|
1
|
Pollyea DA, Bixby D, Perl A, Bhatt VR,
Altman JK, Appelbaum FR, de Lima M, Fathi AT, Foran JM, Gojo I, et
al: NCCN guidelines insights: Acute myeloid leukemia, version
2.2021. J Natl Compr Canc Netw. 19:16–27. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
De Kouchkovsky I and Abdul-Hay M: Acute
myeloid leukemia: A comprehensive review and 2016 update. Blood
Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Shimony S, Stahl M and Stone RM: Acute
myeloid leukemia: 2025 update on diagnosis, risk-stratification,
and management. Am J Hematol. 100:860–891. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sasaki K, Ravandi F, Kadia TM, DiNardo CD,
Short NJ, Borthakur G, Jabbour E and Kantarjian HM: De novo acute
myeloid leukemia: A population-based study of outcome in the United
States based on the surveillance, epidemiology, and end results
(SEER) database, 1980 to 2017. Cancer. 127:2049–2061. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fruchtman H, Avigan ZM, Waksal JA, Brennan
N and Mascarenhas JO: Management of isocitrate dehydrogenase 1/2
mutated acute myeloid leukemia. Leukemia. 38:927–935. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Short NJ, Konopleva M, Kadia TM, Borthakur
G, Ravandi F, DiNardo CD and Daver N: Advances in the treatment of
acute myeloid leukemia: New drugs and new challenges. Cancer
Discov. 10:506–525. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Carter JL, Hege K, Yang J, Kalpage HA, Su
Y, Edwards H, Hüttemann M, Taub JW and Ge Y: Targeting multiple
signaling pathways: The new approach to acute myeloid leukemia
therapy. Signal Transduct Target Ther. 5:2882020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pei H, Guo W, Peng Y, Xiong H and Chen Y:
Targeting key proteins involved in transcriptional regulation for
cancer therapy: Current strategies and future prospective. Med Res
Rev. 42:1607–1660. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Milano L, Gautam A and Caldecott KW: DNA
damage and transcription stress. Mol Cell. 84:70–79. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Morgan MP, Finnegan E and Das S: The role
of transcription factors in the acquisition of the four latest
proposed hallmarks of cancer and corresponding enabling
characteristics. Semin Cancer Biol. 86:1203–1215. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vervoort SJ, Devlin JR, Kwiatkowski N,
Teng M, Gray NS and Johnstone RW: Targeting transcription cycles in
cancer. Nat Rev Cancer. 22:5–24. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Layden HM, Johnson AE and Hiebert SW:
Chemical-genetics refines transcription factor regulatory circuits.
Trends Cancer. 10:65–75. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kathman SG, Koo SJ, Lindsey GL, Her HL,
Blue SM, Li H, Jaensch S, Remsberg JR, Ahn K, Yeo GW, et al:
Remodeling oncogenic transcriptomes by small molecules targeting
NONO. Nat Chem Biol. 19:825–836. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Appel LM, Benedum J, Engl M, Platzer S,
Schleiffer A, Strobl X and Slade D: SPOC domain proteins in health
and disease. Genes Dev. 37:140–170. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Krivtsov AV, Evans K, Gadrey JY, Eschle
BK, Hatton C, Uckelmann HJ, Ross KN, Perner F, Olsen SN, Pritchard
T, et al: A Menin-MLL inhibitor induces specific chromatin changes
and eradicates disease in models of MLL-rearranged leukemia. Cancer
Cell. 36:660–673.e11. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kühn MW, Song E, Feng Z, Sinha A, Chen CW,
Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, et al: Targeting
chromatin regulators inhibits leukemogenic gene expression in NPM1
mutant leukemia. Cancer Discov. 6:1166–1181. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cuglievan B, Kantarjian H, Rubnitz JE,
Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E,
Short NJ, et al: Menin inhibitors in pediatric acute leukemia: A
comprehensive review and recommendations to accelerate progress in
collaboration with adult leukemia and the international community.
Leukemia. 38:2073–2084. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Agarwal SK, Guru SC, Heppner C, Erdos MR,
Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS,
Spiegel AM, et al: Menin interacts with the AP1 transcription
factor JunD and represses JunD-activated transcription. Cell.
