Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2025 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting menin in lysine methyltransferase 
2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review)

  • Authors:
    • Junjie Bi
    • Hong Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310053, P.R. China, Department of Hematology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang 310000, P.R. China
    Copyright: © Bi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 519
    |
    Published online on: September 10, 2025
       https://doi.org/10.3892/ol.2025.15265
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Abstract. Menin protein is encoded by the multiple endocrine neoplasia type 1 gene, which typically serves an oncogenic role in endocrine organs. However, in mice, menin protein is a key mediator of leukemic transformation, particularly in acute myeloid leukemia (AML), and is involved in the disease process through epigenetic regulatory mechanisms. This functional paradox may be due to the unique gene expression regulatory properties of menin, which can both activate and inhibit the expression of target genes. At the molecular level, menin protein regulates the gene transcription process by interacting with multiple protein complexes and forms a complex network with multiple signaling pathways. As the core hub of transcriptional regulation, menin protein is essential for the maintenance of cellular homeostasis and its aberrant function can lead to gene expression disorders, which contributes to the development of AML. Despite the druggability challenges of several transcriptionally regulated proteins, inhibitors of menin protein have made breakthroughs in clinical development. Particularly in AML subtypes [for example, lysine methyltransferase 2A (KMT2A) rearrangement or nucleophosmin (NPM1) mutation], menin protein inhibitors have demonstrated favorable efficacy. The present study systematically reviewed biological functions of the menin protein and its application in targeted therapy for specific AML subtypes. Notably, menin inhibitors have demonstrated potential in KMT2A/NPM1‑mutant leukemia, however, the off‑target effects, resistance mechanisms and a lack of biomarkers due to the extensive nature of their binding interface remains to be elucidated.
View Figures

Figure 1

Mechanism of menin inhibitors KMT2A,
Lysine Methyltransferase 2A; NPM1, Nucleophosmin 1; HOX, Homeobox;
MEIS1, myeloid ecotropic viral integration site 1.
View References

1 

Pollyea DA, Bixby D, Perl A, Bhatt VR, Altman JK, Appelbaum FR, de Lima M, Fathi AT, Foran JM, Gojo I, et al: NCCN guidelines insights: Acute myeloid leukemia, version 2.2021. J Natl Compr Canc Netw. 19:16–27. 2021. View Article : Google Scholar : PubMed/NCBI

2 

De Kouchkovsky I and Abdul-Hay M: Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI

3 

Shimony S, Stahl M and Stone RM: Acute myeloid leukemia: 2025 update on diagnosis, risk-stratification, and management. Am J Hematol. 100:860–891. 2025. View Article : Google Scholar : PubMed/NCBI

4 

Sasaki K, Ravandi F, Kadia TM, DiNardo CD, Short NJ, Borthakur G, Jabbour E and Kantarjian HM: De novo acute myeloid leukemia: A population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980 to 2017. Cancer. 127:2049–2061. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Fruchtman H, Avigan ZM, Waksal JA, Brennan N and Mascarenhas JO: Management of isocitrate dehydrogenase 1/2 mutated acute myeloid leukemia. Leukemia. 38:927–935. 2024. View Article : Google Scholar : PubMed/NCBI

6 

Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD and Daver N: Advances in the treatment of acute myeloid leukemia: New drugs and new challenges. Cancer Discov. 10:506–525. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW and Ge Y: Targeting multiple signaling pathways: The new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 5:2882020. View Article : Google Scholar : PubMed/NCBI

8 

Pei H, Guo W, Peng Y, Xiong H and Chen Y: Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev. 42:1607–1660. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Milano L, Gautam A and Caldecott KW: DNA damage and transcription stress. Mol Cell. 84:70–79. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Morgan MP, Finnegan E and Das S: The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol. 86:1203–1215. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS and Johnstone RW: Targeting transcription cycles in cancer. Nat Rev Cancer. 22:5–24. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Layden HM, Johnson AE and Hiebert SW: Chemical-genetics refines transcription factor regulatory circuits. Trends Cancer. 10:65–75. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Kathman SG, Koo SJ, Lindsey GL, Her HL, Blue SM, Li H, Jaensch S, Remsberg JR, Ahn K, Yeo GW, et al: Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat Chem Biol. 19:825–836. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X and Slade D: SPOC domain proteins in health and disease. Genes Dev. 37:140–170. 2023. View Article : Google Scholar : PubMed/NCBI

