roberts TM: The Mechanisms underlying PTEN loss in human tumors suggest potential therapeutic opportunities. Biomolecules. 9:7132019. View Article : Google Scholar : PubMed/NCBI | |
|
Carico C, Nuño M, Mukherjee D, Elramsisy A, Dantis J, Hu J, Rudnick J, Yu JS, Black KL, Bannykh SI and Patil CG: Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS One. 7:e336842012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To ST and Li WP: Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol Cancer. 16:1002017. View Article : Google Scholar : PubMed/NCBI | |
|
Wen PY, Wen PY, Yung WKA, Mellinghoff IK, Ramkissoon S, Alexander B, Rinne M, Colman H, Omuro AM, DeAngelis LM, et al: Rockich Xu Lager Mellinghoff Phase II trial of the phosphatidyinositol-3 kinase (PI3K) inhibitor buparlisib (bkm120) in recurrent glioblastoma conducted by the ivy foundation early phase clinical trials consortium. Neuro Oncol. 16 (Suppl 3):iii472014. View Article : Google Scholar | |
|
Cloughesy TF, Mischel PS, Omuro AMP, Prados M, Wen PY and Wu B K Y JJ IK: Tumor pharmacokinetics (PK) and pharmacodynamics (PD) of SAR245409 (XL765) and SAR245408 (XL147) administered as single agents to patients with recurrent glioblastoma (GBM): An Ivy Foundation early-phase clinical trials consortium study. J Clin Oncol. 31:2012. 2013. View Article : Google Scholar | |
|
Papavassiliou KA and Papavassiliou AG: The bumpy road towards mTOR inhibition in glioblastoma: Quo vadis? Biomedicines. 9:18092021. View Article : Google Scholar : PubMed/NCBI | |
|
England B, Huang T and Karsy M: Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 34:2063–2074. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ohgaki H: Genetic pathways to glioblastomas. Neuropathology. 25:1–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, Wang J, Almeida JS, Aldape K and Yung WK: Identification of prognostic gene signatures of glioblastoma: A study based on TCGA data analysis. Neuro Oncol. 15:829–839. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kyritsis AP, Bondy ML, Rao JS and Sioka C: Inherited predisposition to glioma. Neuro Oncol. 12:104–113. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Rice T, Lachance DH, Molinaro AM, Eckel-Passow JE, Walsh KM, Barnholtz-Sloan J, Ostrom QT, Francis SS, Wiemels J, Jenkins RB, et al: Understanding inherited genetic risk of adult glioma: A review. Neurooncol Pract. 3:10–16. 2016.PubMed/NCBI | |
|
Mohyeldin A and Chiocca EA: Gene and viral therapy for glioblastoma: A review of clinical trials and future directions. Cancer J. 18:82–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Olafson LR, Gunawardena M, Nixdorf S, McDonald KL and Rapkins RW: The role of TP53 gain-of-function mutation in multifocal glioblastoma. J Neurooncol. 147:37–47. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW and Baker SJ: Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 19:305–316. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Muller PA and Vousden KH: Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, et al: The p53 pathway in glioblastoma. Cancers (Basel). 10:2972018. View Article : Google Scholar : PubMed/NCBI | |
|
Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, Fersht AR, Hainaut P, Wiman KG and Bykov VJ: PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 15:376–388. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G and Wiman KG: PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene. 24:3484–3491. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zache N, Lambert JM, Wiman KG and Bykov VJ: PRIMA-1MET inhibits growth of mouse tumors carrying mutant p53. Cell Oncol. 30:411–418. 2008.PubMed/NCBI | |
|
Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B and Sabri S: Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget. 7:60245–60269. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, et al: Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 30:3633–3639. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F and Chandra J: Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro Oncol. 17:1463–1473. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liffers K, Kolbe K, Westphal M, Lamszus K and Schulte A: Histone deacetylase inhibitors resensitize EGFR/EGFRvIII-overexpressing, erlotinib-resistant glioblastoma cells to tyrosine kinase inhibition. Target Oncol. 11:29–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Staberg M, Michaelsen SR, Rasmussen RD, Villingshoj M, Poulsen HS and Hamerlik P: Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr). 40:21–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, et al: Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res. 78:4007–4021. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, et al: Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res. 18:4070–4079. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rasmussen RD, Gajjar MK, Jensen KE and Hamerlik P: Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol. 10:751–763. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SA, Kwak PA, Park CK, Wang KC, Phi JH, Lee JY, Lee CS, Lee JH and Kim SK: A novel histone deacetylase inhibitor, CKD5, has potent anti-cancer effects in glioblastoma. Oncotarget. 8:9123–9133. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang XF, Zhao ZJ, Liu JJ, Yang XH, Gao Y, Zhao S, Shi S, Huang KQ and Zheng HC: SAHA and/or MG132 reverse the aggressive phenotypes of glioma cells: An in vitro and vivo study. Oncotarget. 8:3156–3169. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Reifenberger G, Liu L, Ichimura K, Schmidt EE and Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53:2736–2739. 1993.PubMed/NCBI | |
