
Application of multivalent aptamers in tumor diagnosis, analysis and therapy (Review)
- Authors:
- Hongyue Zeng
- Wenjing Zeng
- Yaoyao Liang
-
Affiliations: Department of Oncology, The Second Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China - Published online on: May 2, 2025 https://doi.org/10.3892/ol.2025.15071
- Article Number: 325
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Wei W, Zeng H, Zheng R, Zhang S, An L, Chen R, Wang S, Sun K, Matsuda T, Bray F and He J: Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 21:e342–e349. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu J and Gao D: Recent advances in aptamer-based microfluidic biosensors for the isolation, signal amplification and detection of exosomes. Sensors (Basel). 25:8482025. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Jiang H and Wang X: Advances in cancer research: Current and future diagnostic and therapeutic strategies. Biosensors (Basel). 14:1002024. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Li J, Salena BJ and Li Y: Aptamer and DNAzyme based colorimetric biosensors for pathogen detection. Angew Chem Int Ed Engl. 64:e2024187252025. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zeng X, Xiong Y, Shen C, Huang K and Chen P: Portable aptasensor based on parallel rolling circle amplification for tumor-derived exosomes liquid biopsy. Adv Sci (Weinh). 11:24033712024. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Zhang J, Wan H, Yan C and Xia F: Rationally designed multivalent aptamers targeting cell surface for biomedical applications. ACS Appl Mater Interfaces. 13:9369–9389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aiassa LV, Battaglia G and Rizzello L: The multivalency game ruling the biology of immunity. Biophys Rev (Melville). 4:0413062023. View Article : Google Scholar : PubMed/NCBI | |
Yeldell SB and Seitz O: Nucleic acid constructs for the interrogation of multivalent protein interactions. Chem Soc Rev. 49:6848–6865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yang X, Lee NZ and Cao X: Multivalent aptamer approach: Designs, strategies, and applications. Micromachines (Basel). 13:4362022. View Article : Google Scholar : PubMed/NCBI | |
Moradi Z, Abnous K, Taghdisi SM, Zamanian J, Moshiri M, Etemad D, Etemad L, Kesharwani P and Sahebkar A: Designing multivalent aptamers: Recent advancements in diagnostic and therapeutic approaches for cancer treatment. J Drug Delivery Sci Technol. 105:1066142025. View Article : Google Scholar | |
Duan Q, Jia H, Chen W, Qin C, Zhang K, Jia F, Fu T, Wei Y, Fan M, Wu Q and Tan W: Multivalent aptamer-based lysosome-targeting chimeras (LYTACs) platform for mono- or dual-targeted proteins degradation on cell surface. Adv Sci (Weinh). 11:23089242024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Peng Y, Yao L, Shang H, Zheng Z, Chen W and Xu J: Self-assembly of multivalent aptamer-tethered DNA monolayers dedicated to a fluorescence polarization-responsive circular isothermal strand displacement amplification for salmonella assay. Anal Chem. 95:2570–2578. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang GQ, Zhong LP, Yang N and Zhao YX: Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol. 25:3359–3369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Omer M, Andersen VL, Nielsen JS, Wengel J and Kjems J: Improved cancer targeting by multimerizing aptamers on nanoscaffolds. Mol Ther Nucleic Acids. 22:994–1003. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Sheng W and Fan ZH: An ensemble of aptamers and antibodies for multivalent capture of cancer cells. Chem Commun. 50:67222014. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li X, Gao H, Chen J and Jiang H: Progress in aptamer research and future applications. ChemistryOpen. e2024004632025.doi: 10.1002/open.202400463 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Sanjanwala D and Patravale V: Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discovery Today. 28:1035502023. View Article : Google Scholar : PubMed/NCBI | |