96:143–152. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang J, Gurung B, Wan B, Matkar S,
Veniaminova NA, Wan K, Merchant JL, Hua X and Lei M: The same
pocket in menin binds both MLL and JUND but has opposite effects on
transcription. Nature. 482:542–546. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fiskus W, Mill CP, Birdwell C, Davis JA,
Das K, Boettcher S, Kadia TM, DiNardo CD, Takahashi K, Loghavi S,
et al: Targeting of epigenetic co-dependencies enhances anti-AML
efficacy of Menin inhibitor in AML with MLL1-r or mutant NPM1.
Blood Cancer J. 13:532023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Issa GC, Aldoss I, DiPersio J, Cuglievan
B, Stone R, Arellano M, Thirman MJ, Patel MR, Dickens DS, Shenoy S,
et al: The menin inhibitor revumenib in KMT2A-rearranged or
NPM1-mutant leukaemia. Nature. 615:920–924. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gundry MC, Goodell MA and Brunetti L: It's
all about MEis: Menin-MLL inhibition eradicates NPM1-Mutated and
MLL-rearranged acute leukemias in mice. Cancer Cell. 37:267–269.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Borkin D, He S, Miao H, Kempinska K,
Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, et al:
Pharmacologic inhibition of the Menin-MLL interaction blocks
progression of MLL leukemia in vivo. Cancer Cell. 27:589–602. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Feng Z, Ma J and Hua X: Epigenetic
regulation by the menin pathway. Endocr Relat Cancer. 24:T147–T159.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yokoyama A and Cleary ML: Menin critically
links MLL proteins with LEDGF on cancer-associated target genes.
Cancer Cell. 14:36–46. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Adriaanse FRS, Schneider P,
Arentsen-Peters STCJM, Fonseca AMND, Stutterheim J, Pieters R,
Zwaan CM and Stam RW: Distinct responses to menin inhibition and
synergy with DOT1L inhibition in KMT2A-rearranged acute
lymphoblastic and myeloid leukemia. Int J Mol Sci. 25:60202024.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kurmasheva RT, Bandyopadhyay A, Favours E,
Pozo VD, Ghilu S, Phelps DA, McGeehan GM, Erickson SW, Smith MA and
Houghton PJ: Evaluation of VTP-50469, a menin-MLL1 inhibitor,
against Ewing sarcoma xenograft models by the pediatric preclinical
testing consortium. Pediatr Blood Cancer. 67:e282842020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nicholls SJ, Nissen SE, Fleming C, Urva S,
Suico J, Berg PH, Linnebjerg H, Ruotolo G, Turner PK and Michael
LF: Muvalaplin, an oral small molecule inhibitor of lipoprotein(a)
formation: A randomized clinical trial. JAMA. 330:1042–1053. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Groenland SL, Martínez-Chávez A, van
Dongen MGJ, Beijnen JH, Schinkel AH, Huitema ADR and Steeghs N:
Clinical pharmacokinetics and pharmacodynamics of the
cyclin-dependent kinase 4 and 6 inhibitors palbociclib, ribociclib,
and abemaciclib. Clin Pharmacokinet. 59:1501–1520. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ianni A, Kumari P, Tarighi S, Braun T and
Vaquero A: SIRT7: A novel molecular target for personalized cancer
treatment? Oncogene. 43:993–1006. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Goes JVC, Carvalho LG, de Oliveira RTG,
Melo MML, Novaes LAC, Moreno DA, Gonçalves PG, Montefusco-Pereira
CV, Pinheiro RF and Ribeiro Junior HL: Role of sirtuins in the
pathobiology of onco-hematological diseases: A PROSPERO-registered
study and in silico analysis. Cancers (Basel). 14:46112022.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cao Y, Xue Y, Xue L, Jiang X, Wang X,
Zhang Z, Yang J, Lu J, Zhang C, Wang W and Ning G: Hepatic menin
recruits SIRT1 to control liver steatosis through histone
deacetylation. J Hepatol. 59:1299–1306. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gang D, Hongwei H, Hedai L, Ming Z, Qian H
and Zhijun L: The tumor suppressor protein menin inhibits
NF-κB-mediated transactivation through recruitment of Sirt1 in
hepatocellular carcinoma. Mol Biol Rep. 40:2461–2466. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hernández-Jiménez M, Hurtado O, Cuartero
MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I
and Moro MA: Silent information regulator 1 protects the brain
against cerebral ischemic damage. Stroke. 44:2333–2337. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Teng Y, Huang Y, Yu H, Wu C, Yan Q, Wang
Y, Yang M, Xie H, Wu T, Yang H and Zou J: Nimbolide targeting SIRT1
mitigates intervertebral disc degeneration by reprogramming
cholesterol metabolism and inhibiting inflammatory signaling. Acta
Pharm Sin B. 13:2269–2280. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao X, Li M, Lu Y, Wang M, Xiao J, Xie Q,
He X and Shuai S: Sirt1 inhibits macrophage polarization and
inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1
pathway and activating the Nrf2/HO-1 pathway. Inflamm Res.
