Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2025 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method

  • Authors:
    • Tao Wang
    • Xingru Tang
    • Jun Du
    • Yongqian Jia
    • Weiwei Mou
    • Guang Lu
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Clinical Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China, Department of Hematology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200001, P.R. China, Department of Pediatrics, Shengli Oilfield Central Hospital, Dongying, Shandong 257099, P.R. China, Department of Hematology, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 334
    |
    Published online on: May 9, 2025
       https://doi.org/10.3892/ol.2025.15080
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Accurate quantitative assessment using gadolinium‑contrast magnetic resonance imaging (MRI) is crucial in therapy planning, surveillance and prognostic assessment of primary central nervous system lymphoma (PCNSL). The present study aimed to develop a multimodal artificial intelligence deep learning segmentation model to address the challenges associated with traditional 2D measurements and manual volume assessments in MRI. Data from 49 pathologically‑confirmed patients with PCNSL from six Chinese medical centers were analyzed, and regions of interest were manually segmented on contrast‑enhanced T1‑weighted and T2‑weighted MRI scans for each patient, followed by fully automated voxel‑wise segmentation of tumor components using a 3‑dimenstional convolutional deep neural network. Furthermore, the efficiency of the model was evaluated using practical indicators and its consistency and accuracy was compared with traditional methods. The performance of the models were assessed using the Dice similarity coefficient (DSC). The Mann‑Whitney U test was used to compare continuous clinical variables and the χ2 test was used for comparisons between categorical clinical variables. T1WI sequences exhibited the optimal performance (training dice: 0.923, testing dice: 0.830, outer validation dice: 0.801), while T2WI showed a relatively poor performance (training dice of 0.761, a testing dice of 0.647, and an outer validation dice of 0.643. In conclusion, the automatic multi‑sequences MRI segmentation model for PCNSL in the present study displayed high spatial overlap ratio and similar tumor volume with routine manual segmentation, indicating its significant potential.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Villano JL, Shaikh H, Dolecek TA and McCarthy BJ: Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer. 105:1414–1418. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Chukwueke U, Grommes C and Nayak L: Primary central nervous system lymphomas. Hematol Oncol Clin North Am. 36:147–159. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Morales-Martinez A, Nichelli L, Hernandez-Verdin I, Houillier C, Alentorn A and Hoang-Xuan K: Prognostic factors in primary central nervous system lymphoma. Curr Opin Oncol. 34:676–684. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Schaff LR and Grommes C: Primary central nervous system lymphoma. Blood. 140:971–979. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Lukas RV, Stupp R, Gondi V and Raizer JJ: Primary central nervous system Lymphoma-PART 1: Epidemiology, diagnosis, staging, and prognosis. Oncology (Williston Park). 32:17–22. 2018.PubMed/NCBI

6 

Sangeetha SKB, Muthukumaran V, Deeba K, Rajadurai H, Maheshwari V and Dalu GT: Multiconvolutional transfer learning for 3D brain tumor magnetic resonance images. Comput Intell Neurosci. 2022:87224762022. View Article : Google Scholar : PubMed/NCBI

7 

Sadad T, Rehman A, Munir A, Saba T, Tariq U, Ayesha N and Abbasi R: Brain tumor detection and multi-classification using advanced deep learning techniques. Microsc Res Tech. 84:1296–1308. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Abd-Ellah MK, Awad AI, Khalaf AAM and Hamed HFA: A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magn Reson Imaging. 61:300–318. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Lu G, Zhang Y, Wang W, Miao L and Mou W: Machine learning and deep learning CT-based models for predicting the primary central nervous system lymphoma and glioma types: A multicenter retrospective study. Front Neurol. 13:9052272022. View Article : Google Scholar : PubMed/NCBI

