You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Wan Y, Li G, Cui G, Duan S and Chang S: Reprogramming of thyroid cancer metabolism: From mechanism to therapeutic strategy. Mol Cancer. 24:7432025. View Article : Google Scholar | |
|
Myung SK, Lee CW, Lee J, Kim J and Kim HS: Risk factors for thyroid cancer: A hospital-based case-control study in Korean adults. Cancer Res Treat. 49:70–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Li Q, Zou C, Huang Q and Chen Y: Application and recent advances in conventional biomarkers for the prognosis of papillary thyroid carcinoma. Front Oncol. 15:15989342025. View Article : Google Scholar : PubMed/NCBI | |
|
Badulescu CI, Piciu D, Apostu D, Badan M and Piciu A: Follicular thyroid carcinoma-clinical and diagnostic findings in a 20-year follow up study. Acta Endocrinol (Buchar). 16:170–177. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huai JX, Wang F, Zhang WH, Lou Y, Wang GX, Huang LJ, Sun J and Zhou XQ: Unveiling new chapters in medullary thyroid carcinoma therapy: Advances in molecular genetics and targeted treatment strategies. Front Endocrinol (Lausanne). 15:14848152024. View Article : Google Scholar : PubMed/NCBI | |
|
Cleere EF, Prunty S and O'Neill JP: Anaplastic thyroid cancer: Improved understanding of what remains a deadly disease. Surgeon. 22:e48–e53. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Singarayer R, Mete O, Perrier L, Thabane L, Asa SL, Van Uum S, Ezzat S, Goldstein DP and Sawka AM: A systematic review and meta-analysis of the diagnostic performance of BRAF V600E immunohistochemistry in thyroid histopathology. Endocr Pathol. 30:201–218. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Grabellus F, Worm K, Schmid KW and Sheu SY: The BRAF V600E mutation in papillary thyroid carcinoma is associated with glucose transporter 1 overexpression. Thyroid. 22:377–382. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zou M, Baitei EY, Alzahrani AS, BinHumaid FS, Alkhafaji D, Al-Rijjal RA, Meyer BF and Shi Y: Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid. 24:1256–1266. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kang N, Zhao Z, Wang Z, Ning J, Wang H, Zhang W, Ruan X, Gao M and Zheng X: METTL3 regulates thyroid cancer differentiation and chemosensitivity by modulating PAX8. Int J Biol Sci. 20:3426–3441. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Wang Y, Meng X, Wang W, Duan F, Chen S, Zhang Y, Sheng Z, Gao Y and Zhou L: METTL16 inhibits papillary thyroid cancer tumorigenicity through m6A/YTHDC2/SCD1-regulated lipid metabolism. Cell Mol Life Sci. 81:812024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Wang Y, Yang C, Feng Z, Huang Y, Liu P, Chen F and Deng Z: circ-PSD3 promoted proliferation and invasion of papillary thyroid cancer cells via regulating the miR-7-5p/METTL7B axis. J Recept Signal Transduct Res. 42:251–260. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Cai B, Lin Q, Lin X, Wang B and Chen X: TLE4 downregulation identified by WGCNA and machine learning algorithm promotes papillary thyroid carcinoma progression via activating JAK/STAT pathway. J Cancer. 15:4759–4776. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner M, Wuest M, Lopez-Campistrous A, Glubrecht D, Dufour J, Jans HS, Wuest F and McMullen TPW: Tyrosine kinase inhibitor therapy and metabolic remodelling in papillary thyroid cancer. Endocr Relat Cancer. 27:495–507. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wen J, Lin B, Lin L, Chen Y and Wang O: KCNN4 is a diagnostic and prognostic biomarker that promotes papillary thyroid cancer progression. Aging (Albany NY). 12:16437–16456. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Liu S, Tian Y, Liu C, Gui Z, Yu T and Zhang L: PDZK1 Interacting Protein 1 promotes the progression of papillary thyroid cancer. J Clin Endocrinol Metab. 107:2449–2461. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Qin XJ, Lin X, Xue G, Fan HL, Wang HY, Wu JF and Pei D: CXCL10 is a potential biomarker and associated with immune infiltration in human papillary thyroid cancer. Biosci Rep. 41:BSR202034592021. View Article : Google Scholar : PubMed/NCBI | |
|
Sirakriengkrai K, Tepmongkol S, Keelawat S and Techavijit U: Clinical association of CXCR4 in primary tumor of papillary thyroid cancer and response to iodine-131 treatment. Nucl Med Commun. 42:396–401. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Y, Li X, Xie R, Chen Y, Hu X, Liu Y and Ma H: Expression levels of MicroRNA-300/BCL2L11 in papillary thyroid cancer and their clinical diagnostic values. Eur Surg Res. 64:342–351. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Wen J, Lin B, Bhandari A, Zheng D, Kong L, Wang Y, Wang O and Chen Y: Immortalization up-regulated protein promotes tumorigenesis and inhibits apoptosis of papillary thyroid cancer. J Cell Mol Med. 24:14059–14072. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Liu R, Wu J, Li S, Yao W, Xu J, Zheng C, Lu Y and Zhang H: SRPX2 promotes cancer cell proliferation and migration of papillary thyroid cancer. Clin Exp Med. 23:4825–4834. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yan T, Qiu W, Song J, Fan Y and Yang Z: ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol. 66:1–10. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Xiang J, Bhandari A, Wen J, Lin B, Kong L and Wang O: LRRC52-AS1 is associated with clinical progression and regulates cell migration and invasion in papillary thyroid cancer. Clin Exp Pharmacol Physiol. 47:696–702. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng X, Xu S, Pan J, Zheng J, Wang X, Yu H, Bao J, Xu Y, Guan H and Zhang L: MKL1 overexpression predicts poor prognosis in patients with papillary thyroid cancer and promotes nodal metastasis. J Cell Sci. 132:jcs2313992019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Yu X, Fan C, Wang H, Wang R, Feng C and Guan H: Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J Mol Med (Berl). 96:777–790. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Xue C, Kang X, Jia X, Wang L, Younis MH, Liu D, Huo N, Han Y, Chen Z, et al: DNMT3B-mediated FAM111B methylation promotes papillary thyroid tumor glycolysis, growth and metastasis. Int J Biol Sci. 18:4372–4387. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W, Xiao H, Guan H and Li Y: SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. J Cell Biochem. 122:814–826. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N and Hahne JC: MicroRNAs (miRNAs) and Long Non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol. 15:261–278. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Jin L, Shi R, Li J, Wang Y, Zhang L, Liang CZ, Narayana VK, De Souza DP, Thorne RF, et al: The long noncoding RNA glycoLINC assembles a lower glycolytic metabolon to promote glycolysis. Mol Cell. 82:542–554.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Peng X, Li S, Zeng A and Song L: Regulatory function of glycolysis-related lncRNAs in tumor progression: Mechanism, facts, and perspectives. Biochem Pharmacol. 229:1165112024. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Duan R, Sun Z, Jia Q, Wu W, Wang F, Liu J, Zhang H and Xue X: LncRNA GLTC targets LDHA for succinylation and enzymatic activity to promote progression and radioiodine resistance in papillary thyroid cancer. Cell Death Differ. 30:1517–1532. