|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Pienta KJ, Goodin PL and Amend SR:
Defeating lethal cancer: Interrupting the ecologic and evolutionary
basis of death from malignancy. CA Cancer J Clin. 75:183–202.
2025.PubMed/NCBI
|
|
3
|
Pilleron S, Soto-Perez-de-Celis E, Vignat
J, Ferlay J, Soerjomataram I, Bray F and Sarfati D: Estimated
global cancer incidence in the oldest adults in 2018 and
projections to 2050. Int J Cancer. 148:601–608. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025.PubMed/NCBI
|
|
5
|
Yang J, Sun W and Cui G: Roles of the NR2F
family in the development, disease, and cancer of the lung. J Dev
Biol. 12:242024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sajinovic T and Baier G: New Insights Into
The Diverse Functions of the NR2F nuclear orphan receptor family.
Front Biosci (Landmark Ed). 28:132023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Erdős E and Bálint BL: NR2F2 orphan
nuclear receptor is involved in estrogen receptor alpha-mediated
transcriptional regulation in luminal a breast cancer cells. Int J
Mol Sci. 21:19102020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Baumel-Alterzon S, Katz LS, Lambertini L,
Tse I, Heidery F, Garcia-Ocaña A and Scott DK: NRF2 is required for
neonatal mouse beta cell growth by maintaining redox balance and
promoting mitochondrial biogenesis and function. Diabetologia.
67:547–560. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Estermann MA, Grimm SA, Kitakule AS,
Rodriguez KF, Brown PR, McClelland K, Amato CM and Yao HH: NR2F2
regulation of interstitial cell fate in the embryonic mouse testis
and its impact on differences of sex development. Nat Commun.
16:39872025. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Deshmukh S and Saini S: Phenotypic
heterogeneity in tumor progression, and its possible role in the
onset of cancer. Front Genet. 11:6045282020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pellarin I, Dall'Acqua A, Favero A,
Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B and
Baldassarre G: Cyclin-dependent protein kinases and cell cycle
regulation in biology and disease. Signal Transduct Target Ther.
10:112025. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Song G, Liu J, Tang X, Zhong J, Zeng Y,
Zhang X, Zhou J, Zhou J, Cao L, Zhang Q and Li Y: Cell cycle
checkpoint revolution: targeted therapies in the fight against
malignant tumors. Front Pharmacol. 15:14590572024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ma L, Huang M, Liao X, Cai X and Wu Q:
NR2F2 regulates cell proliferation and immunomodulation in
whartons' jelly stem cells. Genes (Basel). 13:14582022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hawkins SM, Loomans HA, Wan YW,
Ghosh-Choudhury T, Coffey D, Xiao W, Liu Z, Sangi-Haghpeykar H and
Anderson ML: Expression and functional pathway analysis of nuclear
receptor NR2F2 in ovarian cancer. J Clin Endocrinol Metab.
98:E1152–E1162. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zheng J, Qin W, Jiao D, Ren J, Wei M, Shi
S, Xi W, Wang H, Yang AG, Huan Y and Wen W: Knockdown of COUP-TFII
inhibits cell proliferation and induces apoptosis through
upregulating BRCA1 in renal cell carcinoma cells. Int J Cancer.
139:1574–1585. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xue L, Yang E, Gou J, Nie D, Yi T, Min W
and Li Z: MiR-142-3p may be involved in the development of solitary
and multiple uterine leiomyomasby interacting with CTNNB1 and
AXIN-2 through Wnt signaling pathway. Res Sq. 2020.
|
|
17
|
Yun SH, Han SH and Park JI: COUP-TFII
knock-down promotes proliferation and invasion in colorectal cancer
cells via activation of Akt pathway and up-regulation of FOXC1.