73:1173–1184. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Q, Yan C, Xin M, Han L, Zhang Y and
Sun M: Sirtuin 1 (Sirt1) overexpression in BaF3 cells contributes
to cell proliferation promotion, apoptosis resistance and
pro-inflammatory cytokine production. Med Sci Monit. 23:1477–1482.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kotas ME, Gorecki MC and Gillum MP:
Sirtuin-1 is a nutrient-dependent modulator of inflammation.
Adipocyte. 2:113–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL,
Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family
in health and disease. Signal Transduct Target Ther. 7:4022022.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Alinari L, Mahasenan KV, Yan F, Karkhanis
V, Chung JH, Smith EM, Quinion C, Smith PL, Kim L, Patton JT, et
al: Selective inhibition of protein arginine methyltransferase 5
blocks initiation and maintenance of B-cell transformation. Blood.
125:2530–2543. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Peng J, Ni B, Li D, Cheng B and Yang R:
Overview of the PRMT6 modulators in cancer treatment: Current
progress and emerged opportunity. Eur J Med Chem. 279:1168572024.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Qian K, Hu H, Xu H and Zheng YG: Detection
of PRMT1 inhibitors with stopped flow fluorescence. Signal
Transduct Target Ther. 3:62018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Abe Y and Tanaka N: Fine-Tuning of GLI
activity through arginine methylation: Its mechanisms and function.
Cells. 9:19732020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gurung B, Feng Z, Iwamoto DV, Thiel A, Jin
G, Fan CM, Ng JM, Curran T and Hua X: Menin epigenetically
represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res.
73:2650–2658. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kim H and Ronai ZA: PRMT5 function and
targeting in cancer. Cell Stress. 4:199–215. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Padeken J, Methot SP and Gasser SM:
Establishment of H3K9-methylated heterochromatin and its functions
in tissue differentiation and maintenance. Nat Rev Mol Cell Biol.
23:623–640. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Song TY, Lim J, Kim B, Han JW, Youn HD and
Cho EJ: The role of tumor suppressor menin in IL-6 regulation in
mouse islet tumor cells. Biochem Biophys Res Commun. 51:308–313.
2014. View Article : Google Scholar
|
|
48
|
Mei Y, Ren K, Liu Y, Ma A, Xia Z, Han X,
Li E, Tariq H, Bao H, Xie X, et al: Bone marrow-confined IL-6
signaling mediates the progression of myelodysplastic syndromes to
acute myeloid leukemia. J Clin Invest. 132:e1526732022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Burger R: Impact of interleukin-6 in
hematological malignancies. Transfus Med Hemother. 40:336–343.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kaser EC, Zhao L, D'Mello KP, Zhu Z, Xiao
H, Wakefield MR, Bai Q and Fang Y: The role of various interleukins
in acute myeloid leukemia. Med Oncol. 38:552021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yao X, Huang J, Zhong H, Shen N, Faggioni
R, Fung M and Yao Y: Targeting interleukin-6 in inflammatory
autoimmune diseases and cancers. Pharmacol Ther. 141:125–139. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Qin R, Wang T, He W, Wei W, Liu S, Gao M
and Huang Z: Jak2/STAT6/c-Myc pathway is vital to the pathogenicity
of Philadelphia-positive acute lymphoblastic leukemia caused by
P190(BCR-ABL). Cell Commun Signal. 21:272023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Di Francesco B, Verzella D, Capece D,
Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M,
Angelucci A, Alesse E and Zazzeroni F: NF-κB: A druggable target in
acute myeloid leukemia. Cancers (Basel). 14:35572022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Láinez-González D, Alonso-Aguado AB and
Alonso-Dominguez JM: Understanding the Wnt signaling pathway in
acute myeloid leukemia stem cells: A feasible key against relapses.