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu J, Zhang W, Zang C, Liu X, Liu F, Ge R, Sun Y and Xia Q: Identification of key genes and miRNAs markers of papillary thyroid cancer. Biol Res. 51:452018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Dong H, Yang Y, Qian Y, Liu J, Li Z, Guan H, Chen Z, Li C, Zhang K, et al: Upregulation of long noncoding RNA MALAT1 in papillary thyroid cancer and its diagnostic value. Future Oncol. 14:3015–3022. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yi T, Zhou X, Sang K, Zhou J and Ge L: MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI. Biomed Pharmacother. 109:2357–2364. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Sun W, Hua H, Zhang J, Yu Q, Wang J, Liu X and Dong A: Overexpression of miR-127 predicts poor prognosis and contributes to the progression of papillary thyroid cancer by targeting REPIN1. Horm Metab Res. 53:197–203. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Wang W, Su Z, Zhang J and Cao H: Circ_0011058 facilitates proliferation, angiogenesis and radioresistance in papillary thyroid cancer cells by positively regulating YAP1 via acting as miR-335-5p sponge. Cell Signal. 88:1101552021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Li G, Ding C, Sun W and Zhang J: Long non-coding RNA HULC exerts oncogenic activity on papillary thyroid cancer in vitro and in vivo. Artif Cells Nanomed Biotechnol. 48:326–335. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xia F, Chen Y, Jiang B, Du X, Peng Y, Wang W, Huang W, Feng T and Li X: Long Noncoding RNA HOXA-AS2 promotes papillary thyroid cancer progression by regulating miR-520c-3p/S100A4 pathway. Cell Physiol Biochem. 50:1659–1672. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Wu Z, Meng X, Chu X, Huang H and Xu C: LncRNA HOXA-AS2 facilitates tumorigenesis and progression of papillary thyroid cancer by modulating the miR-15a-5p/HOXA3 axis. Hum Gene Ther. 30:618–631. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin BY, Wen JL, Zheng C, Lin LZ, Chen CZ and Qu JM: Eva-1 homolog A promotes papillary thyroid cancer progression and epithelial-mesenchymal transition via the Hippo signalling pathway. J Cell Mol Med. 24:13070–13080. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Huang S, Zhao Y, Xie B, Hu X and Cai Y: Novel LncRNA AK023507 inhibits cell metastasis and proliferation in papillary thyroid cancer through β-catenin/Wnt signaling pathway. Biochem Biophys Res Commun. 655:104–109. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Z, Zhou X, Cai Y, Chen E, Zhang X, Wang O, Wang Q and Liu H: TEKT4 promotes papillary thyroid cancer cell proliferation, colony formation, and metastasis through activating PI3K/Akt pathway. Endocr Pathol. 29:310–316. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Zhuo D and Yuan H: Circ_100395 impedes malignancy and glycolysis in papillary thyroid cancer: Involvement of PI3K/AKT/mTOR signaling pathway. Immunol Lett. 246:10–17. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Park JH, Myung JK, Lee SJ, Kim H, Kim S, Lee SB, Jang H, Jang WI, Park S, Yang H, et al: ABCA1-Mediated EMT promotes papillary thyroid cancer malignancy through the ERK/Fra-1/ZEB1 Pathway. Cells. 12:2742023. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Zhou M, Yin J, Wan J, Chu J, Jia J, Sheng J, Wang C, Yin H and He F: METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 29:1821–1837. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Tan Z, Li Y, Zhang X, Wu Y, Xu B and Wang M: Insulin-like growth factor 1 promotes proliferation and invasion of papillary thyroid cancer through the STAT3 pathway. J Clin Lab Anal. 34:e235312020. View Article : Google Scholar : PubMed/NCBI | |
|
Hong S, Xie Y, Cheng Z, Li J, He W, Guo Z, Zhang Q, Peng S, He M, Yu S, et al: Distinct molecular subtypes of papillary thyroid carcinoma and gene signature with diagnostic capability. Oncogene. 41:5121–5132. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Carnazza M, Quaranto D, DeSouza N, Moscatello AL, Garber D, Hemmerdinger S, Islam HK, Tiwari RK, Li XM and Geliebter J: The current understanding of the molecular pathogenesis of papillary thyroid cancer. Int J Mol Sci. 26:46462005. View Article : Google Scholar | |
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS and Shong M: Metabolic reprogramming in thyroid cancer. Endocrinol Metab (Seoul). 39:425–444. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Sun W, Wang Z, Lv C, Zhang T, Zhang D, Dong W, Shao L, He L, Ji X, et al: FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 41:422022. View Article : Google Scholar : PubMed/NCBI | |
|
Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, et al: Reprogramming of energy metabolism: Increased expression and roles of pyruvate carboxylase in papillary thyroid cancer. Thyroid. 29:845–857. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xie W, Zeng Y, Hu L, Hao J, Chen Y, Yun X, Lin Q and Li H: Based on different immune responses under the glucose metabolizing type of papillary thyroid cancer and the response to anti-PD-1 therapy. Front Immunol. 13:9916562022. View Article : Google Scholar : PubMed/NCBI | |
|
Shen CT, Wei WJ, Qiu ZL, Song HJ, Zhang XY, Sun ZK and Luo QY: Metformin reduces glycometabolism of papillary thyroid carcinoma in vitro and in vivo. J Mol Endocrinol. 58:15–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ren X, Shu J, Wang J, Guo Y, Zhang Y, Yue L, Yu H, Chen W, Zhang C, Ma J and Li Z: Machine learning reveals salivary glycopatterns as potential biomarkers for the diagnosis and prognosis of papillary thyroid cancer. Int J Biol Macromol. 215:280–289. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yang L, Mao L, Zhang L, Zhu Y, Xu Y, Cheng Y, Sun R, Zhang Y, Ke J and Zhao D: SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int. 22:742022. View Article : Google Scholar : PubMed/NCBI | |
|
Thakur S, Daley B, Gaskins K, Vasko VV, Boufraqech M, Patel D, Sourbier C, Reece J, Cheng SY, Kebebew E, et al: Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin Cancer Res. 24:4030–4043. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wen S, Luo Y, Wu W, Zhang T, Yang Y, Ji Q, Wu Y, Shi R, Ma B, Xu M and Qu N: Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer. Acta Biochim Biophys Sin (Shanghai). 53:1579–1589. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu M, Sun T, Wen S, Zhang T, Wang X, Cao Y, Wang Y, Sun X, Ji Q, Shi R and Qu N: Characteristics of lipid metabolism-related gene expression-based molecular subtype in papillary thyroid cancer. Acta Biochim Biophys Sin (Shanghai). 52:1166–1170. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liao T, Wang YJ, Hu JQ, Wang Y, Han LT, Ma B, Shi RL, Qu N, Wei WJ, Guan Q, et al: Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro. Oncol Rep. 39:2185–2192. 2018.PubMed/NCBI | |
|
Zwara A, Hellmann A, Czapiewska M, Korczynska J, Sztendel A and Mika A: The influence of cancer on the reprogramming of lipid metabolism in healthy thyroid tissues of patients with papillary thyroid carcinoma. Endocrine. 87:273–280. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Abooshahab R, Hooshmand K, Razavi SA, Gholami M, Sanoie M and Hedayati M: Plasma metabolic profiling of human thyroid nodules by gas Chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics. Front Cell Dev Biol. 8:3852020. View Article : Google Scholar : PubMed/NCBI | |
|