15 

Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, Ross KN, Perner F, Olsen SN, Pritchard T, et al: A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 36:660–673.e11. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Kühn MW, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, et al: Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6:1166–1181. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, et al: Menin inhibitors in pediatric acute leukemia: A comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia. 38:2073–2084. 2024. View Article : Google Scholar : PubMed/NCBI

18 

Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, et al: Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 96:143–152. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, Merchant JL, Hua X and Lei M: The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature. 482:542–546. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Fiskus W, Mill CP, Birdwell C, Davis JA, Das K, Boettcher S, Kadia TM, DiNardo CD, Takahashi K, Loghavi S, et al: Targeting of epigenetic co-dependencies enhances anti-AML efficacy of Menin inhibitor in AML with MLL1-r or mutant NPM1. Blood Cancer J. 13:532023. View Article : Google Scholar : PubMed/NCBI

21 

Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, Arellano M, Thirman MJ, Patel MR, Dickens DS, Shenoy S, et al: The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 615:920–924. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Gundry MC, Goodell MA and Brunetti L: It's all about MEis: Menin-MLL inhibition eradicates NPM1-Mutated and MLL-rearranged acute leukemias in mice. Cancer Cell. 37:267–269. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, et al: Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 27:589–602. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Feng Z, Ma J and Hua X: Epigenetic regulation by the menin pathway. Endocr Relat Cancer. 24:T147–T159. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Yokoyama A and Cleary ML: Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell. 14:36–46. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Adriaanse FRS, Schneider P, Arentsen-Peters STCJM, Fonseca AMND, Stutterheim J, Pieters R, Zwaan CM and Stam RW: Distinct responses to menin inhibition and synergy with DOT1L inhibition in KMT2A-rearranged acute lymphoblastic and myeloid leukemia. Int J Mol Sci. 25:60202024. View Article : Google Scholar : PubMed/NCBI

27 

Kurmasheva RT, Bandyopadhyay A, Favours E, Pozo VD, Ghilu S, Phelps DA, McGeehan GM, Erickson SW, Smith MA and Houghton PJ: Evaluation of VTP-50469, a menin-MLL1 inhibitor, against Ewing sarcoma xenograft models by the pediatric preclinical testing consortium. Pediatr Blood Cancer. 67:e282842020. View Article : Google Scholar : PubMed/NCBI

28 

Nicholls SJ, Nissen SE, Fleming C, Urva S, Suico J, Berg PH, Linnebjerg H, Ruotolo G, Turner PK and Michael LF: Muvalaplin, an oral small molecule inhibitor of lipoprotein(a) formation: A randomized clinical trial. JAMA. 330:1042–1053. 2023. View Article : Google Scholar : PubMed/NCBI

29 

Groenland SL, Martínez-Chávez A, van Dongen MGJ, Beijnen JH, Schinkel AH, Huitema ADR and Steeghs N: Clinical pharmacokinetics and pharmacodynamics of the cyclin-dependent kinase 4 and 6 inhibitors palbociclib, ribociclib, and abemaciclib. Clin Pharmacokinet. 59:1501–1520. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Ianni A, Kumari P, Tarighi S, Braun T and Vaquero A: SIRT7: A novel molecular target for personalized cancer treatment? Oncogene. 43:993–1006. 2024. View Article : Google Scholar : PubMed/NCBI

31 

Goes JVC, Carvalho LG, de Oliveira RTG, Melo MML, Novaes LAC, Moreno DA, Gonçalves PG, Montefusco-Pereira CV, Pinheiro RF and Ribeiro Junior HL: Role of sirtuins in the pathobiology of onco-hematological diseases: A PROSPERO-registered study and in silico analysis. Cancers (Basel). 14:46112022. View Article : Google Scholar : PubMed/NCBI