|
Riemenschneider MJ, Büschges R, Wolter M, Reifenberger J, Boström J, Kraus JA, Schlegel U and Reifenberger G: Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res. 59:6091–6096. 1999.PubMed/NCBI | |
|
Biernat W, Kleihues P, Yonekawa Y and Ohgaki H: Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol. 56:180–185. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Wade M, Li YC and Wahl GM: MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 13:83–96. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, et al: Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett. 4:466–469. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Miles X, Vandevoorde C, Hunter A and Bolcaen J: MDM2/X inhibitors as radiosensitizers for glioblastoma targeted therapy. Front Oncol. 11:7034422021. View Article : Google Scholar : PubMed/NCBI | |
|
Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, Eksterowicz J, Ye Q, Jin L, Chen A, et al: The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 14:649–658. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Her NG, Oh JW, Oh YJ, Han S, Cho HJ, Lee Y, Ryu GH and Nam DH: Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 9:7922018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Cai S, Bailey BJ, Saadatzadeh MR, Ding J, Tonsing-Carter E, Georgiadis TM, Gunter TZ, Long EC, Minto RE, et al: Combination therapy in a xenograft model of glioblastoma: Enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg. 126:446–459. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Daniele S, Taliani S, Da Pozzo E, Giacomelli C, Costa B, Trincavelli ML, Rossi L, La Pietra V, Barresi E, Carotenuto A, et al: Apoptosis therapy in cancer: The first single-molecule co-activating p53 and the translocator protein in glioblastoma. Sci Rep. 4:47492014. View Article : Google Scholar : PubMed/NCBI | |
|
Mosrati MA, Malmström A, Lysiak M, Krysztofiak A, Hallbeck M, Milos P, Hallbeck AL, Bratthäll C, Strandéus M, Stenmark-Askmalm M and Söderkvist P: TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 6:16663–16673. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Xu FP, Liu ZH, Cui Q, Zhang KP and Li Z: The correlation analysis of TERT promoter mutations with IDH1/2 mutations and 1p/19q detected in human gliomas. Medicine (Baltimore). 101:e296682022. View Article : Google Scholar : PubMed/NCBI | |
|
Yaltirik CK, Yilmaz SG, Ozdogan S, Bilgin EY, Barut Z, Ture U and Isbir T: Determination of IDH1, IDH2, MGMT, TERT and ATRX gene mutations in glial tumors. In Vivo. 36:1694–1702. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, et al: TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 110:6021–6026. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K and Schnapp A: Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem. 277:15566–15572. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bryan C, Rice C, Hoffman H, Harkisheimer M, Sweeney M and Skordalakes E: Structural basis of telomerase inhibition by the highly specific BIBR1532. Structure. 23:1934–1942. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nakashima M, Nandakumar J, Sullivan KD, Espinosa JM and Cech TR: Inhibition of telomerase recruitment and cancer cell death. J Biol Chem. 288:33171–33180. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Aquilanti E, Kageler L, Wen PY and Meyerson M: Telomerase as a therapeutic target in glioblastoma. Neuro Oncol. 23:2004–2013. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi M, Miki S, Fujimoto K, Fukuoka K, Matsushita Y, Maida Y, Yasukawa M, Hayashi M, Shinkyo R, Kikuchi K, et al: Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Sci. 110:2247–2257. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi M, Miki S, Fukuoka K, Maida Y, Hayashi M, Hamada A, Nishikawa R, Nagane M, Maruyama T, Mukasa A, et al: EXTH-50. Development of investigator initiated clinical trial of TERT-targeting therapy using eribulin mesylate in patients with recurrent glioblastoma. Neuro Oncol. 19 (Suppl 6):vi832017. View Article : Google Scholar | |
|
Zanetti M: A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 14:115–128. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, Coxon F, Ross P, Madhusudan S, Roques T, et al: Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol. 15:829–840. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Pankhong P, Shin TH, Obeng-Adjei N, Morrow MP, Walters JN, Khan AS, Sardesai NY and Weiner DB: Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol Res. 1:179–189. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Reardon DA, Brem S, Desai AS, Bagley SJ, Kurz SC, De La Fuente MI, Nagpal S, Welch MR, Hormigo A, Forsyth P, et al: LTBK-01. INO-5401 AND INO-9012 delivered intramuscularly (IM) with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma. Neuro Oncol. 22:ii2372020. View Article : Google Scholar | |
|
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL and Griffith M: Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 11:562019. View Article : Google Scholar : PubMed/NCBI | |
|
You Y, Ru X, Lei W, Li T, Xiao M, Zheng H, Chen Y and Zhang L: Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics. 21 (Suppl 13):S3832020. View Article : Google Scholar | |
|
Shi J: Machine learning and bioinformatics approaches for classification and clinical detection of bevacizumab responsive glioblastoma subtypes based on miRNA expression. Sci Rep. 12:86852022. View Article : Google Scholar : PubMed/NCBI |