Ambrosi F, Righi A, Ricci C, Erickson LA, Lloyd RV and Asioli S: Hobnail variant of papillary thyroid carcinoma: A literature review. Endocr Pathol. 28:293–301. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Aprile M, Cataldi S, Perfetto C, Federico A, Ciccodicola A and Costa V: Targeting metabolism by B-raf inhibitors and diclofenac restrains the viability of BRAF-mutated thyroid carcinomas with Hif-1α-mediated glycolytic phenotype. Br J Cancer. 129:249–265. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Badziong J, Ting S, Synoracki S, Tiedje V, Brix K, Brabant G, Moeller LC, Schmid KW, Fuhrer D and Zwanziger D: Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism. Eur J Endocrinol. 177:243–250. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bai N, Xia F, Wang W, Lei Y, Bo J and Li X: CDK12 promotes papillary thyroid cancer progression through regulating the c-myc/β-catenin pathway. J Cancer. 11:4308–4315. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Fu J, Chen Y, Li Y, Ning L, Huang D, Yan S and Zhang Q: Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging (Albany NY). 13:16500–16512. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zhang T, Bai Y, Deng H, Yang F, Zhu R, Chen Y, He Z, Zeng Q and Song M: Upregulated circRAD18 promotes tumor progression by reprogramming glucose metabolism in papillary thyroid cancer. Gland Surg. 10:2500–2510. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chong ST, Tan KM, Kok CYL, Guan SP, Lai SH, Lim C, Hu J, Sturgis C, Eng C, Lam PYP, et al: IL13RA2 is differentially regulated in papillary thyroid carcinoma vs follicular thyroid carcinoma. J Clin Endocrinol Metab. 104:5573–5584. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Davis PJ, Lin HY, Hercbergs A and Mousa SA: Actions of L-thyroxine (T4) and tetraiodothyroacetic acid (Tetrac) on gene expression in thyroid cancer cells. Genes (Basel). 11:7552020. View Article : Google Scholar : PubMed/NCBI | |
|
Fan X and Zhao Y: miR-451a inhibits cancer growth, epithelial-mesenchymal transition and induces apoptosis in papillary thyroid cancer by targeting PSMB8. J Cell Mol Med. 23:8067–8075. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Z, Song Y, Qian J, Chen T, Yang C, Jia L, Liu C, Liu P, Lv J and Deng Z: Differential expression of a set of microRNA genes reveals the potential mechanism of papillary thyroid carcinoma. Ann Endocrinol (Paris). 80:77–83. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gunjača I, Benzon B, Pleić N, Babić Leko M, Pešutić Pisac V, Barić A, Kaličanin D, Punda A, Polašek O, Vukojević K, et al: Role of ST6GAL1 in thyroid cancers: Insights from tissue analysis and genomic datasets. Int J Mol Sci. 24:163342023. View Article : Google Scholar : PubMed/NCBI | |
|
Ha TK, Jung I, Kim ME, Bae SK and Lee JS: Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial Dysfunction-mediated apoptosis. Biomed Pharmacother. 91:378–384. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hińcza K, Kowalik A, Pałyga I, Walczyk A, Gąsior-Perczak D, Mikina E, Trybek T, Szymonek M, Gadawska-Juszczyk K, Zajkowska K, et al: Does the TT variant of the rs966423 polymorphism in DIRC3 affect the stage and clinical course of papillary thyroid cancer? Cancers (Basel). 12:4232020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Quan G, Yang F, Du S, Ding S, Lun Y and Chen Q: MicroRNA-96-5p is negatively regulating GPC3 in the metastasis of papillary thyroid cancer. SAGE Open Med. 11:205031212312057102023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Z, Zhao P, Zhang K, Zang L, Liao H and Ma W: Hsa_circ_0011290 regulates proliferation, apoptosis and glycolytic phenotype in papillary thyroid cancer via miR-1252/ FSTL1 signal pathway. Arch Biochem Biophys. 685:1083532020. View Article : Google Scholar : PubMed/NCBI | |
|
Jeon MJ, You MH, Han JM, Sim S, Yoo HJ, Lee WK, Kim TY, Song DE, Shong YK, Kim WG and Kim WB: High phosphoglycerate dehydrogenase expression induces stemness and aggressiveness in thyroid cancer. Thyroid. 30:1625–1638. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jin L, Zheng D, Mo D, Guan Y, Wen J, Zhang X and Chen C: Glucose-to-Lymphocyte ratio (GLR) as a predictor of preoperative central lymph node metastasis in papillary thyroid cancer patients with type 2 diabetes mellitus and construction of the nomogram. Front Endocrinol (Lausanne). 13:8290092022. View Article : Google Scholar : PubMed/NCBI | |
|
Kang YE, Kim JT, Lim MA, Oh C, Liu L, Jung SN, Won HR, Lee K, Chang JW, Yi HS, et al: Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel). 11:11542019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu F, Wang H, Hou C, Liu X and Zou Q: OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene. 40:4859–4871. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen M, Liu C, Xia Y, Xu B, Hu Y, Chen T, Shen M and Tang W: Metabolic changes associated with papillary thyroid carcinoma: A nuclear magnetic resonance-based metabolomics study. Int J Mol Med. 41:3006–3014. 2018.PubMed/NCBI | |
|
Lu J, Zhang Y, Sun M, Ding C, Zhang L, Kong Y, Cai M, Miccoli P, Ma C and Yue X: Multi-omics analysis of fatty acid metabolism in thyroid carcinoma. Front Oncol. 11:7371272021. View Article : Google Scholar : PubMed/NCBI | |
|
Mardente S, Romeo MA, Asquino A, Po A, Gilardini Montani MS and Cirone M: HHV-6A infection of papillary thyroid cancer cells induces several effects related to cancer progression. Viruses. 15:21222023. View Article : Google Scholar : PubMed/NCBI | |
|
Nahm JH, Kim HM and Koo JS: Glycolysis-related protein expression in thyroid cancer. Tumour Biol. 39:10104283176959222017. View Article : Google Scholar : PubMed/NCBI | |
|
Nilsson JN, Siikanen J, Hedman C, Juhlin CC and Ihre Lundgren C: Pre-Therapeutic measurements of iodine avidity in papillary and poorly differentiated thyroid cancer reveal associations with thyroglobulin expression, histological variants and Ki-67 index. Cancers (Basel). 13:36272021. View Article : Google Scholar : PubMed/NCBI | |
|
Parascandolo A, Rappa F, Cappello F, Kim J, Cantu DA, Chen H, Mazzoccoli G, Hematti P, Castellone MD, Salvatore M and Laukkanen MO: Extracellular superoxide dismutase expression in papillary thyroid cancer mesenchymal Stem/Stromal cells modulates cancer cell growth and migration. Sci Rep. 7:414162017. View Article : Google Scholar : PubMed/NCBI | |
|