10 

Xia W, Hu B, Li H, Shi W, Tang Y, Yu Y, Geng C, Wu Q, Yang L, Yu Z, et al: Deep learning for automatic differential diagnosis of primary central nervous system lymphoma and glioblastoma: Multi-parametric magnetic resonance imaging based convolutional neural network model. J Magn Reson Imaging. 54:880–887. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Pennig L, Hoyer UCI, Goertz L, Shahzad R, Persigehl T, Thiele F, Perkuhn M, Ruge MI, Kabbasch C, Borggrefe J, et al: Primary central nervous system lymphoma: Clinical evaluation of automated segmentation on multiparametric MRI using deep learning. J Magn Reson Imaging. 53:259–268. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Ramadan S, Radice T, Ismail A, Fiori S and Tarella C: Advances in therapeutic strategies for primary CNS B-cell lymphomas. Expert Rev Hematol. 15:295–304. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Batchelor TT: Primary central nervous system lymphoma. Hematology Am Soc Hematol Educ Program. 2016:379–385. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Bonm AV, Ritterbusch R, Throckmorton P and Graber JJ: Clinical imaging for diagnostic challenges in the management of gliomas: A review. J Neuroimaging. 30:139–145. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Huang RY, Bi WL, Griffith B, Kaufmann TJ, la Fougère C, Schmidt NO, Tonn JC, Vogelbaum MA, Wen PY, Aldape K, et al: Imaging and diagnostic advances for intracranial meningiomas. Neuro Oncol. 21:i44–i61. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Yadav AS, Kumar S, Karetla GR, Cotrina-Aliaga JC, Arias-Gonzáles JL, Kumar V, Srivastava S, Gupta R, Ibrahim S, Paul R, et al: A feature extraction using probabilistic neural network and BTFSC-Net model with deep learning for brain tumor classification. J Imaging. 9:102022. View Article : Google Scholar : PubMed/NCBI

17 

ZainEldin H, Gamel SA, El-Kenawy EM, Alharbi AH, Khafaga DS, Ibrahim A and Talaat FM: Brain tumor detection and classification using deep learning and Sine-cosine fitness grey wolf optimization. Bioengineering (Basel). 10:182022. View Article : Google Scholar : PubMed/NCBI

18 

Taher F, Shoaib MR, Emara HM, Abdelwahab KM, Abd El-Samie FE and Haweel MT: Efficient framework for brain tumor detection using different deep learning techniques. Front Public Health. 10:9596672022. View Article : Google Scholar : PubMed/NCBI

19 

Hwang K, Park J, Kwon YJ, Cho SJ, Choi BS, Kim J, Kim E, Jang J, Ahn KS, Kim S and Kim CY: Fully automated segmentation models of supratentorial meningiomas assisted by inclusion of normal brain images. J Imaging. 8:3272022. View Article : Google Scholar : PubMed/NCBI

20 

Dang K, Vo T, Ngo L and Ha H: A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neurosci Rep. 13:523–532. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Lin YY, Guo WY, Lu CF, Peng SJ, Wu YT and Lee CC: Application of artificial intelligence to stereotactic radiosurgery for intracranial lesions: Detection, segmentation, and outcome prediction. J Neurooncol. 161:441–450. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Laukamp KR, Pennig L, Thiele F, Reimer R, Görtz L, Shakirin G, Zopfs D, Timmer M, Perkuhn M and Borggrefe J: Automated meningioma segmentation in multiparametric MRI: comparable effectiveness of a deep learning model and manual segmentation. Clin Neuroradiol. 31:357–366. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, et al: Automatic assessment of glioma burden: A deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol. 21:1412–1422. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Peng J, Luo H, Zhao G, Lin C, Yi X and Chen S: A Review of medical image segmentation algorithms based on deep learning. Computer Engineering Appl. 57:44–57. 2021.(In Chinese).

25 

Latif G: DeepTumor: Framework for brain MR image classification, segmentation and tumor detection. Diagnostics (Basel). 12:28882022. View Article : Google Scholar : PubMed/NCBI

26 

Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, et al: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: A multicentre, retrospective study. Lancet Oncol. 20:728–740. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Isensee F, Jaeger PF, Kohl SAA, Petersen J and Maier-Hein KH: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 18:203–211. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Pemberton HG, Wu J, Kommers I, Müller DMJ, Hu Y, Goodkin O, Vos SB, Bisdas S, Robe PA, Ardon H, et al: Multi-class glioma segmentation on real-world data with missing MRI sequences: Comparison of three deep learning algorithms. Sci Rep. 13:189112023. View Article : Google Scholar : PubMed/NCBI