Anticancer Res. 40:177–190. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yun SH and Park JI: COUP-TFII
overexpression inhibits cell proliferation and invasion via
increased expression of p53 and PTEN and decreased Akt
phosphorylation in human colorectal cancer SNU-C4 cells. Anticancer
Res. 40:767–777. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lastra D, Escoll M and Cuadrado A:
Transcription factor NRF2 participates in cell cycle progression at
the level of G1/S and mitotic checkpoints. Antioxidants (Basel)
Antioxidants (Basel). 11:9462022.PubMed/NCBI
|
|
20
|
Ferreira LGA, Kizys MML, Gama GAC,
Pachernegg S, Robevska G, Sinclair AH, Ayers KL and Dias-da-Silva
MR: COUP-TFII regulates early bipotential gonad signaling and
commitment to ovarian progenitors. Cell Biosci. 14:32024.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhao G, Weiner AI, Neupauer KM, de Mello
Costa MF, Palashikar G, Adams-Tzivelekidis S, Mangalmurti NS and
Vaughan AE: Regeneration of the pulmonary vascular endothelium
after viral pneumonia requires COUP-TF2. Sci Adv. 6:eabc44932020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Abbaszadeh H, Ghorbani F, Derakhshani M,
Movassaghpour AA, Yousefi M, Talebi M and Shamsasenjan K:
Regenerative potential of Wharton's jelly-derived mesenchymal stem
cells: A new horizon of stem cell therapy. J Cell Physiol.
235:9230–9240. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Baghal-Sadriforoush S, Bagheri M, Abdi Rad
I and Sotoodehnejadnematalahi F: Melatonin sensitizes OVCAR-3 cells
to cisplatin through suppression of PI3K/Akt pathway. Cell Mol Biol
(Noisy-le-grand). 68:158–169. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mauri F, Schepkens C, Lapouge G, Drogat B,
Song Y, Pastushenko I, Rorive S, Blondeau J, Golstein S, Bareche Y,
et al: NR2F2 controls malignant squamous cell carcinoma state by
promoting stemness and invasion and repressing differentiation. Nat
Cancer. 2:1152–1169. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fang X, Liu CX, Zeng XR, Huang XM, Chen
WL, Wang Y and Ai F: Orphan nuclear receptor COUP-TFII is an
oncogenic gene in renal cell carcinoma. Clin Transl Oncol.
22:772–781. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y,
Wang Z, Zhai Z, Tanzhu G, Yang J and Zhou R: Cancer stem cells:
Advances in knowledge and implications for cancer therapy. Signal
Transduct Target Ther. 9:1702024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bayik D and Lathia JD: Cancer stem
cell-immune cell crosstalk in tumour progression. Nat Rev Cancer.
21:526–536. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Huang B, Yan X and Li Y: Cancer stem cell
for tumor therapy. Cancers (Basel). 13:48142021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
de Sousa e Melo F, Kurtova AV, Harnoss JM,
Kljavin N, Hoeck JD, Hung J, Anderson JE, Storm EE, Modrusan Z,
Koeppen H, et al: A distinct role for Lgr5+ stem cells
in primary and metastatic colon cancer. Nature. 543:676–680. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu X, Taftaf R, Kawaguchi M, Chang YF,
Chen W, Entenberg D, Zhang Y, Gerratana L, Huang S, Patel DB, et
al: Homophilic CD44 interactions mediate tumor cell aggregation and
polyclonal metastasis in patient-derived breast cancer models.
Cancer Discov. 9:96–113. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nallasamy P, Nimmakayala RK, Parte S, Are
AC, Batra SK and Ponnusamy MP: Tumor microenvironment enriches the
stemness features: The architectural event of therapy resistance
and metastasis. Mol Cancer. 21:2252022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lee HC, Ou CH, Huang YC, Hou PC, Creighton
CJ, Lin YS, Hu CY and Lin SC: Correction: YAP1 overexpression
contributes to the development of enzalutamide resistance by
induction of cancer stemness and lipid metabolism in prostate
cancer. Oncogene. 40:40602021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mohammadipoor A, Hershfield MR,
Linsenbardt HR, Smith J, Mack J, Natesan S, Averitt DL, Stark TR
and Sosanya NM: Biological function of extracellular vesicles
(EVs): A review of the field. Mol Biol Rep. 50:8639–8651. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li HL, Wei JF, Fan LY, Wang SH, Zhu L, Li
TP, Lin G, Sun Y, Sun ZJ, Ding J, et al: miR-302 regulates
pluripotency, teratoma formation and differentiation in stem cells
via an AKT1/OCT4-dependent manner. Cell Death Dis. 7:e20782016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lambert AW, Pattabiraman DR and Weinberg
RA: Emerging biological principles of metastasis. Cell.