Piana S, Zanetti E, Bisagni A, Ciarrocchi A, Giordano D, Torricelli F, Rossi T and Ragazzi M: Expression of NOTCH1 in thyroid cancer is mostly restricted to papillary carcinoma. Endocr Connect. 8:1089–1096. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sekhar KR, Cyr S and Baregamian N: Ferroptosis inducers in thyroid cancer. World J Surg. 47:371–381. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Song H, Qiu Z, Wang Y, Xi C, Zhang G, Sun Z, Luo Q and Shen C: HIF-1α/YAP signaling rewrites Glucose/Iodine metabolism program to promote papillary thyroid cancer progression. Int J Biol Sci. 19:225–241. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Gong J, Guo B, Shang J, Cheng Y and Xu H: Association of adjuvant radioactive iodine therapy with survival in node-positive papillary thyroid cancer. Oral Oncol. 87:152–157. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Valvo V, Iesato A, Kavanagh TR, Priolo C, Zsengeller Z, Pontecorvi A, Stillman IE, Burke SD, Liu X and Nucera C: Fine-tuning lipid metabolism by targeting Mitochondria-associated Ac92etyl-CoA-Carboxylase 2 in BRAF(V600E) papillary thyroid carcinoma. Thyroid. 31:1335–1358. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu C, Ma L, Wei H, Nie F, Ning J and Jiang T: MiR-1256 inhibits cell proliferation and cell cycle progression in papillary thyroid cancer by targeting 5-hydroxy tryptamine receptor 3A. Hum Cell. 33:630–640. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xia M, Wang S, Wang L, Mei Y, Tu Y and Gao L: The role of lactate metabolism-related LncRNAs in the prognosis, mutation, and tumor microenvironment of papillary thyroid cancer. Front Endocrinol (Lausanne). 14:10623172023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K and Feng Y: HOXD-AS1 is a predictor of clinical progression and functions as an oncogenic lncRNAs in papillary thyroid cancer. J Cell Biochem. 120:5326–5332. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yun HJ, Kim M, Kim SY, Fang S, Kim Y, Chang HS, Chang HJ and Park KC: Effects of Anti-cancer drug Sensitivity-related genetic differences on therapeutic approaches in refractory papillary thyroid cancer. Int J Mol Sci. 23:6992022. View Article : Google Scholar : PubMed/NCBI | |
|
Zarkesh M, Zadeh-Vakili A, Akbarzadeh M, Fanaei SA, Hedayati M and Azizi F: The role of matrix metalloproteinase-9 as a prognostic biomarker in papillary thyroid cancer. BMC Cancer. 18:11992018. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng J, Ma X, Wang J, Liu R, Shao Y, Hou Y, Li Z and Fang Y: Down-regulated HSDL2 expression suppresses cell proliferation and promotes apoptosis in papillary thyroid carcinoma. Biosci Rep. 39:BSR201904252019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Bo C, Guo L, Yu P, Miao S and Gu X: BCL2 and hsa-miR-181a-5p are potential biomarkers associated with papillary thyroid cancer based on bioinformatics analysis. World J Surg Oncol. 17:2212019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Wen X, Li Y, Zhang J, Li X, Qian C, Tian Y, Ling R and Duan Y: Diagnostic approach to thyroid cancer based on amino acid metabolomics in saliva by ultra-performance liquid chromatography with high resolution mass spectrometry. Talanta. 235:1227292021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao F, Zhu S, Fang J, Dong H and Zhu C: Correlation of DNA methylation and lymph node metastasis in papillary thyroid carcinoma. Head Neck. 45:1654–1662. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sengun S, Korkmaz H, Ciris M, Yüceer RO, Boyluboy SM and Kiran M: Diagnostic and prognostic value of Stanniocalcin 1 expression in papillary thyroid cancer. Endocrine. 78:95–103. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo JH, Zhang XX and Sun WH: F12 as a reliable diagnostic and prognostic biomarker associated with immune infiltration in papillary thyroid cancer. Aging (Albany NY). 14:3687–3704. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang K, Li C, Liu J, Li Z and Ma C: Down-regulation of APTR and it's diagnostic value in papillary and anaplastic thyroid cancer. Pathol Oncol Res. 26:559–565. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bumber B, Marjanovic Kavanagh M, Jakovcevic A, Sincic N, Prstacic R and Prgomet D: Role of matrix metalloproteinases and their inhibitors in the development of cervical metastases in papillary thyroid cancer. Clin Otolaryngol. 45:55–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ali KM, Awny S, Ibrahim DA, Metwally IH, Hamdy O, Refky B, Abdallah A and Abdelwahab K: Role of P53, E-cadherin and BRAF as predictors of regional nodal recurrence for papillary thyroid cancer. Ann Diagn Pathol. 40:59–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Song W, Li Y, Liu Z, Zhao K, Jia L, Wang X, Jiang R, Tian Y and He X: Integrated analysis of tumor microenvironment features to establish a diagnostic model for papillary thyroid cancer using bulk and single-cell RNA sequencing technology. J Cancer Res Clin Oncol. 149:16837–16850. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Boucai L, Zafereo M and Cabanillas ME: Thyroid cancer: A review. JAMA. 331:425–435. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Levine RA: History of thyroid ultrasound. Thyroid. 33:894–902. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell AL, Gandhi A, Scott-Coombes D and Perros P: Management of thyroid cancer: United kingdom national multidisciplinary guidelines. J Laryngol Otol. 130 (Suppl):S150–S160. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hou ZK, Zhao J, Zhang M, Hou W, Li Y, Yang Y, Liu Y, Ye Z, Cai Q, Wei X, et al: Preoperative identification of papillary thyroid carcinoma subtypes and lymph node metastasis via deep Learning-Assisted Surface-enhanced raman spectroscopy. ACS Nano. 19:21807–21819. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Su X, Shang L, Yue C and Ma B: Ultrasound-guided fine needle aspiration thyroglobulin in the diagnosis of lymph node metastasis of differentiated papillary thyroid carcinoma and its influencing factors. Front Endocrinol (Lausanne). 15:13048322024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Zhang X and Cui S: Matrine inhibits TPC-1 human thyroid cancer cells via the miR-21/PTEN/Akt pathway. Oncol Lett. 16:2965–2970. 2018.PubMed/NCBI | |
|
Fu S, Ma C, Tang X, Ma X, Jing G, Zhao N and Ran J: MiR-192-5p inhibits proliferation, migration, and invasion in papillary thyroid carcinoma cells by regulation of SH3RF3. Biosci Rep. 41:BSR202103422021. View Article : Google Scholar : PubMed/NCBI | |
|
Fu S, Zhao N, Jing G, Yang X, Liu J, Zhen D and Tang X: Matrine induces papillary thyroid cancer cell apoptosis in vitro and suppresses tumor growth in vivo by downregulating miR-182-5p. Biomed Pharmacother. 128:1103272020. View Article : Google Scholar : PubMed/NCBI | |
|
Wen SS, Wu YJ, Wang JY, Ni ZX, Dong S, Xie XJ, Wang YT, Wang Y, Huang NS, Ji QH, et al: BRAFV600E/p-ERK/p-DRP1(Ser616) promotes tumor progression and reprogramming of glucose metabolism in papillary thyroid cancer. Thyroid. 34:1246–1259. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Peng Y, Su Y, Diao C, Cha L and Cheng R: Glutamate activates the MAPK pathway by inhibiting LPAR1 expression and promotes anlotinib resistance in thyroid cancer. Discov Oncol. 16:10822025. View Article : Google Scholar : PubMed/NCBI | |
|