29 

Ganesan P, Feng R, Deb B, Tjong FVY, Rogers AJ, Ruipérez-Campillo S, Somani S, Clopton P, Baykaner T, Rodrigo M, et al: Novel domain Knowledge-encoding algorithm enables Label-efficient deep learning for cardiac CT segmentation to guide atrial fibrillation treatment in a pilot dataset. Diagnostics (Basel). 14:15382024. View Article : Google Scholar : PubMed/NCBI

30 

Fazekas F, Chawluk JB, Alavi A, Hurtig HI and Zimmerman RA: MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 149:351–356. 1987. View Article : Google Scholar : PubMed/NCBI

31 

Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S and Maier-Hein KH: nnU-Net: Self-adapting framework for U-Net-based medical image segmentation. ArXiv. abs/1809.10486. 2018.

32 

Perkuhn M, Stavrinou P, Thiele F, Shakirin G, Mohan M, Garmpis D, Kabbasch C and Borggrefe J: Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine. Invest Radiol. 53:647–654. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, et al: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 34:1993–2024. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, Staib LH, Kocher M, Chapiro J and Lin M: Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdom Radiol (NY). 46:216–225. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Naser PV, Maurer MC, Fischer M, Karimian-Jazi K, Ben-Salah C, Bajwa AA, Jakobs M, Jungk C, Jesser J, Bendszus M, et al: Deep learning aided preoperative diagnosis of primary central nervous system lymphoma. iScience. 27:1090232024. View Article : Google Scholar : PubMed/NCBI

36 

Cassinelli Petersen GI, Shatalov J, Verma T, Brim WR, Subramanian H, Brackett A, Bahar RC, Merkaj S, Zeevi T, Staib LH, et al: Machine learning in differentiating gliomas from primary CNS lymphomas: A systematic review, reporting quality, and risk of bias assessment. AJNR Am J Neuroradiol. 43:526–533. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M and Batchelor TT: Primary central nervous system lymphoma. Nat Rev Dis Primers. 9:292023. View Article : Google Scholar : PubMed/NCBI

38 

Gill CM, Loewenstern J, Rutland JW, Arib H, Pain M, Umphlett M, Kinoshita Y, McBride RB, Bederson J, Donovan M, et al: Peritumoral edema correlates with mutational burden in meningiomas. Neuroradiology. 63:73–80. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Reszec J, Hermanowicz A, Rutkowski R, Turek G, Mariak Z and Chyczewski L: Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. Biomed Res Int. 2015:6468532015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang T, Tang X, Du J, Jia Y, Mou W and Lu G: Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method. Oncol Lett 30: 334, 2025.
APA
Wang, T., Tang, X., Du, J., Jia, Y., Mou, W., & Lu, G. (2025). Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method. Oncology Letters, 30, 334. https://doi.org/10.3892/ol.2025.15080
MLA
Wang, T., Tang, X., Du, J., Jia, Y., Mou, W., Lu, G."Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method". Oncology Letters 30.1 (2025): 334.
Chicago
Wang, T., Tang, X., Du, J., Jia, Y., Mou, W., Lu, G."Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method". Oncology Letters 30, no. 1 (2025): 334. https://doi.org/10.3892/ol.2025.15080
Copy and paste a formatted citation
x
Spandidos Publications style
Wang T, Tang X, Du J, Jia Y, Mou W and Lu G: Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method. Oncol Lett 30: 334, 2025.
APA
Wang, T., Tang, X., Du, J., Jia, Y., Mou, W., & Lu, G. (2025). Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method. Oncology Letters, 30, 334. https://doi.org/10.3892/ol.2025.15080
MLA
Wang, T., Tang, X., Du, J., Jia, Y., Mou, W., Lu, G."Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method". Oncology Letters 30.1 (2025): 334.
Chicago
Wang, T., Tang, X., Du, J., Jia, Y., Mou, W., Lu, G."Establishment and evaluation of an automatic multi‑sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU‑Net deep learning network method". Oncology Letters 30, no. 1 (2025): 334. https://doi.org/10.3892/ol.2025.15080
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team