Kovacevic KD, Gilbert JC and Jilma B: Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev. 134:36–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vandghanooni S, Eskandani M, Barar J and Omidi Y: Bispecific therapeutic aptamers for targeted therapy of cancer: A review on cellular perspective. J Mol Med (Berl). 96:885–902. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu G and Chen X: Aptamer-based targeted therapy. Adv Drug Deliv Rev. 134:65–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM and Au L: Bispecific antibodies: Advancing precision oncology. Trends Cancer. 10:893–919. 2024. View Article : Google Scholar : PubMed/NCBI | |
Adachi T and Nakamura Y: Aptamers: A review of their chemical properties and modifications for therapeutic application. Molecules. 24:42292019. View Article : Google Scholar : PubMed/NCBI | |
Kumar Kulabhusan P, Hussain B and Yüce M: Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics. 12:6462020. View Article : Google Scholar : PubMed/NCBI | |
Mathavan S, Tam YJ, Mustaffa KMF and Tye GJ: Aptamer based immunotherapy: A potential solid tumor therapeutic. Front Immunol. 16:15365692025. View Article : Google Scholar : PubMed/NCBI | |
Lauridsen LH, Shamaileh HA, Edwards SL, Taran E and Veedu RN: Rapid one-step selection method for generating nucleic acid aptamers: Development of a DNA aptamer against α-bungarotoxin. PLoS One. 7:e417022012. View Article : Google Scholar : PubMed/NCBI | |
Ferreira D, Barbosa J, Sousa DA, Silva C, Melo LDR, Avci-Adali M, Wendel HP and Rodrigues LR: Selection of aptamers against triple negative breast cancer cells using high throughput sequencing. Sci Rep. 11:86142021. View Article : Google Scholar : PubMed/NCBI | |
Hwang CK, Chew EY, Cukras CA, Keenan TDL, Wong WT, Linehan WM, Chittiboina P, Pacak K and Wiley HE: Intravitreous treatment of severe ocular von Hippel-Lindau disease using a combination of the VEGF inhibitor, ranibizumab and PDGF inhibitor, E10030: Results from a phase 1/2 clinical trial. Clin Exp Ophthalmol. 49:1048–1059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Du Y, Zhuo Y and Qiu L: Functional nucleic acid-based live-cell fluorescence imaging. Front Chem. 8:5980132020. View Article : Google Scholar : PubMed/NCBI | |
He J, Duan Q, Ran C, Fu T, Liu Y and Tan W: Recent progress of aptamer-drug conjugates in cancer therapy. Acta Pharm Sin B. 13:1358–1370. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Hu B, Pei X, Li J, Qi D, Xu Y, Ou H, Wu Y, Xue L, Huang JH, et al: A non-G-quadruplex DNA aptamer targeting NCL for diagnosis and therapy in bladder cancer. Adv Healthc Mater. 12:e23007912023. View Article : Google Scholar : PubMed/NCBI | |
Yang LF, Ling M, Kacherovsky N and Pun SH: Aptamers 101: Aptamer discovery and in vitro applications in biosensors and separations. Chem Sci. 14:4961–4978. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Ma Y, Luo H, Abdullah R, Pan Y, Zhang Y, Zhong C, Zhang B and Zhang G: Peptide aptamer-paclitaxel conjugates for tumor targeted therapy. Pharmaceutics. 17:402024. View Article : Google Scholar : PubMed/NCBI | |
Lyu C, Khan IM and Wang Z: Capture-SELEX for aptamer selection: A short review. Talanta. 229:1222742021. View Article : Google Scholar : PubMed/NCBI | |
Cossu J, Ravelet C, Martel-Frachet V, Peyrin E and Boturyn D: Peptide-based CE-SELEX enables convenient isolation of aptamers specifically recognizing CD20-expressing cells. Bioorg Med Chem. 110:1178312024. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhao X, Liu H and Qu F: Low pH capillary electrophoresis application to improve capillary electrophoresis-systematic evolution of ligands by exponential enrichment. J Chromatogr A. 1364:289–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Zhao XY, Yang G and Qu F: Capillary electrophoresis involving in high efficiency screening for aptamers. Chin J Analytical Chemistry. 48:583–589. 2020. View Article : Google Scholar | |