Limberg J, Egan CE, Gray KD, Singh M, Loewenstein Z, Yang Y, Riascos MC, Al Asadi H, Safe P, El Eshaky S, et al: Activation of the JAK/STAT pathway leads to BRAF inhibitor resistance in BRAFV600E positive thyroid carcinoma. Mol Cancer Res. 21:397–410. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sui F, Wang G, Liu J, Yuan M, Chen P, Yao Y, Zhang S, Ji M and Hou P: Targeting NG2 relieves the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitors. Cell Mol Life Sci. 81:2382024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu M, Zhao D, Chen Y, Chen C, Zhang L, Sun L, Chen J, Tang Q, Sun S, Ma C, et al: Charge reversal polypyrrole nanocomplex-mediated gene delivery and photothermal therapy for effectively treating papillary thyroid cancer and inhibiting lymphatic metastasis. ACS Appl Mater Interfaces. 14:14072–14086. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pearce EN and Caldwell KL: Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. AmJ Clin Nutr. 104 (Suppl 3):898S–901S. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sørensen SM, de la Cour CD, Maltesen T, Urbute A and Kjaer SK: Temporal trends in papillary and follicular thyroid cancer incidence from 1995 to 2019 in adults in denmark according to education and income. Thyroid. 32:972–982. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Aschebrook-Kilfoy B, Grogan RH, Ward MH, Kaplan E and Devesa SS: Follicular thyroid cancer incidence patterns in the United states 1980–2009. Thyroid. 23:1015–1021. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kitahara CM and Sosa JA: The changing incidence of thyroid cancer. Nat Rev Endocrinol. 12:646–653. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Aschebrook-Kilfoy B, Kaplan EL, Chiu BC, Angelos P and Grogan RH: The acceleration in papillary thyroid cancer incidence rates is similar among racial and ethnic groups in the United States. Ann Surg Oncol. 20:2746–2753. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu LP, Hao JY, Pan H, Wang C and Yue P: Mutation of RAS gene in follicular-differentiated thyroid tumors and its significance. Zhonghua Bing Li Xue Za Zhi. 49:256–261. 2020.(In Chinese). PubMed/NCBI | |
|
Yang X and Wu H: RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J Hematol Oncol. 17:1082024. View Article : Google Scholar : PubMed/NCBI | |
|
Tartaglia M and Gelb BD: Disorders of dysregulated signal traffic through the RAS-MAPK pathway: Phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci. 1214:99–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bahar ME, Kim HJ and Kim DR: Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct Target Ther. 8:4552023. View Article : Google Scholar : PubMed/NCBI | |
|
Takács T, Kudlik G, Kurilla A, Szeder B, Buday L and Vas V: The effects of mutant Ras proteins on the cell signalome. Cancer Metastasis Rev. 39:1051–1065. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
De Martino M, Esposito F, Capone M, Pallante P and Fusco A: Noncoding RNAs in thyroid-follicular-cell-derived carcinomas. Cancers (Basel). 14:30792022. View Article : Google Scholar : PubMed/NCBI | |
|
Srinivasan V, Asghar MY, Zafar S, Törnquist K and Lindholm D: Proliferation and migration of ML1 follicular thyroid cancer cells are inhibited by IU1 targeting USP14: Role of proteasome and autophagy flux. Front Cell Dev Biol. 11:12342042023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin TH, Kuo CH, Zhang YS, Chen PT, Chen SH, Li YZ and Lee YR: Piperlongumine induces cellular apoptosis and autophagy via the ROS/Akt signaling pathway in human follicular thyroid cancer cells. Int J Mol Sci. 24:80482023. View Article : Google Scholar : PubMed/NCBI | |
|
Pribyl M, Hodny Z and Kubikova I: Suprabasin-A review. Genes (Basel). 108:122021. | |
|
Tan H, Wang L and Liu Z: Role of suprabasin in the dedifferentiation of follicular epithelial Cell-derived thyroid cancer and identification of related immune markers. Front Genet. 13:8106812022. View Article : Google Scholar : PubMed/NCBI | |
|
Iesato A, Nakamura T, Izumi H, Uehara T and Ito KI: PATZ1 knockdown enhances malignant phenotype in thyroid epithelial follicular cells and thyroid cancer cells. Oncotarget. 8:82754–82772. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida J, Iwabuchi K, Matsui T, Ishibashi T, Masuoka T and Nishio M: Knockdown of stromal interaction molecule 1 (STIM1) suppresses store-operated calcium entry, cell proliferation and tumorigenicity in human epidermoid carcinoma A431 cells. Biochem Pharmacol. 84:1592–1603. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kuang CY, Yu Y, Guo RW, Qian DH, Wang K, Den MY, Shi YK and Huang L: Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells. Biochem Biophys Res Commun. 398:315–320. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Asghar MY, Lassila T, Paatero I, Nguyen VD, Kronqvist P, Zhang J, Slita A, Löf C, Zhou Y, Rosenholm J and Törnquist K: Stromal interaction molecule 1 (STIM1) knock down attenuates invasion and proliferation and enhances the expression of Thyroid-specific proteins in human follicular thyroid cancer cells. Cell Mol Life Sci. 78:5827–5846. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cai X, Sun R, Yang L, Yao N, Sun Y, Zhang G, Ge W, Zhou Y, Gui Z, Wang Y, et al: Proteomic analysis reveals modulation of key proteins in follicular thyroid cancer progression. Chin Med J (Engl). May 21;doi: 10.1097/CM9.0000000000003645 (Epub ahead of print). | |
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rudzińska M, Mikula M, Arczewska KD, Gajda E, Sabalińska S, Stępień T, Ostrowski J and Czarnocka B: Transcription factor prospero Homeobox 1 (PROX1) as a potential angiogenic regulator of follicular thyroid cancer dissemination. Int J Mol Sci. 20:56192019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Liu W, Wang Z, Wang C and Ai Z: Exosomal ANXA1 derived from thyroid cancer cells is associated with malignant transformation of human thyroid follicular epithelial cells by promoting cell proliferation. Int J Oncol. 59:1042021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Chen J, Feng J, Xu Y, Zheng W and Wang J: SOSTDC1 inhibits follicular thyroid cancer cell proliferation, migration, and EMT via suppressing PI3K/Akt and MAPK/Erk signaling pathways. Mol Cell Biochem. 435:87–95. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fuziwara CS, Saito KC, Leoni SG, Waitzberg  FL and Kimura ET: The highly expressed FAM83F protein in papillary thyroid cancer exerts a Pro-oncogenic role in thyroid follicular cells. Front Endocrinol (Lausanne). 10:1342019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu G, Chen J, Wang G, Xiao J, Zhang N, Chen Y, Yu H, Wang G and Zhao Y: Resveratrol inhibits the tumorigenesis of follicular thyroid cancer via ST6GAL2-Regulated activation of the hippo signaling pathway. Mol Ther Oncolytics. 16:124–133. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Campisi A, Bonfanti R, Raciti G, Bonaventura G, Legnani L, Magro G, Pennisi M, Russo G, Chiacchio MA, Pappalardo F and Parenti R: Gene silencing of Transferrin-1 receptor as a potential therapeutic target for human follicular and anaplastic thyroid cancer. Mol Ther Oncolytics. 16:197–206. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bai F, Liu X, Zhang X, Mao Z, Wen H, Ma J and Pei XH: p18INK4C and BRCA1 inhibit follicular cell proliferation and dedifferentiation in thyroid cancer. Cell Cycle. 22:1637–1653. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Erinjeri NJ, Nicolson NG, Deyholos C, Korah R and Carling T: Whole-exome sequencing identifies two discrete druggable signaling pathways in follicular thyroid cancer. J Am Coll Surg. 226:950–959.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fozzatti L, Alamino VA, Park S, Giusiano L, Volpini X, Zhao L, Stempin CC, Donadio AC, Cheng SY and Pellizas CG: Interplay of fibroblasts with anaplastic tumor cells promotes follicular thyroid cancer progression. Sci Rep. 9:80282019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu PP, Zeng S, Xia XT, Ye ZH, Li MF, Chen MY, Xia T, Xu JJ, Jiao Q, Liu L, et al: 2020: FAM172A promotes follicular thyroid carcinogenesis and may be a marker of FTC. Endocr Relat Cancer. 27:657–669. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu JL, Mao Z, Gallick GE and Yung WK: AMPK/ TSC2/mTOR-signaling intermediates are not necessary for LKB1-mediated nuclear retention of PTEN tumor suppressor. Neuro Oncol. 13:184–194. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pringle DR, Vasko VV, Yu L, Manchanda PK, Lee AA, Zhang X, Kirschner JM, Parlow AF, Saji M, Jarjoura D, et al: Follicular thyroid cancers demonstrate dual activation of PKA and mTOR as modeled by thyroid-specific deletion of Prkar1a and Pten in mice. J Clin Endocrinol Metab. 99:E804–E812. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kari S, Vasko VV, Priya S and Kirschner LS: PKA activates AMPK through LKB1 signaling in follicular thyroid cancer. Front Endocrinol (Lausanne). 10:7692019. View Article : Google Scholar : PubMed/NCBI | |