Biology (Basel). 12:6832023.PubMed/NCBI
|
|
55
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z
and Liu H: Menin signaling and therapeutic targeting in breast
cancer. Curr Probl Cancer. 51:1011182024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Paneni F, Osto E, Costantino S, Mateescu
B, Briand S, Coppolino G, Perna E, Mocharla P, Akhmedov A, Kubant
R, et al: Deletion of the activated protein-1 transcription factor
JunD induces oxidative stress and accelerates age-related
endothelial dysfunction. Circulation. 127:1229–1240. e1–e21. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gallo A, Cuozzo C, Esposito I, Maggiolini
M, Bonofiglio D, Vivacqua A, Garramone M, Weiss C, Bohmann D and
Musti AM: Menin uncouples Elk-1, JunD and c-Jun phosphorylation
from MAP kinase activation. Oncogene. 21:6434–6445. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dockray GJ: Keeping neuroendocrine cells
in check: Roles for TGFbeta, Smads, and menin? Gut. 52:1237–1239.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hendy GN, Kaji H, Sowa H, Lebrun JJ and
Canaff L: Menin and TGF-beta superfamily member signaling via the
Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab
Res. 37:375–379. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Matkar S, Thiel A and Hua X: Menin: A
scaffold protein that controls gene expression and cell signaling.
Trends Biochem Sci. 38:394–402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sowa H, Kaji H, Hendy GN, Canaff L, Komori
T, Sugimoto T and Chihara K: Menin is required for bone
morphogenetic protein 2- and transforming growth factor
beta-regulated osteoblastic differentiation through interaction
with Smads and Runx2. J Biol Chem. 279:40267–40275. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen H, Liu H and Qing G: Targeting
oncogenic Myc as a strategy for cancer treatment. Signal Transduct
Target Ther. 3:52018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega
VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of
external signaling pathways with the core transcriptional network
in embryonic stem cells. Cell. 133:1106–1117. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu G, Yuan M, Shen S, Ma X, Fang J, Zhu L,
Sun L, Liu Z, He X, Huang D, et al: Menin enhances c-Myc-mediated
transcription to promote cancer progression. Nat Commun.
8:152782017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhou X, Zhang L, Aryal S, Veasey V, Tajik
A, Restelli C, Moreira S, Zhang P, Zhang Y, Hope KJ, et al:
Epigenetic regulation of noncanonical menin targets modulates menin
inhibitor response in acute myeloid leukemia. Blood. 144:2018–2032.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tsai JW, Cejas P, Wang DK, Patel S, Wu DW,
Arounleut P, Wei X, Zhou N, Syamala S, Dubois FPB, et al: FOXR2 is
an epigenetically regulated pan-cancer oncogene that activates ETS
transcriptional circuits. Cancer Res. 82:2980–3001. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhuang K, Leng L, Su X, Wang S, Su Y, Chen
Y, Yuan Z, Zi L, Li J, Xie W, et al: Menin deficiency induces
autism-like behaviors by regulating foxg1 transcription and
participates in foxg1-related encephalopathy. Adv Sci (Weinh).
11:e23079532024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dreijerink KMA, Groner AC, Vos ESM,
Font-Tello A, Gu L, Chi D, Chi D, Reyes J, Cook J, Lim E, et al:
Enhancer-mediated oncogenic function of the menin tumor suppressor
in breast cancer. Cell Rep. 18:2359–2372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang Z, Shi D, Tu Y, Tian J, Zhang W,
Xing B, Wang J, Liu S, Lou J, Gustafsson JÅ, et al: Human proislet
peptide promotes pancreatic progenitor cells to ameliorate diabetes
through FOXO1/menin-mediated epigenetic regulation. Diabetes.