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, et al: The application of aptamer in biomarker discovery. Biomark Res. 11:702023. View Article : Google Scholar : PubMed/NCBI | |
Lam SY, Lau HL and Kwok CK: Capture-SELEX: Selection strategy, aptamer identification, and biosensing application. Biosensors (Basel). 12:11422022. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Wen K, Citartan M and Lin Q: A comparative study of aptamer isolation by conventional and microfluidic strategies. Analyst. 148:787–798. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kubo T, Koike T, Ouchi T, Khaliq N, Sasaki E, Kuroda K, Ueda M, Hanaoka K and Nemoto N: In vitro selection of dye-fluorescence-enhancing peptide aptamer by cDNA display. Anal Biochem. 698:1157222025. View Article : Google Scholar : PubMed/NCBI | |
Jeddi I and Saiz L: Computational design of single-stranded DNA hairpin aptamers immobilized on a biosensor substrate. Sci Rep. 11:109842021. View Article : Google Scholar : PubMed/NCBI | |
Fan R, Tao X, Zhai X, Zhu Y, Li Y, Chen Y, Dong D, Yang S and Lv L: Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed Pharmacother. 161:1144442023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Lai BS and Juhas M: Recent advances in aptamer discovery and applications. Molecules. 24:9412019. View Article : Google Scholar : PubMed/NCBI | |
Vorobyeva M, Vorobjev P and Venyaminova A: Multivalent aptamers: Versatile tools for diagnostic and therapeutic applications. Molecules. 21:16132016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Y, Li PC, Guo J, Huo F, Yang J, Jia R, Wang J, Huang Q, Theodorescu D, et al: Development of novel aptamer-based targeted chemotherapy for bladder cancer. Cancer Res. 82:1128–1139. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K, Horiguchi Y and Nagasaki Y: A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst. 138:2863–2870. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moreira D, Leitão D, Lopes-Nunes J, Santos T, Figueiredo J, Miranda A, Alexandre D, Tomaz C, Mergny JL and Cruz C: G-quadruplex aptamer-ligand characterization. Molecules. 27:67812022. View Article : Google Scholar : PubMed/NCBI | |
Schmidt C, Kammel A, Tanner JA, Kinghorn AB, Khan MM, Lehmann W, Menger M, Schedler U, Schierack P and Rödiger S: A multiparametric fluorescence assay for screening aptamer-protein interactions based on microbeads. Sci Rep. 12:29612022. View Article : Google Scholar : PubMed/NCBI | |
O'Connell GC and Smothers CG: Optimized methodology for product recovery following emulsion PCR: Applications for amplification of aptamer libraries and other complex templates. J Biol Methods. 7:e1282020.PubMed/NCBI | |
Zheng X, Gao S, Wu J and Hu X: Recent advances in aptamer-based biosensors for detection of pseudomonas aeruginosa. Front Microbiol. 11:6052292020. View Article : Google Scholar : PubMed/NCBI | |
Salunkhe S, Dheeraj, Basak M, Chitkara D and Mittal A: Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J Control Release. 326:599–614. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park NJ, Wang X, Diaz A, Goos-Root DM, Bock C, Vaught JD, Sun W and Strom CM: Measurement of cetuximab and panitumumab-unbound serum EGFR extracellular domain using an assay based on slow off-rate modified aptamer (SOMAmer) reagents. PLoS One. 8:e717032013. View Article : Google Scholar : PubMed/NCBI | |
Kelly L, Maier KE, Yan A and Levy M: A comparative analysis of cell surface targeting aptamers. Nat Commun. 12:62752021. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Hu L, Zhang BT, Lu A, Wang Y, Yu Y and Zhang G: Artificial intelligence in aptamer-target binding prediction. Int J Mol Sci. 22:36052021. View Article : Google Scholar : PubMed/NCBI | |