168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bakir B, Chiarella AM, Pitarresi JR and
Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell
Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jinesh GG and Brohl AS: Classical
epithelial-mesenchymal transition (EMT) and alternative cell death
process-driven blebbishield metastatic-witch (BMW) pathways to
cancer metastasis. Signal Transduct Target Ther. 7:2962022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Torrente L, Maan G, Oumkaltoum Rezig A,
Quinn J, Jackson A, Grilli A, Casares L, Zhang Y, Kulesskiy E,
Saarela J, et al: High NRF2 levels correlate with poor prognosis in
colorectal cancer patients and with sensitivity to the kinase
inhibitor AT9283 in vitro. Biomolecules. 10:13652020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang H, Nie L, Wu L, Liu Q and Guo X:
NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent
epithelial-mesenchymal transition of CRC via transactivation of
miR-21. Biochem Biophys Res Commun. 485:181–188. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Feng K, Huang W, Shang J, Ping F, Tan Q,
Wang W, Li Y and Cao Y: Knockdown of lncRNA-ASLNC12002 alleviates
epithelial-mesenchymal transition of type II alveolar epithelial
cells in sepsis-induced acute respiratory distress syndrome. Hum
Cell. 36:568–582. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Davalos V, Lovell CD, Von Itter R,
Dolgalev I, Agrawal P, Baptiste G, Kahler DJ, Sokolova E, Moran S,
Piqué L, et al: An epigenetic switch controls an alternative NR2F2
isoform that unleashes a metastatic program in melanoma. Nat
Commun. 14:18672023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lang Q, Xiao P, Zhao M, Liang D, Meng Q
and Pei T: COUP-TFII promotes metastasis and
epithelial-to-mesenchymal transition through upregulating Snail in
human intrahepatic cholangiocarcinoma. Acta Biochim Biophys Sin
(Shanghai). 52:1247–1256. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jiang Y, Liu X, Shen R, Gu X and Qian W:
Fbxo21 regulates the epithelial-to-mesenchymal transition through
ubiquitination of Nr2f2 in gastric cancer. J Cancer. 12:1421–1430.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shao Y, Chan Y, Zhang C, Zhao R and Zu Y:
Dihydroartemisinin modulates prostate cancer progression by
regulating multiple genes via the transcription factor NR2F2. Curr
Pharm Biotechnol. 26:935–955. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xia B, Hou L, Kang H, Chang W, Liu Y,
Zhang Y and Ding Y: NR2F2 plays a major role in insulin-induced
epithelial-mesenchymal transition in breast cancer cells. BMC
Cancer. 20:6262020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liang Q, Xu Z, Liu Y, Peng B, Cai Y, Liu W
and Yan Y: NR2F1 regulates TGF-β1-mediated epithelial-mesenchymal
transition affecting platinum sensitivity and immune response in
ovarian cancer. Cancers (Basel). 14:46392022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dienstmann R, Vermeulen L, Guinney J,
Kopetz S, Tejpar S and Tabernero J: Consensus molecular subtypes
and the evolution of precision medicine in colorectal cancer. Nat
Rev Cancer. 17:79–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tang XJ, Wang W and Hann SS: Interactions
among lncRNAs, miRNAs and mRNA in colorectal cancer. Biochimie.
163:58–72. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J,
Sun T and Wei J: Liquid biopsy in cancer current: Status,
challenges and future prospects. Signal Transduct Target Ther.
9:3362024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhou B, Song J, Han T, Huang M, Jiang H,
Qiao H, Shi J and Wang Y: MiR-382 inhibits cell growth and invasion
by targeting NR2F2 in colorectal cancer. Mol Carcinog.