67:1345–1355. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bonnavion R, Teinturier R, Gherardi S,
Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem MC,
Bertolino P, et al: Foxa2, a novel protein partner of the tumour
suppressor menin, is deregulated in mouse and human MEN1
glucagonomas. J Pathol. 242:90–101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bonnet C, Brahmbhatt A, Deng SX and Zheng
JJ: Wnt signaling activation: Targets and therapeutic opportunities
for stem cell therapy and regenerative medicine. RSC Chem Biol.
2:1144–1157. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Steinhart Z and Angers S: Wnt signaling in
development and tissue homeostasis. Development. 145:dev1465892018.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xiang Z, Wang Y, Ma X, Song S, He Y, Zhou
J, Feng L, Yang S, Wu Y, Yu B, et al: Targeting the
NOTCH2/ADAM10/TCF7L2 Axis-mediated transcriptional regulation of
Wnt pathway suppresses tumor growth and enhances chemosensitivity
in colorectal cancer. Adv Sci (Weinh). 12:e24057582025. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hao J, Liu C, Gu Z, Yang X, Lan X and Guo
X: Dysregulation of Wnt/β-catenin signaling contributes to
intestinal inflammation through regulation of group 3 innate
lymphoid cells. Nat Commun. 15:28202024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Feng Q, Nie F, Gan L, Wei X, Liu P, Liu H,
Zhang K, Fang Z, Wang H and Fang N: Tripartite motif 31 drives
gastric cancer cell proliferation and invasion through activating
the Wnt/β-catenin pathway by regulating Axin1 protein stability.
Sci Rep. 13:200992023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Luo Y, Vlaeminck-Guillem V, Baron S,
Dallel S, Zhang CX and Le Romancer M: MEN1 silencing aggravates
tumorigenic potential of AR-independent prostate cancer cells
through nuclear translocation and activation of JunD and β-catenin.
J Exp Clin Cancer Res. 40:2702021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hagège H, Klous P, Braem C, Splinter E,
Dekker J, Cathala G, de Laat W and Forné T: Quantitative analysis
of chromosome conformation capture assays (3C-qPCR). Nat Protoc.
2:1722–1733. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sancho A, Li S, Paul T, Zhang F, Aguilo F,
Vashisht A, Balasubramaniyan N, Leleiko NS, Suchy FJ, Wohlschlegel
JA, et al: CHD6 regulates the topological arrangement of the CFTR
locus. Hum Mol Genet. 24:2724–2732. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang Y, Krivtsov AV, Sinha AU, North TE,
Goessling W, Feng Z, Zon LI and Armstrong SA: The Wnt/beta-catenin
pathway is required for the development of leukemia stem cells in
AML. Science. 327:1650–1653. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wagstaff M, Coke B, Hodgkiss GR and Morgan
RG: Targeting β-catenin in acute myeloid leukaemia: Past present,
and future perspectives. Biosci Rep. 42:2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Khan I, Eklund EE and Gartel AL:
Therapeutic vulnerabilities of transcription factors in AML. Mol
Cancer Ther. 20:229–237. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Font-Díaz J, Jiménez-Panizo A, Caelles C,
Vivanco MD, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A,
Ricote M and Valledor AF: Nuclear receptors: Lipid and hormone
sensors with essential roles in the control of cancer development.
Semin Cancer Biol. 73:58–75. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yang Z, Gimple RC, Zhou N, Zhao L,
Gustafsson J and Zhou S: Targeting nuclear receptors for cancer
therapy: Premises, promises, and challenges. Trends Cancer.
7:541–556. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lian F, Wang Y, Xiao Y, Wu X, Xu H, Liang
L and Yang X: Activated farnesoid X receptor attenuates apoptosis
and liver injury in autoimmune hepatitis. Mol Med Rep.