Stuber A and Nakatsuka N: Aptamer renaissance for neurochemical biosensing. ACS Nano. 18:2552–2563. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Zheng X, Jiao B and Wang L: Post-SELEX optimization of aptamers. Anal Bioanal Chem. 408:4567–4573. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C and Tan W: Aptamer-based detection of circulating targets for precision medicine. Chem Rev. 121:12035–12105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miao Y, Fu C, Yu Z, Yu L, Tang Y and Wei M: Current status and trends in small nucleic acid drug development: Leading the future. Acta Pharm Sin B. 14:3802–3817. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tabuchi Y, Yang J and Taki M: Relative nuclease resistance of a DNA aptamer covalently conjugated to a target protein. Int J Mol Sci. 23:77782022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dong Q, Xiao J, Fang X, Huang W, Li Q, Chen Z, Liu H and Tan W: In-vivo polyvalent simpleaptamer@protein-based nanocarrier with synergistic charge effect for high drug loading, high nuclease resistance, and high receptor accessibility. CCS Chem. 1–13. 2024. View Article : Google Scholar | |
Zhang Y, Zhang H, Chan DWH, Ma Y, Lu A, Yu S, Zhang B and Zhang G: Strategies for developing long-lasting therapeutic nucleic acid aptamer targeting circulating protein: The present and the future. Front Cell Dev Biol. 10:10481482022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Wang L, Ni S, Li D, Liu J, Chu HY, Zhang N, Sun M, Li N, Ren Q, et al: Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun. 13:42412022. View Article : Google Scholar : PubMed/NCBI | |
Camorani S, Caliendo A, Morrone E, Agnello L, Martini M, Cantile M, Cerrone M, Zannetti A, La Deda M, Fedele M, et al: Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: Implications for precision phototherapies. J Exp Clin Cancer Res. 43:922024. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Wang J, Bing T, Liu X and Shangguan D: Transferrin receptor-mediated internalization and intracellular fate of conjugates of a DNA aptamer. Mol Ther Nucleic Acids. 27:1249–1259. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Pan T, Da W, Liu Y, Chen S, Chen D, Liu K, Zheng Y, Xie D, Gao Y, et al: Aptamer-drug conjugates-loaded bacteria for pancreatic cancer synergistic therapy. Sig Transduct Target Ther. 9:2722024. View Article : Google Scholar : PubMed/NCBI | |
Safarkhani M, Ahmadi S, Ipakchi H, Saeb MR, Makvandi P, Ebrahimi Warkiani M, Rabiee N and Huh Y: Advancements in aptamer-driven DNA nanostructures for precision drug delivery. Adv Sci (Weinh). 11:e24016172024. View Article : Google Scholar : PubMed/NCBI | |
Papaefthymiou A, Doukatas A and Galanopoulos M: Pancreatic cancer and oligonucleotide therapy: Exploring novel therapeutic options and targeting chemoresistance. Clin Res Hepatol Gastroenterol. 46:1019112022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Tan M, Wang Y, Liu X and Lin A: Advances in modification and delivery of nucleic acid drugs. Zhejiang Da Xue Xue Bao Yi Xue Ban. 52:417–428. 2023.(In English, Chinese). PubMed/NCBI | |
Pfeiffer F, Rosenthal M, Siegl J, Ewers J and Mayer G: Customised nucleic acid libraries for enhanced aptamer selection and performance. Curr Opin Biotechnol. 48:111–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Lu B, Deng Y, Yang N and Li G: A dual-recognition-controlled electrochemical biosensor for accurate and sensitive detection of specific circulating tumor cells. Biosens Bioelectron. 201:1139732022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Z, Gu J, Amini R, Mansfield AG, Xia J, White D, Stacey HD, Ang JC, Panesar G, et al: Three on three: Universal and high-affinity molecular recognition of the symmetric homotrimeric spike protein of SARS-CoV-2 with a symmetric homotrimeric aptamer. J Am Chem Soc. 144:23465–23473. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ge Z, Guo L, Wu G, Li J, Sun Y, Hou Y, Shi J, Song S, Wang L, Fan C, et al: DNA origami-enabled engineering of ligand-drug conjugates for targeted drug delivery. Small. 16:e19048572020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu X, Wei D, Zhou H, Zhu J, Yu Q, Luo L, Dai X, Jiang Y, Yu L, et al: Polyvalent aptamer nanodrug conjugates enable efficient tumor cuproptosis therapy through copper overload and glutathione depletion. J Am Chem Soc. 146:30033–30045. 2024. View Article : Google Scholar : PubMed/NCBI | |