55:2260–2267. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bao Y, Lu Y, Feng W, Yu H, Guo H, Tao Y,
Shi Q, Chen W and Wang X: COUP-TFII promotes epithelial-mesenchymal
transition by inhibiting miR-34a expression in colorectal cancer.
Int J Oncol. 54:1337–1344. 2019.PubMed/NCBI
|
|
52
|
Feng Q, Wu X, Li F, Ning B, Lu X, Zhang Y,
Pan Y and Guan W: miR-27b inhibits gastric cancer metastasis by
targeting NR2F2. Protein Cell. 8:114–122. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang W, Liu J, Qiu J, Fu X, Tang Q, Yang
F, Zhao Z and Wang H: MicroRNA-382 inhibits prostate cancer cell
proliferation and metastasis through targeting COUP-TFII. Oncol
Rep. 36:3707–3715. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Coan M, Haefliger S, Ounzain S and Johnson
R: Targeting and engineering long non-coding RNAs for cancer
therapy. Nat Rev Genet. 25:578–595. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sanchez Calle A, Kawamura Y, Yamamoto Y,
Takeshita F and Ochiya T: Emerging roles of long non-coding RNA in
cancer. Cancer Sci. 109:2093–2100. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ye J, He H, Chen S, Ren Y, Guo W and Jin
Z: Long non-coding RNA NR2F2-AS1 regulates human osteosarcoma
growth and metastasis through miR-425-5p-mediated HMGB2. Int J Clin
Oncol. 27:1891–1903. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu J, Qian J, Mo Q, Tang L and Xu Q:
LncRNA NR2F2-AS1 silencing induces cell cycle arrest in G0/G1 phase
via downregulating cyclin D1 in colorectal cancer. Cancer Manag
Res. 12:1835–1843. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu S, An G, Cao Q, Li T, Jia X and Lei L:
The miR-106b/NR2F2-AS1/PLEKHO2 axis regulates migration and
invasion of colorectal cancer through the MAPK pathway. Int J Mol
Sci. 22:58772021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu D, Huang K, Wang T, Zhang X, Liu W,
Yue X and Wu J: NR2F2-AS1 accelerates cell proliferation through
regulating miR-4429/MBD1 axis in cervical cancer. Biosci Rep.
40:BSR201942822020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen L, Zhang D, Ding T, Liu F, Xu X, Tian
Y, Xiao J and Shen H: LncRNA NR2F2-AS1 upregulates rac1 to increase
cancer stemness in clear cell renal cell carcinoma. Cancer Biother
Radiopharm. 35:301–306. 2020.PubMed/NCBI
|
|
61
|
Qin H and Qin C: Downregulation of long
non-coding RNA NR2F2-AS1 inhibits proliferation and induces
apoptosis of nasopharyngeal carcinoma cells by upregulating the
expression of PTEN. Oncol Lett. 19:1145–1150. 2020.PubMed/NCBI
|
|
62
|
Luo M, Deng S, Han T, Ou Y and Hu Y:
LncRNA NR2F2-AS1 functions as a tumor suppressor in gastric cancer
through targeting miR-320b/PDCD4 pathway. Histol Histopathol.
37:575–585. 2022.PubMed/NCBI
|
|
63
|
Qin SY, Li B, Liu JM, Lv QL and Zeng XL:
LncRNA NR2F2-AS1 inhibits the progression of oral squamous cell
carcinoma by mediating the miR-32-5p/SEMA3A axis. Kaohsiung J Med
Sci. 40:877–889. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liang Y, Wu X, Lee J, Yu D, Su J, Guo M,
Meng N, Qin J and Fan X: lncRNA NR2F2-AS1 inhibits the methylation
of miR-494 to regulate oral squamous cell carcinoma cell
proliferation. Arch Oral Biol. 134:1053162022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Polvani S, Pepe S, Milani S and Galli A:
COUP-TFII in health and disease. Cells. 9:1012019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang S, Zhang X, Sun Q, Zhuang C, Li G,
Sun L and Wang H: LncRNA NR2F2-AS1 promotes tumourigenesis through
modulating BMI1 expression by targeting miR-320b in non-small cell
lung cancer. J Cell Mol Med. 23:2001–2011. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu C, Li QG, Zhou Y, Cao YY, Wei ZX, Jin
YH, Wang X, Chen YY, Qi L, Geng JX and Liu F: LncRNA NR2F2-AS1
induces epithelial-mesenchymal transition of non-small cell lung
cancer by modulating BVR/ATF-2 pathway via regulating
miR-545-5p/c-Met axis. Am J Cancer Res. 11:4844–4865.