32 

Cao Y, Xue Y, Xue L, Jiang X, Wang X, Zhang Z, Yang J, Lu J, Zhang C, Wang W and Ning G: Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation. J Hepatol. 59:1299–1306. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Gang D, Hongwei H, Hedai L, Ming Z, Qian H and Zhijun L: The tumor suppressor protein menin inhibits NF-κB-mediated transactivation through recruitment of Sirt1 in hepatocellular carcinoma. Mol Biol Rep. 40:2461–2466. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Hernández-Jiménez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I and Moro MA: Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke. 44:2333–2337. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Teng Y, Huang Y, Yu H, Wu C, Yan Q, Wang Y, Yang M, Xie H, Wu T, Yang H and Zou J: Nimbolide targeting SIRT1 mitigates intervertebral disc degeneration by reprogramming cholesterol metabolism and inhibiting inflammatory signaling. Acta Pharm Sin B. 13:2269–2280. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Zhao X, Li M, Lu Y, Wang M, Xiao J, Xie Q, He X and Shuai S: Sirt1 inhibits macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Inflamm Res. 73:1173–1184. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Wang Q, Yan C, Xin M, Han L, Zhang Y and Sun M: Sirtuin 1 (Sirt1) overexpression in BaF3 cells contributes to cell proliferation promotion, apoptosis resistance and pro-inflammatory cytokine production. Med Sci Monit. 23:1477–1482. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Kotas ME, Gorecki MC and Gillum MP: Sirtuin-1 is a nutrient-dependent modulator of inflammation. Adipocyte. 2:113–118. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family in health and disease. Signal Transduct Target Ther. 7:4022022. View Article : Google Scholar : PubMed/NCBI

40 

Alinari L, Mahasenan KV, Yan F, Karkhanis V, Chung JH, Smith EM, Quinion C, Smith PL, Kim L, Patton JT, et al: Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood. 125:2530–2543. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Peng J, Ni B, Li D, Cheng B and Yang R: Overview of the PRMT6 modulators in cancer treatment: Current progress and emerged opportunity. Eur J Med Chem. 279:1168572024. View Article : Google Scholar : PubMed/NCBI

42 

Qian K, Hu H, Xu H and Zheng YG: Detection of PRMT1 inhibitors with stopped flow fluorescence. Signal Transduct Target Ther. 3:62018. View Article : Google Scholar : PubMed/NCBI

43 

Abe Y and Tanaka N: Fine-Tuning of GLI activity through arginine methylation: Its mechanisms and function. Cells. 9:19732020. View Article : Google Scholar : PubMed/NCBI

44 

Gurung B, Feng Z, Iwamoto DV, Thiel A, Jin G, Fan CM, Ng JM, Curran T and Hua X: Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 73:2650–2658. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Kim H and Ronai ZA: PRMT5 function and targeting in cancer. Cell Stress. 4:199–215. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Padeken J, Methot SP and Gasser SM: Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol. 23:623–640. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Song TY, Lim J, Kim B, Han JW, Youn HD and Cho EJ: The role of tumor suppressor menin in IL-6 regulation in mouse islet tumor cells. Biochem Biophys Res Commun. 51:308–313. 2014. View Article : Google Scholar

48 

Mei Y, Ren K, Liu Y, Ma A, Xia Z, Han X, Li E, Tariq H, Bao H, Xie X, et al: Bone marrow-confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia. J Clin Invest. 132:e1526732022. View Article : Google Scholar : PubMed/NCBI

49 

Burger R: Impact of interleukin-6 in hematological malignancies. Transfus Med Hemother. 40:336–343. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Kaser EC, Zhao L, D'Mello KP, Zhu Z, Xiao H, Wakefield MR, Bai Q and Fang Y: The role of various interleukins in acute myeloid leukemia. Med Oncol. 38:552021. View Article : Google Scholar : PubMed/NCBI