Eilers A, Witt S and Walter J: Aptamer-modified nanoparticles in medical applications. Aptamers in Biotechnology. vol. 174. Urmann K and Walter JG: Springer International Publishing; Cham: pp. 161–193. 2020, View Article : Google Scholar | |
Diao W, Yang B, Sun S, Wang A, Kou R, Ge Q, Shi M, Lian B, Sun T, Wu J, et al: PNA-modified liposomes improve the delivery efficacy of CAPIRI for the synergistic treatment of colorectal cancer. Front Pharmacol. 13:8931512022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wei X, Wu CX, Men X, Wang J, Bai JJ, Sun XY, Wang Y, Yang T, Lim CT, et al: Multiplex profiling of biomarker and drug uptake in single cells using microfluidic flow cytometry and mass spectrometry. ACS Nano. 18:6612–6622. 2024. View Article : Google Scholar : PubMed/NCBI | |
Amini R, Ma J, Zhang Z, Wang Q, Gu J, Soleymani L and Li Y: Dimeric DNA aptamers for the spike protein of SARS-CoV-2 derived from a structured library with dual random domains. Small Methods. Dec 20;e24016002024.doi: 10.1002/smtd.202401600 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Yang J, Li X, Jiang B, Yuan R and Xiang Y: In situ-generated multivalent aptamer network for efficient capture and sensitive electrochemical detection of circulating tumor cells in whole blood. Anal Chem. 92:7893–7899. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su N, Zhang J, Liu W, Zheng H, Li M, Zhao J, Gao M and Zhang X: Specific isolation and quantification of PD-L1 positive tumor derived exosomes for accurate breast cancer discrimination via aptamer-functionalized magnetic composites and SERS immunoassay. Talanta. 281:1269562025. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Zhou Y, Shen M, Zhao D, Hu H, Zeng S, Sun L and Cai S: MUC1 detection and in situ imaging method based on aptamer conformational switch and hybridization chain reaction. Talanta. 239:1231292022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Tyagi D, Lyu M, Carrier AJ, Nganou C, Youden B, Wang W, Cui S, Servos M, Oakes K, et al: Regenerative NanoOctopus based on multivalent-aptamer-functionalized magnetic microparticles for effective cell capture in whole blood. Anal Chem. 91:4017–4022. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang B, Wu X, Wang F, Yang Z, Li M, Sheng K, Yan Y, Zhu L, Jing H, et al: A facile liquid biopsy assay for highly efficient CTCs capture and reagent-less monitoring of immune checkpoint PD-L1 expression on CTCs with non-small cell lung cancer patients. Biosens Bioelectron. 275:1172362025. View Article : Google Scholar : PubMed/NCBI | |
Ueki R, Uchida S, Kanda N, Yamada N, Ueki A, Akiyama M, Toh K, Cabral H and Sando S: A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. Sci Adv. 6:eaay28012020. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Qiao Z, Tang J, He X, Shi H, Ye X, Yan L, He D and Wang K: DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics. 8:4062–4071. 2018. View Article : Google Scholar : PubMed/NCBI | |
Menon AP, Villanueva H, Meraviglia-Crivelli D, van Santen HM, Hellmeier J, Zheleva A, Nonateli F, Peters T, Wachsmann TLA, Hernandez-Rueda M, et al: CD3 aptamers promote expansion and persistence of tumor-reactive T cells for adoptive T cell therapy in cancer. Mol Ther Nucleic Acids. 35:1021982024. View Article : Google Scholar : PubMed/NCBI | |
Zlinska V, Feketova Z, Czyrek A, Chudzian J, Zivkovic ML, Ursachi VC, Dudeja P, Fafilek B, Rynes J, Rico-Llanos G, et al: Specific inhibition of fibroblast growth factor receptor 1 signaling by a DNA aptamer. Mol Ther Nucleic Acids. 36:1024052025. View Article : Google Scholar : PubMed/NCBI | |