12:5821–5827. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xu Y, Huangyang P, Wang Y, Xue L,
Devericks E, Nguyen HG, Yu X, Oses-Prieto JA, Burlingame AL,
Miglani S, et al: ERα is an RNA-binding protein sustaining tumor
cell survival and drug resistance. Cell. 184:5215–5229.e17. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Manickasamy MK, Jayaprakash S, Girisa S,
Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, et
al: Delineating the role of nuclear receptors in colorectal cancer,
a focused review. Discov Oncol. 15:412024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sun Y, Xie J, Cai S, Wang Q, Feng Z, Li Y,
Lu JJ, Chen W and Ye Z: Elevated expression of nuclear
receptor-binding SET domain 3 promotes pancreatic cancer cell
growth. Cell Death Dis. 12:9132021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Luo Y, Vlaeminck-Guillem V, Teinturier R,
Abou Ziki R, Bertolino P, Le Romancer M and Zhang CX: The scaffold
protein menin is essential for activating the MYC locus and
MYC-mediated androgen receptor transcription in androgen
receptor-dependent prostate cancer cells. Cancer Commun (Lond).
41:1427–1430. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhang T, Ma C, Zhang Z, Zhang H and Hu H:
NF-κB signaling in inflammation and cancer. MedComm (2020).
2:618–653. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
He G and Karin M: NF-κB and STAT3 - key
players in liver inflammation and cancer. Cell Res. 21:159–168.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yeung F, Hoberg JE, Ramsey CS, Keller MD,
Jones DR, Frye RA and Mayo MW: Modulation of NF-kappaB-dependent
transcription and cell survival by the SIRT1 deacetylase. EMBO J.
23:2369–2380. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yokoyama A, Somervaille TC, Smith KS,
Rozenblatt-Rosen O, Meyerson M and Cleary ML: The menin tumor
suppressor protein is an essential oncogenic cofactor for
MLL-associated leukemogenesis. Cell. 123:207–218. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mullard A: FDA approves first biparatopic
antibody therapy. Nat Rev Drug Discov. 24:72025. View Article : Google Scholar
|
|
96
|
Falini B, Brunetti L, Sportoletti P and
Martelli MP: NPM1-mutated acute myeloid leukemia: From bench to
bedside. Blood. 136:1707–1721. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Falini B, Gjertsen BT and Andresen V: The
acidic stretch and the C-terminal nuclear export signal motif of
NPM1 mutant: Are they druggable in AML? Leukemia. 37:2173–2175.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Perner F, Stein EM, Wenge DV, Singh S, Kim
J, Apazidis A, Rahnamoun H, Anand D, Marinaccio C, Hatton C, et al:
MEN1 mutations mediate clinical resistance to menin inhibition.
Nature. 615:913–919. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Brunetti L, Gundry MC, Sorcini D, Guzman
AG, Huang YH, Ramabadran R, Gionfriddo I, Mezzasoma F, Milano F,
Nabet B, et al: Mutant NPM1 maintains the leukemic state through
HOX expression. Cancer Cell. 34:499–512.e9. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Krivtsov AV and Armstrong SA: MLL
translocations, histone modifications and leukaemia stem-cell
development. Nat Rev Cancer. 7:823–833. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Forgione MO, McClure BJ, Eadie LN, Yeung
DT and White DL: KMT2A rearranged acute lymphoblastic leukaemia:
Unravelling the genomic complexity and heterogeneity of this
high-risk disease. Cancer Lett. 469:410–418. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Thorsteinsdottir U, Kroon E, Jerome L,
Blasi F and Sauvageau G: Defining roles for HOX and MEIS1 genes in
induction of acute myeloid leukemia. Mol Cell Biol. 21:224–234.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Grembecka J, He S, Shi A, Purohit T,
Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM,
Hartley T, et al: Menin-MLL inhibitors reverse oncogenic activity
of MLL fusion proteins in leukemia. Nat Chem Biol. 8:277–284. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Uckelmann HJ, Kim SM, Wong EM, Hatton C,
Giovinazzo H, Gadrey JY, Krivtsov AV, Rücker FG, Döhner K, McGeehan
GM, et al: Therapeutic targeting of preleukemia cells in a mouse
model of NPM1 mutant acute myeloid leukemia. Science. 367:586–590.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Di Fazio P: Targeting menin: A promising
therapeutic strategy for susceptible acute leukemia subtypes.