51 

Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M and Yao Y: Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 141:125–139. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Qin R, Wang T, He W, Wei W, Liu S, Gao M and Huang Z: Jak2/STAT6/c-Myc pathway is vital to the pathogenicity of Philadelphia-positive acute lymphoblastic leukemia caused by P190(BCR-ABL). Cell Commun Signal. 21:272023. View Article : Google Scholar : PubMed/NCBI

53 

Di Francesco B, Verzella D, Capece D, Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M, Angelucci A, Alesse E and Zazzeroni F: NF-κB: A druggable target in acute myeloid leukemia. Cancers (Basel). 14:35572022. View Article : Google Scholar : PubMed/NCBI

54 

Láinez-González D, Alonso-Aguado AB and Alonso-Dominguez JM: Understanding the Wnt signaling pathway in acute myeloid leukemia stem cells: A feasible key against relapses. Biology (Basel). 12:6832023.PubMed/NCBI

55 

Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z and Liu H: Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer. 51:1011182024. View Article : Google Scholar : PubMed/NCBI

56 

Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, Perna E, Mocharla P, Akhmedov A, Kubant R, et al: Deletion of the activated protein-1 transcription factor JunD induces oxidative stress and accelerates age-related endothelial dysfunction. Circulation. 127:1229–1240. e1–e21. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Gallo A, Cuozzo C, Esposito I, Maggiolini M, Bonofiglio D, Vivacqua A, Garramone M, Weiss C, Bohmann D and Musti AM: Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene. 21:6434–6445. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Dockray GJ: Keeping neuroendocrine cells in check: Roles for TGFbeta, Smads, and menin? Gut. 52:1237–1239. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Hendy GN, Kaji H, Sowa H, Lebrun JJ and Canaff L: Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab Res. 37:375–379. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Matkar S, Thiel A and Hua X: Menin: A scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci. 38:394–402. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T and Chihara K: Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem. 279:40267–40275. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Chen H, Liu H and Qing G: Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 3:52018. View Article : Google Scholar : PubMed/NCBI

63 

Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 133:1106–1117. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Wu G, Yuan M, Shen S, Ma X, Fang J, Zhu L, Sun L, Liu Z, He X, Huang D, et al: Menin enhances c-Myc-mediated transcription to promote cancer progression. Nat Commun. 8:152782017. View Article : Google Scholar : PubMed/NCBI

65 

Zhou X, Zhang L, Aryal S, Veasey V, Tajik A, Restelli C, Moreira S, Zhang P, Zhang Y, Hope KJ, et al: Epigenetic regulation of noncanonical menin targets modulates menin inhibitor response in acute myeloid leukemia. Blood. 144:2018–2032. 2024. View Article : Google Scholar : PubMed/NCBI

66 

Tsai JW, Cejas P, Wang DK, Patel S, Wu DW, Arounleut P, Wei X, Zhou N, Syamala S, Dubois FPB, et al: FOXR2 is an epigenetically regulated pan-cancer oncogene that activates ETS transcriptional circuits. Cancer Res. 82:2980–3001. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Zhuang K, Leng L, Su X, Wang S, Su Y, Chen Y, Yuan Z, Zi L, Li J, Xie W, et al: Menin deficiency induces autism-like behaviors by regulating foxg1 transcription and participates in foxg1-related encephalopathy. Adv Sci (Weinh). 11:e23079532024. View Article : Google Scholar : PubMed/NCBI

68 

Dreijerink KMA, Groner AC, Vos ESM, Font-Tello A, Gu L, Chi D, Chi D, Reyes J, Cook J, Lim E, et al: Enhancer-mediated oncogenic function of the menin tumor suppressor in breast cancer. Cell Rep. 18:2359–2372. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Jiang Z, Shi D, Tu Y, Tian J, Zhang W, Xing B, Wang J, Liu S, Lou J, Gustafsson JÅ, et al: Human proislet peptide promotes pancreatic progenitor cells to ameliorate diabetes through FOXO1/menin-mediated epigenetic regulation. Diabetes. 67:1345–1355. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Bonnavion R, Teinturier R, Gherardi S, Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem MC, Bertolino P, et al: Foxa2, a novel protein partner of the tumour suppressor menin, is deregulated in mouse and human MEN1 glucagonomas. J Pathol. 242:90–101. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Bonnet C, Brahmbhatt A, Deng SX and Zheng JJ: Wnt signaling activation: Targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol. 2:1144–1157. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Steinhart Z and Angers S: Wnt signaling in development and tissue homeostasis. Development. 145:dev1465892018. View Article : Google Scholar : PubMed/NCBI