Zschäbitz S and Grüllich C: Lenvantinib: A tyrosine kinase inhibitor of VEGFR 1–3, FGFR 1–4, PDGFRα, KIT and RET. Small Molecules in Oncology. vol. 211. Martens UM: Springer International Publishing; Cham: pp. 187–198. 2018, View Article : Google Scholar | |
Shapir Itai Y, Barboy O, Salomon R, Bercovich A, Xie K, Winter E, Shami T, Porat Z, Erez N, Tanay A, et al: Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell. 187:375–389.e18. 2024. View Article : Google Scholar : PubMed/NCBI | |
De Assis LH, Fassi DE and Hutchings M: Bispecific antibody therapies. Hematology Am Soc Hematol Educ Program. 2023:216–222. 2023. View Article : Google Scholar : PubMed/NCBI | |
Thomas BJ, Porciani D and Burke DH: Cancer immunomodulation using bispecific aptamers. Mol Ther Nucleic Acids. 27:894–915. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Mo L, Hu X, Yu D, Xie S, Li J, Zhao Z, Fang X, Ye M, Qiu L, et al: Bispecific aptamer-based recognition-then-conjugation strategy for PD1/PDL1 axis blockade and enhanced immunotherapy. ACS Nano. 16:21129–21138. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shalata W, Weissmann S, Itzhaki Gabay S, Sheva K, Abu Saleh O, Jama AA, Yakobson A and Rouvinov K: A retrospective, single-institution experience of bullous pemphigoid as an adverse effect of immune checkpoint inhibitors. Cancers (Basel). 14:54512022. View Article : Google Scholar : PubMed/NCBI | |
Ji P, Gong Y, Jin ML, Wu HL, Guo LW, Pei YC, Chai WJ, Jiang YZ, Liu Y, Ma XY, et al: In vivo multidimensional CRISPR screens identify Lgals2 as an immunotherapy target in triple-negative breast cancer. Sci Adv. 8:eabl82472022. View Article : Google Scholar : PubMed/NCBI | |
Ayass MA, Tripathi T, Griko N, Okyay T, Ramankutty Nair R, Zhang J, Zhu K, Melendez K, Pashkov V and Abi-Mosleh L: Dual checkpoint aptamer immunotherapy: Unveiling tailored cancer treatment targeting CTLA-4 and NKG2A. Cancers (Basel). 16:10412024. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Mao D, Wang X, Chen J, Gu C, Huang S, Yang Y, Zhang F and Tan W: Aptamer-based self-assembled nanomicelle enables efficient and targeted drug delivery. J Nanobiotechnol. 21:4152023. View Article : Google Scholar | |
Choi SI, Lee YS, Lee YM, Kim HJ, Kim WJ, Jung S, Im JE, Lee MR, Kim JK, Jeon AR, et al: Complexation of drug and hapten-conjugated aptamer with universal hapten antibody for pancreatic cancer treatment. J Control Release. 360:940–952. 2023. View Article : Google Scholar : PubMed/NCBI | |
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C and Amero P: Aptamers as potential therapeutic tools for ovarian cancer: Advancements and challenges. Cancers (Basel). 15:53002023. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Wang Z, Fu T, Zheng L, Wu H, He L, Huang H, Yang C, Wang R, Qian X, et al: Engineering aptamers with selectively enhanced biostability in the tumor microenvironment. Angew Chem Int Ed Engl. 61:e2022012202022. View Article : Google Scholar : PubMed/NCBI | |
Mojarad-Jabali S, Farshbaf M, Walker PR, Hemmati S, Fatahi Y, Zakeri-Milani P, Sarfraz M and Valizadeh H: An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm. 602:1206452021. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg JE, Bambury RM, Van Allen EM, Drabkin HA, Lara PN Jr, Harzstark AL, Wagle N, Figlin RA, Smith GW, Garraway LA, et al: A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs. 32:178–187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giordano FA, Layer JP, Leonardelli S, Friker LL, Turiello R, Corvino D, Zeyen T, Schaub C, Müller W, Sperk E, et al: L-RNA aptamer-based CXCL12 inhibition combined with radiotherapy in newly-diagnosed glioblastoma: Dose escalation of the phase I/II GLORIA trial. Nat Commun. 15:42102024. View Article : Google Scholar : PubMed/NCBI |