2021.PubMed/NCBI
|
|
68
|
Fu X, Wang D, Shu T, Cui D and Fu Q:
LncRNA NR2F2-AS1 positively regulates CDK4 to promote cancer cell
proliferation in prostate carcinoma. The Aging Male. 23:1073–1079.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xiao J, Liu H, Yao J, Yang S, Shen F, Bu
KP, Wang X, Liu F, Xia N, Yuan Q, et al: The characterization of
serum proteomics and metabolomics across the cancer trajectory in
chronic hepatitis B-related liver diseases. View. 5:202400312024.
View Article : Google Scholar
|
|
70
|
Yang X, Liu Y, Cao J, Wu C, Tang L, Bian
W, Chen Y, Yu L, Wu Y, Li S, et al: Targeting epigenetic and
post-translational modifications of NRF2: Key regulatory factors in
disease treatment. Cell Death Discov. 11:1892025. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang R, Yang S, Wang M, Zhou Y, Li X, Chen
W, Liu W, Huang Y, Wu J, Jing C, et al: A sustainable approach to
universal metabolic cancer diagnosis. Nat Sustain. 7:602–615. 2024.
View Article : Google Scholar
|
|
72
|
Cai Y, Zhao P, Wu F, Zhao H, Shao H, Marra
A, Patel P, O'Connell E, Fink E, Miele MM, et al: Inhibition of
NR2F2 restores hormone therapy response to endocrine refractory
breast cancers. Sci Transl Med. 17:eadk77862025. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Oh Y, Quiroz E, Wang T, Medina-Laver Y,
Redecke SM, Dominguez F, Lydon JP, DeMayo FJ and Wu SP: The
NR2F2-HAND2 signaling axis regulates progesterone actions in the
uterus at early pregnancy. Front Endocrinol (Lausanne).
14:12290332023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Le Guével R, Oger F, Martinez-Jimenez CP,
Bizot M, Gheeraert C, Firmin F, Ploton M, Kretova M, Palierne G,
Staels B, et al: Inactivation of the nuclear orphan receptor
COUP-TFII by small chemicals. ACS Chem Biol. 12:654–663. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang X, Feng S and Tang K: COUP-TF genes,
human diseases, and the development of the central nervous system
in murine models. Nuclear Receptors in Development and Disease.
Current Topics in Developmental Biology. Elsevier; pp. 275–301.
2017, PubMed/NCBI
|
|
76
|
Wang J, Abhinav P, Xu YJ, Li RG, Zhang M,
Qiu XB, Di RM, Qiao Q, Li XM, Huang RT, et al: NR2F2
loss-of-function mutation is responsible for congenital bicuspid
aortic valve. Int J Mol Med. 43:1839–1846. 2019.PubMed/NCBI
|
|
77
|
Wan R, Long S, Ma S, Yan P, Li Z, Xu K,
Lian H, Li W, Duan Y, Zhu M, et al: NR2F2 alleviates pulmonary
fibrosis by inhibition of epithelial cell senescence. Respir Res.
25:1542024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tostivint V, Racaud-Sultan C, Roumiguié M,
Soulié M, Gamé X and Beauval JB: Progress in prostate cancer study:
3D cell culture enables the ex vivo reproduction of tumor
characteristics. Presse Med. 46:954–965. 2017.(In French).
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Feng R, Morine Y, Ikemoto T, Imura S,
Iwahashi S, Saito Y and Shimada M: Nrf2 activation drive
macrophages polarization and cancer cell epithelial-mesenchymal
transition during interaction. Cell Commun Signal. 16:542018.
View Article : Google Scholar : PubMed/NCBI
|