74 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI

75 

Xiang Z, Wang Y, Ma X, Song S, He Y, Zhou J, Feng L, Yang S, Wu Y, Yu B, et al: Targeting the NOTCH2/ADAM10/TCF7L2 Axis-mediated transcriptional regulation of Wnt pathway suppresses tumor growth and enhances chemosensitivity in colorectal cancer. Adv Sci (Weinh). 12:e24057582025. View Article : Google Scholar : PubMed/NCBI

76 

Hao J, Liu C, Gu Z, Yang X, Lan X and Guo X: Dysregulation of Wnt/β-catenin signaling contributes to intestinal inflammation through regulation of group 3 innate lymphoid cells. Nat Commun. 15:28202024. View Article : Google Scholar : PubMed/NCBI

77 

Feng Q, Nie F, Gan L, Wei X, Liu P, Liu H, Zhang K, Fang Z, Wang H and Fang N: Tripartite motif 31 drives gastric cancer cell proliferation and invasion through activating the Wnt/β-catenin pathway by regulating Axin1 protein stability. Sci Rep. 13:200992023. View Article : Google Scholar : PubMed/NCBI

78 

Luo Y, Vlaeminck-Guillem V, Baron S, Dallel S, Zhang CX and Le Romancer M: MEN1 silencing aggravates tumorigenic potential of AR-independent prostate cancer cells through nuclear translocation and activation of JunD and β-catenin. J Exp Clin Cancer Res. 40:2702021. View Article : Google Scholar : PubMed/NCBI

79 

Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W and Forné T: Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc. 2:1722–1733. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Sancho A, Li S, Paul T, Zhang F, Aguilo F, Vashisht A, Balasubramaniyan N, Leleiko NS, Suchy FJ, Wohlschlegel JA, et al: CHD6 regulates the topological arrangement of the CFTR locus. Hum Mol Genet. 24:2724–2732. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI and Armstrong SA: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 327:1650–1653. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Wagstaff M, Coke B, Hodgkiss GR and Morgan RG: Targeting β-catenin in acute myeloid leukaemia: Past present, and future perspectives. Biosci Rep. 42:2022. View Article : Google Scholar : PubMed/NCBI

83 

Khan I, Eklund EE and Gartel AL: Therapeutic vulnerabilities of transcription factors in AML. Mol Cancer Ther. 20:229–237. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MD, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M and Valledor AF: Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol. 73:58–75. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Yang Z, Gimple RC, Zhou N, Zhao L, Gustafsson J and Zhou S: Targeting nuclear receptors for cancer therapy: Premises, promises, and challenges. Trends Cancer. 7:541–556. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Lian F, Wang Y, Xiao Y, Wu X, Xu H, Liang L and Yang X: Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis. Mol Med Rep. 12:5821–5827. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Xu Y, Huangyang P, Wang Y, Xue L, Devericks E, Nguyen HG, Yu X, Oses-Prieto JA, Burlingame AL, Miglani S, et al: ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell. 184:5215–5229.e17. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, et al: Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol. 15:412024. View Article : Google Scholar : PubMed/NCBI

89 

Sun Y, Xie J, Cai S, Wang Q, Feng Z, Li Y, Lu JJ, Chen W and Ye Z: Elevated expression of nuclear receptor-binding SET domain 3 promotes pancreatic cancer cell growth. Cell Death Dis. 12:9132021. View Article : Google Scholar : PubMed/NCBI