Signal Transduct Target Ther. 8:3842023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Nadiminti KVG, Sahasrabudhe KD and Liu H:
Menin inhibitors for the treatment of acute myeloid leukemia:
Challenges and opportunities ahead. J Hematol Oncol. 17:1132024.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang R, Xu P, Chang LL, Zhang SZ and Zhu
HH: Targeted therapy in NPM1-mutated AML: Knowns and unknowns.
Front Oncol. 12:9726062022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Uckelmann HJ, Haarer EL, Takeda R, Wong
EM, Hatton C, Marinaccio C, Perner F, Rajput M, Antonissen NJC, Wen
Y, et al: Mutant NPM1 directly regulates oncogenic transcription in
acute myeloid leukemia. Cancer Discov. 13:746–765. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang XQD, Fan D, Han Q, Liu Y, Miao H,
Wang X, Li Q, Chen D, Gore H, Himadewi P, et al: Mutant NPM1
hijacks transcriptional hubs to maintain pathogenic gene programs
in acute myeloid leukemia. Cancer Discov. 13:724–745. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Dillon LW, Gui G, Page KM, Ravindra N,
Wong ZC, Andrew G, Mukherjee D, Zeger SL, El Chaer F, Spellman S,
et al: DNA sequencing to detect residual disease in adults with
acute myeloid leukemia prior to hematopoietic cell transplant.
JAMA. 329:745–755. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Mill CP, Fiskus W, Das K, Davis JA,
Birdwell CE, Kadia TM, DiNardo CD, Daver N, Takahashi K, Sasaki K,
et al: Causal linkage of presence of mutant NPM1 to efficacy of
novel therapeutic agents against AML cells with mutant NPM1.
Leukemia. 37:1336–1348. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Huls G, Woolthuis CM and Schuringa JJ:
Menin inhibitors in the treatment of acute myeloid leukemia. Blood.
145:561–566. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Issa GC, Aldoss I, Thirman MJ, DiPersio J,
Arellano M, Blachly JS, Mannis GN, Perl A, Dickens DS, McMahon CM,
et al: Menin inhibition with revumenib for KMT2A-Rearranged
relapsed or refractory acute leukemia (AUGMENT-101). J Clin Oncol.
43:75–84. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wang ES, Issa GC, Erba HP, Altman JK,
Montesinos P, DeBotton S, Walter RB, Pettit K, Savona MR, Shah MV,
et al: Ziftomenib in relapsed or refractory acute myeloid leukaemia
(KOMET-001): A multicentre, open-label, multi-cohort, phase 1
trial. Lancet Oncol. 25:1310–1324. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Miao H, Chen D, Ropa J, Purohit T, Kim E,
Sulis ML, Ferrando A, Cierpicki T and Grembecka J: Combination of
menin and kinase inhibitors as an effective treatment for leukemia
with NUP98 translocations. Leukemia. 38:1674–1687. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fiskus W, Piel J, Collins M, Hentemann M,
Cuglievan B, Mill CP, Birdwell CE, Das K, Davis JA, Hou H, et al:
BRG1/BRM inhibitor targets AML stem cells and exerts superior
preclinical efficacy combined with BET or menin inhibitor. Blood.
143:2059–2072. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kwon MC, Thuring JW, Querolle O, Dai X,
Verhulst T, Pande V, Marien A, Goffin D, Wenge DV, Yue H, et al:
Preclinical efficacy of the potent, selective menin-KMT2A inhibitor
JNJ-75276617 (bleximenib) in KMT2A- and NPM1-altered leukemias.
Blood. 144:1206–1220. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
An ZY and Zhang XH: Menin inhibitors for
acute myeloid leukemia: latest updates from the 2023 ASH Annual
Meeting. J Hematol Oncol. 17:522024. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Heikamp EB, Henrich JA, Perner F, Wong EM,
Hatton C, Wen Y, Barwe SP, Gopalakrishnapillai A, Xu H, Uckelmann
HJ, et al: The menin-MLL1 interaction is a molecular dependency in
NUP98-rearranged AML. Blood. 139:894–906. 2022. View Article : Google Scholar : PubMed/NCBI
|