|
Borowczyk M, Szczepanek-Parulska E, Dębicki S, Budny B, Janicka-Jedyńska M, Gil L, Verburg FA, Filipowicz D, Wrotkowska E, Majchrzycka B, et al: High incidence of FLT3 mutations in follicular thyroid cancer: Potential therapeutic target in patients with advanced disease stage. Ther Adv Med Oncol. 12:17588359209075342020. View Article : Google Scholar : PubMed/NCBI | |
|
Borson-Chazot F, Dantony E, Illouz F, Lopez J, Niccoli P, Wassermann J, Do Cao C, Leboulleux S, Klein M, Tabarin A, et al: Effect of buparlisib, a Pan-class I PI3K inhibitor, in refractory follicular and poorly differentiated thyroid cancer. Thyroid. 28:1174–1179. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
El-Azem N, Pulido-Moran M, Ramirez-Tortosa CL, Quiles JL, Cara FE, Sanchez-Rovira P, Granados-Principal S and Ramirez-Tortosa M: Modulation by hydroxytyrosol of oxidative stress and antitumor activities of paclitaxel in breast cancer. Eur J Nutr. 58:1203–1211. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Toteda G, Lupinacci S, Vizza D, Bonofiglio R, Perri E, Bonofiglio M, Lofaro D, La Russa A, Leone F, Gigliotti P, et al: High doses of hydroxytyrosol induce apoptosis in papillary and follicular thyroid cancer cells. J Endocrinol Invest. 40:153–162. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Son Y, Lee JH, Chung HT and Pae HO: Therapeutic roles of heme oxygenase-1 in metabolic diseases: Curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid Med Cell Longev. 2013:6395412013. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L and Yu H: Transcriptome investigation and in vitro verification of Curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid Med Cell Longev. 2020:34698402020. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon MY, Park E, Lee SJ and Chung SW: Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 6:24393–24403. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Li Z, Xu J, Zhang N, Chen J, Wang G and Zhao Y: Curcumin induces ferroptosis in follicular thyroid cancer by upregulating HO-1 expression. Oxid Med Cell Longev. 2023:68967902023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Zhang S, Wang M, Dong S, Wang Y, Liu S, Lu T, Fu Y, Wang X and Chen G: Downregulated miR-21 mediates matrine-induced apoptosis via the PTEN/Akt signaling pathway in FTC-133 human follicular thyroid cancer cells. Oncol Lett. 18:3553–3560. 2019.PubMed/NCBI | |
|
Marotta V, Di Somma C, Rubino M, Sciammarella C, Modica R, Camera L, Del Prete M, Marciello F, Ramundo V, Circelli L, et al: Second-line sunitinib as a feasible approach for iodine-refractory differentiated thyroid cancer after the failure of first-line sorafenib. Endocrine. 49:854–858. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sousa Santos F, Joana Santos R and Leite V: Sorafenib and sunitinib for the treatment of metastatic thyroid cancer of follicular origin: A 7-year Single-Centre experience. Eur Thyroid J. 8:262–267. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lan L, Basourakos S, Cui D, Zuo X, Deng W, Huo L, Chen L, Zhang G, Deng L, Shi B, et al: Inhibiting β-catenin expression promotes efficiency of radioiodine treatment in aggressive follicular thyroid cancer cells probably through mediating NIS localization. Oncol Rep. 37:426–434. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dias D, Damásio I, Marques P, Simões H, Rodrigues R, Cavaco BM and Leite V: Metastatic follicular thyroid cancer with a longstanding responsiveness to gemcitabine plus oxaliplatin. Eur Thyroid J. 12:e2202272023. View Article : Google Scholar : PubMed/NCBI | |
|
Heffess CS and Thompson LD: Minimally invasive follicular thyroid carcinoma. Endocr Pathol. 12:417–422. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hernandez-Prera JC and Wenig BM: RAS-mutant follicular thyroid tumors: A continuous challenge for pathologists. Endocr Pathol. 35:167–184. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lang BH, Lo CY, Chan WF, Lam KY and Wan KY: Prognostic factors in papillary and follicular thyroid carcinoma: Their implications for cancer staging. Ann Surg Oncol. 14:730–738. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Levi J, Kothapalli SR, Bohndiek S, Yoon JK, Dragulescu-Andrasi A, Nielsen C, Tisma A, Bodapati S, Gowrishankar G, Yan X, et al: Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin Cancer Res. 19:1494–1502. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Wang H, Zhong J, Bai Y, Chen W, Jiang K, Huang J, Shao Y, Liu J, Gong Y, et al: Circulating small extracellular vesicle-based miRNA classifier for follicular thyroid carcinoma: A diagnostic study. Br J Cancer. 130:925–933. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang L, Xu J, Wang M, Xu G, Zhang N, Wang G and Zhao Y: LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge. Cell Death Dis. 9:3722018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Qiu Y, Zheng X, Dai Y and Xu T: The miR-199a-5p/PD-L1 axis regulates cell proliferation, migration and invasion in follicular thyroid carcinoma. BMC Cancer. 22:7562022. View Article : Google Scholar : PubMed/NCBI | |
|
Lo CY, Chan WF, Lam KY and Wan KY: Follicular thyroid carcinoma: The role of histology and staging systems in predicting survival. Ann Surg. 242:708–715. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Macerola E, Proietti A, Poma AM, Vignali P, Sparavelli R, Ginori A, Basolo A, Elisei R, Santini F and Basolo F: Limited accuracy of Pan-trk immunohistochemistry screening for NTRK rearrangements in Follicular-derived thyroid carcinoma. Int J Mol Sci. 23:74702022. View Article : Google Scholar : PubMed/NCBI | |
|
Park H, Shin HC, Yang H, Heo J, Ki CS, Kim HS, Kim JH, Hahn SY, Chung YJ, Kim SW, et al: Molecular classification of follicular thyroid carcinoma based on TERT promoter mutations. Mod Pathol. 35:186–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Paulsson JO, Wang N, Gao J, Stenman A, Zedenius J, Mu N, Lui WO, Larsson C and Juhlin CC: GABPA-dependent down-regulation of DICER1 in follicular thyroid tumours. Endocr Relat Cancer. 27:295–308. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pulcrano M, Boukheris H, Talbot M, Caillou B, Dupuy C, Virion A, De Vathaire F and Schlumberger M: Poorly differentiated follicular thyroid carcinoma: Prognostic factors and relevance of histological classification. Thyroid. 17:639–646. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Repaci A, Salituro N, Vicennati V, Monari F, Cavicchi O, de Biase D, Ciarrocchi A, Acquaviva G, De Leo A, Gruppioni E, et al: Unexpected widespread bone metastases from a BRAF K601N mutated follicular thyroid carcinoma within a previously resected multinodular goiter. Endocr Pathol. 33:519–524. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Romitti M, Ceolin L, Siqueira DR, Ferreira CV, Wajner SM and Maia AL: Signaling pathways in follicular cell-derived thyroid carcinomas (review). Int J Oncol. 42:19–28. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rossing M, Borup R, Henao R, Winther O, Vikesaa J, Niazi O, Godballe C, Krogdahl A, Glud M, Hjort-Sørensen C, et al: Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol. 48:11–23. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Saburi S, Tsujikawa T, Miyagawa-Hayashino A, Mitsuda J, Yoshimura K, Kimura A, Morimoto H, Ohmura G, Arai A, Ogi H, et al: Spatially resolved immune microenvironmental profiling for follicular thyroid carcinoma with minimal capsular invasion. Mod Pathol. 35:721–727. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Staubitz JI, Musholt PB and Musholt TJ: The surgical dilemma of primary surgery for follicular thyroid neoplasms. Best Pract Res Clin Endocrinol Metab. 33:1012922019. View Article : Google Scholar : PubMed/NCBI | |