90 

Luo Y, Vlaeminck-Guillem V, Teinturier R, Abou Ziki R, Bertolino P, Le Romancer M and Zhang CX: The scaffold protein menin is essential for activating the MYC locus and MYC-mediated androgen receptor transcription in androgen receptor-dependent prostate cancer cells. Cancer Commun (Lond). 41:1427–1430. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Zhang T, Ma C, Zhang Z, Zhang H and Hu H: NF-κB signaling in inflammation and cancer. MedComm (2020). 2:618–653. 2021. View Article : Google Scholar : PubMed/NCBI

92 

He G and Karin M: NF-κB and STAT3 - key players in liver inflammation and cancer. Cell Res. 21:159–168. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA and Mayo MW: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23:2369–2380. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M and Cleary ML: The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 123:207–218. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Mullard A: FDA approves first biparatopic antibody therapy. Nat Rev Drug Discov. 24:72025. View Article : Google Scholar

96 

Falini B, Brunetti L, Sportoletti P and Martelli MP: NPM1-mutated acute myeloid leukemia: From bench to bedside. Blood. 136:1707–1721. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Falini B, Gjertsen BT and Andresen V: The acidic stretch and the C-terminal nuclear export signal motif of NPM1 mutant: Are they druggable in AML? Leukemia. 37:2173–2175. 2023. View Article : Google Scholar : PubMed/NCBI

98 

Perner F, Stein EM, Wenge DV, Singh S, Kim J, Apazidis A, Rahnamoun H, Anand D, Marinaccio C, Hatton C, et al: MEN1 mutations mediate clinical resistance to menin inhibition. Nature. 615:913–919. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, Gionfriddo I, Mezzasoma F, Milano F, Nabet B, et al: Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 34:499–512.e9. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Krivtsov AV and Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 7:823–833. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Forgione MO, McClure BJ, Eadie LN, Yeung DT and White DL: KMT2A rearranged acute lymphoblastic leukaemia: Unravelling the genomic complexity and heterogeneity of this high-risk disease. Cancer Lett. 469:410–418. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Thorsteinsdottir U, Kroon E, Jerome L, Blasi F and Sauvageau G: Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol. 21:224–234. 2001. View Article : Google Scholar : PubMed/NCBI

103 

Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, et al: Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol. 8:277–284. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, Gadrey JY, Krivtsov AV, Rücker FG, Döhner K, McGeehan GM, et al: Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 367:586–590. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Di Fazio P: Targeting menin: A promising therapeutic strategy for susceptible acute leukemia subtypes. Signal Transduct Target Ther. 8:3842023. View Article : Google Scholar : PubMed/NCBI

106 

Nadiminti KVG, Sahasrabudhe KD and Liu H: Menin inhibitors for the treatment of acute myeloid leukemia: Challenges and opportunities ahead. J Hematol Oncol. 17:1132024. View Article : Google Scholar : PubMed/NCBI

107 

Wang R, Xu P, Chang LL, Zhang SZ and Zhu HH: Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front Oncol. 12:9726062022. View Article : Google Scholar : PubMed/NCBI

108 

Uckelmann HJ, Haarer EL, Takeda R, Wong EM, Hatton C, Marinaccio C, Perner F, Rajput M, Antonissen NJC, Wen Y, et al: Mutant NPM1 directly regulates oncogenic transcription in acute myeloid leukemia. Cancer Discov. 13:746–765. 2023. View Article : Google Scholar : PubMed/NCBI

109 

Wang XQD, Fan D, Han Q, Liu Y, Miao H, Wang X, Li Q, Chen D, Gore H, Himadewi P, et al: Mutant NPM1 hijacks transcriptional hubs to maintain pathogenic gene programs in acute myeloid leukemia. Cancer Discov. 13:724–745. 2023. View Article : Google Scholar : PubMed/NCBI

110 

Dillon LW, Gui G, Page KM, Ravindra N, Wong ZC, Andrew G, Mukherjee D, Zeger SL, El Chaer F, Spellman S, et al: DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant. JAMA. 329:745–755. 2023. View Article : Google Scholar : PubMed/NCBI

111 

Mill CP, Fiskus W, Das K, Davis JA, Birdwell CE, Kadia TM, DiNardo CD, Daver N, Takahashi K, Sasaki K, et al: Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia. 37:1336–1348. 2023. View Article : Google Scholar : PubMed/NCBI

112 

Huls G, Woolthuis CM and Schuringa JJ: Menin inhibitors in the treatment of acute myeloid leukemia. Blood. 145:561–566. 2025. View Article : Google Scholar : PubMed/NCBI

113 

Issa GC, Aldoss I, Thirman MJ, DiPersio J, Arellano M, Blachly JS, Mannis GN, Perl A, Dickens DS, McMahon CM, et al: Menin inhibition with revumenib for KMT2A-Rearranged relapsed or refractory acute leukemia (AUGMENT-101). J Clin Oncol. 43:75–84. 2025. View Article : Google Scholar : PubMed/NCBI

114 

Wang ES, Issa GC, Erba HP, Altman JK, Montesinos P, DeBotton S, Walter RB, Pettit K, Savona MR, Shah MV, et al: Ziftomenib in relapsed or refractory acute myeloid leukaemia (KOMET-001): A multicentre, open-label, multi-cohort, phase 1 trial. Lancet Oncol. 25:1310–1324. 2024. View Article : Google Scholar : PubMed/NCBI

115 

Miao H, Chen D, Ropa J, Purohit T, Kim E, Sulis ML, Ferrando A, Cierpicki T and Grembecka J: Combination of menin and kinase inhibitors as an effective treatment for leukemia with NUP98 translocations. Leukemia. 38:1674–1687. 2024. View Article : Google Scholar : PubMed/NCBI

116 

Fiskus W, Piel J, Collins M, Hentemann M, Cuglievan B, Mill CP, Birdwell CE, Das K, Davis JA, Hou H, et al: BRG1/BRM inhibitor targets AML stem cells and exerts superior preclinical efficacy combined with BET or menin inhibitor. Blood. 143:2059–2072. 2024. View Article : Google Scholar : PubMed/NCBI

117 

Kwon MC, Thuring JW, Querolle O, Dai X, Verhulst T, Pande V, Marien A, Goffin D, Wenge DV, Yue H, et al: Preclinical efficacy of the potent, selective menin-KMT2A inhibitor JNJ-75276617 (bleximenib) in KMT2A- and NPM1-altered leukemias. Blood. 144:1206–1220. 2024. View Article : Google Scholar : PubMed/NCBI

118 

An ZY and Zhang XH: Menin inhibitors for acute myeloid leukemia: latest updates from the 2023 ASH Annual Meeting. J Hematol Oncol. 17:522024. View Article : Google Scholar : PubMed/NCBI

119 

Heikamp EB, Henrich JA, Perner F, Wong EM, Hatton C, Wen Y, Barwe SP, Gopalakrishnapillai A, Xu H, Uckelmann HJ, et al: The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Blood. 139:894–906. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bi J and Zhou H: Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review). Oncol Lett 30: 519, 2025.
APA
Bi, J., & Zhou, H. (2025). Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review). Oncology Letters, 30, 519. https://doi.org/10.3892/ol.2025.15265
MLA
Bi, J., Zhou, H."Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review)". Oncology Letters 30.5 (2025): 519.
Chicago
Bi, J., Zhou, H."Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review)". Oncology Letters 30, no. 5 (2025): 519. https://doi.org/10.3892/ol.2025.15265
Copy and paste a formatted citation
x
Spandidos Publications style
Bi J and Zhou H: Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review). Oncol Lett 30: 519, 2025.
APA
Bi, J., & Zhou, H. (2025). Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review). Oncology Letters, 30, 519. https://doi.org/10.3892/ol.2025.15265
MLA
Bi, J., Zhou, H."Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review)". Oncology Letters 30.5 (2025): 519.
Chicago
Bi, J., Zhou, H."Targeting menin in lysine methyltransferase&nbsp;<br />2A/nucleophosmin-mutated leukemia: A novel strategy from epigenetic dysregulation to clinical therapy (Review)". Oncology Letters 30, no. 5 (2025): 519. https://doi.org/10.3892/ol.2025.15265
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team