|
Stenman A, Hysek M, Jatta K, Bränström R, Darai-Ramqvist E, Paulsson JO, Wang N, Larsson C, Zedenius J and Juhlin CC: TERT promoter mutation spatial heterogeneity in a metastatic follicular thyroid carcinoma: Implications for clinical work-up. Endocr Pathol. 30:246–248. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor T, Specker B, Robbins J, Sperling M, Ho M, Ain K, Bigos ST, Brierley J, Cooper D, Haugen B, et al: Outcome after treatment of high-risk papillary and non-Hürthle-cell follicular thyroid carcinoma. Ann Intern Med. 129:622–627. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Thompson LDR: High grade differentiated follicular Cell-derived thyroid carcinoma versus poorly differentiated thyroid carcinoma: A clinicopathologic analysis of 41 cases. Endocr Pathol. 34:234–246. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wenter V, Albert NL, Unterrainer M, Ahmaddy F, Ilhan H, Jellinek A, Knösel T, Bartenstein P, Spitzweg C, Lehner S, et al: Clinical impact of follicular oncocytic (Hürthle cell) carcinoma in comparison with corresponding classical follicular thyroid carcinoma. Eur J Nucl Med Mol Imaging. 48:449–460. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu B, Li Y, Yu X, Ai Y, Jin J, Zhang J, Zhang Y, Zhu H, Xie C, Shen M, et al: Differentiate thyroid follicular adenoma from carcinoma with combined ultrasound radiomics features and clinical ultrasound features. J Digit Imaging. 35:1362–1372. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Zhang Z, Liu X, Duan H, Xiang T, He Q, Su Z, Wu H and Liang Z: DNA methylation haplotype block markers efficiently discriminate follicular thyroid carcinoma from follicular adenoma. J Clin Endocrinol Metab. 106:1011–1021. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Saltiki K, Simeakis G, Karapanou O and Alevizaki M: Management of Endocrine Disease: Medullary thyroid cancer: From molecular biology and therapeutic pitfalls to future targeted treatment perspectives. Eur J Endocrinol. 187:R53–R63. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Sun Y, Shen C, Zhang Y, Shi R, Zhang F, Liao T, Lv G, Zhu Z, Jiao L, et al: Integrated proteogenomic characterization of medullary thyroid carcinoma. Cell Discov. 8:1202022. View Article : Google Scholar : PubMed/NCBI | |
|
Khan E, Hylton H, Rajan N, Bouley SJ, Siddiqui JK, Rajasekaran S, Koshre GR, Storts H, Valenciaga A, Khan M, et al: Proteomic profiling of medullary thyroid cancer identifies CAPN1 as a key regulator of NF1 and RET fueled growth. Thyroid. 35:177–187. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Navas-Carrillo D, Rodriguez JM, Montoro-García S and Orenes-Piñero E: High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers. Crit Rev Clin Lab Sci. 54:446–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Khatami F and Tavangar SM: Genetic and epigenetic of medullary thyroid cancer. Iran Biomed J. 22:142–150. 2018.PubMed/NCBI | |
|
Rabold K, Zoodsma M, Grondman I, Kuijpers Y, Bremmers M, Jaeger M, Zhang B, Hobo W, Bonenkamp HJ, de Wilt JHW, et al: Reprogramming of myeloid cells and their progenitors in patients with non-medullary thyroid carcinoma. Nat Commun. 13:61492022. View Article : Google Scholar : PubMed/NCBI | |
|
Bi Y, Ren X, Bai X, Meng Y, Luo Y, Cao J, Zhang Y and Liang Z: PD-1/PD-L1 expressions in medullary thyroid carcinoma: Clinicopathologic and prognostic analysis of Chinese population. Eur J Surg Oncol. 45:353–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nikas IP, Kazamias G, Vrontaki M, Rapti AS and Mastorakis E: Medullary thyroid carcinoma diagnosed with liquid-based cytology and immunocytochemistry. J Immunoassay Immunochem. 43:502–515. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Besharat ZM, Trocchianesi S, Verrienti A, Ciampi R, Cantara S, Romei C, Sabato C, Noviello TMR, Po A, Citarella A, et al: Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest. 46:2583–2599. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fugazzola L: Medullary thyroid cancer-An update. Best Pract Res Clin Endocrinol Metab. 37:1016552023. View Article : Google Scholar : PubMed/NCBI | |
|
Almeida MQ and Hoff AO: Recent advances in the molecular pathogenesis and targeted therapies of medullary thyroid carcinoma. Curr Opin Oncol. 24:229–234. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H and Croce CM: Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther. 9:2012024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Gong C, Zhou H, Liu J, Xia X, Ha W, Jiang Y, Liu Q and Xiong H: Kinase inhibitors and Kinase-targeted cancer therapies: Recent advances and future perspectives. Int J Mol Sci. 25:54892024. View Article : Google Scholar : PubMed/NCBI | |
|
Patel J, Klopper J and Cottrill EE: Molecular diagnostics in the evaluation of thyroid nodules: Current use and prospective opportunities. Front Endocrinol (Lausanne). 14:11014102023. View Article : Google Scholar : PubMed/NCBI | |
|
Giardino E, Catalano R, Mangili F, Barbieri AM, Treppiedi D, Elli FM, Dolci A, Contarino A, Spada A, Arosio M, et al: Octreotide and pasireotide effects on medullary thyroid carcinoma (MTC) cells growth, migration and invasion. Mol Cell Endocrinol. 520:1110922021. View Article : Google Scholar : PubMed/NCBI | |
|
Bareli Y, Shimon I, Tobar A and Rubinfeld H: PICT-1 regulates p53 splicing and sensitivity of medullary thyroid carcinoma cells to everolimus. J Neuroendocrinol. 34:e131872022. View Article : Google Scholar : PubMed/NCBI | |
|
Pozo K, Castro-Rivera E, Tan C, Plattner F, Schwach G, Siegl V, Meyer D, Guo A, Gundara J, Mettlach G, et al: The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell. 24:499–511. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hedayati M, Zarif Yeganeh M, Sheikholeslami S and Afsari F: Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer. Crit Rev Clin Lab Sci. 53:217–227. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yue CH, Oner M, Chiu CY, Chen MC, Teng CL, Wang HY, Hsieh JT, Lai CH and Lin H: RET regulates human medullary thyroid cancer cell proliferation through CDK5 and STAT3 Activation. Biomolecules. 11:8602021. View Article : Google Scholar : PubMed/NCBI | |
|
Kunte SC, Wenter V, Toms J, Lindner S, Unterrainer M, Eilsberger F, Jurkschat K, Wängler C, Wängler B, Schirrmacher R, et al: PET/CT imaging of differentiated and medullary thyroid carcinoma using the novel SSTR-targeting peptide [18F]SiTATE-first clinical experiences. Eur J Nucl Med Mol Imaging. 52:900–912. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Kong Z, Li Z, Cui XY, Wang J, Xu M, Liu Y, Chen J, Ni S, Zhang Z, Fan X, et al: CTR-FAPI PET enables precision management of medullary thyroid carcinoma. Cancer Discov. 15:316–328. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Jaskula-Sztul R, Chen G, Dammalapati A, Harrison A, Tang W, Gong S and Chen H: AB3-loaded and Tumor-targeted unimolecular micelles for medullary thyroid cancer treatment. J Mater Chem B. 5:151–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rao SN and Smallridge RC: Anaplastic thyroid cancer: An update. Best Pract Res Clin Endocrinol Metab. 37:1016782023. View Article : Google Scholar : PubMed/NCBI | |
|
Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L, et al: Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 13:644–660. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moreno F, Reyes C, Pineda CA, Castellanos G, Cálix F, Calderón J and Vasquez-Bonilla WO: Anaplastic thyroid carcinoma with unusual long-term survival: A case report. J Med Case Rep. 16:392022. View Article : Google Scholar : PubMed/NCBI | |
|
Davies L and Welch HG: Increasing incidence of thyroid cancer in the united states, 1973–2002. JAMA. 295:2164–2167. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Fallahi P, Ferrari SM, Galdiero MR, Varricchi G, Elia G, Ragusa F, Paparo SR, Benvenga S and Antonelli A: Molecular targets of tyrosine kinase inhibitors in thyroid cancer. Semin Cancer Biol. 79:180–196. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Mohanna M, Alraouji NN, Alhabardi SA, Al-Mohanna F, Al-Otaibi B, Al-Jammaz I and Aboussekhra A: The curcumin analogue PAC has potent anti-anaplastic thyroid cancer effects. Sci Rep. 13:42172023. View Article : Google Scholar : PubMed/NCBI | |
|
Anderson RJ, Sizemore GW, Wahner HW and Carney JA: Thyroid scintigram in familial medullary carcinoma of the thyroid gland. Clin Nucl Med. 3:147–151. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Ballal S, Yadav MP, Moon ES, Rösch F, ArunRaj ST, Agarwal S, Tripathi M, Sahoo RK and Bal C: First-in-Human experience with 177Lu-DOTAGA.(SA.FAPi)2 therapy in an uncommon case of aggressive medullary thyroid carcinoma clinically mimicking as anaplastic thyroid cancer. Clin Nucl Med. 47:e444–e445. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bao L, Li Y, Hu X, Gong Y, Chen J, Huang P, Tan Z, Ge M and Pan Z: Targeting SIGLEC15 as an emerging immunotherapy for anaplastic thyroid cancer. Int Immunopharmacol. 133:1121022024. View Article : Google Scholar : PubMed/NCBI | |
|
Biermann K, Biersack HJ, Sabet A and Janzen V: Alternative therapeutic approaches in the treatment of primary and secondary dedifferentiated and medullary thyroid carcinoma. Semin Nucl Med. 41:139–148. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ceolin L, Duval M, Benini AF, Ferreira CV and Maia AL: Medullary thyroid carcinoma beyond surgery: Advances, challenges, and perspectives. Endocr Relat Cancer. 26:R499–R518. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chintakuntlawar AV, Foote RL, Kasperbauer JL and Bible KC: Diagnosis and management of anaplastic thyroid cancer. Endocrinol Metab Clin North Am. 48:269–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YS, Jeon MJ, Doolittle WKL, Song DE, Kim K, Kim WB and Kim WG: Macrophage-induced carboxypeptidase A4 promotes the progression of anaplastic thyroid cancer. Thyroid. 34:1150–1162. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Contarino A, Dolci A, Maggioni M, Porta FM, Lopez G, Verga U, Elli FM, Iofrida EF, Cantoni G, Mantovani G, et al: Is encapsulated medullary thyroid carcinoma associated with a better prognosis? A case series and a review of the literature. Front Endocrinol (Lausanne). 13:8665722022. View Article : Google Scholar : PubMed/NCBI | |
|
Cristinziano L, Modestino L, Loffredo S, Varricchi G, Braile M, Ferrara AL, de Paulis A, Antonelli A, Marone G and Galdiero MR: Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J Immunol. 204:1362–1372. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
D'Aprile S, Denaro S, Pavone AM, Giallongo S, Giallongo C, Distefano A, Salvatorelli L, Torrisi F, Giuffrida R, Forte S, et al: Anaplastic thyroid cancer cells reduce CD71 levels to increase iron overload tolerance. J Transl Med. 21:7802023. View Article : Google Scholar : PubMed/NCBI | |
|
Doolittle WKL, Zhao L and Cheng SY: Blocking CDK7-mediated NOTCH1-cMYC Signaling attenuates cancer stem cell activity in anaplastic thyroid cancer. Thyroid. 32:937–948. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Egan CE, Stefanova D, Ahmed A, Raja VJ, Thiesmeyer JW, Chen KJ, Greenberg JA, Zhang T, He B, Finnerty BM, et al: CSPG4 is a potential therapeutic target in anaplastic thyroid cancer. Thyroid. 31:1481–1493. 2021.PubMed/NCBI | |
|
Harach HR and Williams ED: Glandular (tubular and follicular) variants of medullary carcinoma of the thyroid. Histopathology. 7:83–97. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Wen Q, Cai Y, Liu Y, Ma W, Li Q, Song F, Guo Y, Zhu L, Ge J, et al: Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway. Phytomedicine. 108:1545282023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Zhang H, Li S, Zhang D, Li J, Dionigi G, Liang N and Sun H: Prognostic impact of inflammatory markers PLR, LMR, PDW, MPV in medullary thyroid carcinoma. Front Endocrinol (Lausanne). 13:8618692022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F, Liu G, Ying Z, Yu X, Feng H, et al: Lipid-peptide-mRNA nanoparticles augment radioiodine uptake in anaplastic thyroid cancer. Adv Sci (Weinh). 10:e22043342023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y: Pyrvinium pamoate can overcome artemisinin's resistance in anaplastic thyroid cancer. BMC Complement Med Ther. 21:1562021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu L, Wang JR, Henderson YC, Bai S, Yang J, Hu M, Shiau CK, Pan T, Yan Y, Tran TM, et al: Anaplastic transformation in thyroid cancer revealed by single-cell transcriptomics. J Clin Invest. 133:e1696532023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu YL, Huang YT, Wu MH, Chou TC, Wong R and Lin SF: Efficacy of adavosertib therapy against anaplastic thyroid cancer. Endocr Relat Cancer. 28:311–324. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma B, Luo Y, Xu W, Han L, Liu W, Liao T, Yang Y and Wang Y: LINC00886 negatively regulates malignancy in anaplastic thyroid cancer. Endocrinology. 164:bqac2042023. View Article : Google Scholar : PubMed/NCBI | |
|
Matrone A, Gambale C, Prete A and Elisei R: Sporadic medullary thyroid carcinoma: Towards a precision medicine. Front Endocrinol (Lausanne). 13:8642532022. View Article : Google Scholar : PubMed/NCBI | |
|
Niccoli-Sire P, Murat A, Rohmer V, Franc S, Chabrier G, Baldet L, Maes B, Savagner F, Giraud S, Bezieau S, et al: Familial medullary thyroid carcinoma with noncysteine ret mutations: Phenotype-genotype relationship in a large series of patients. J Clin Endocrinol Metab. 86:3746–3753. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Z, Bao L, Lu X, Hu X, Li L, Chen J, Jin T, Zhang Y, Tan Z, Huang P and Ge M: IL2RA+VSIG4+ tumor-associated macrophage is a key subpopulation of the immunosuppressive microenvironment in anaplastic thyroid cancer. Biochim Biophys Acta Mol Basis Dis. 1869:1665912023. View Article : Google Scholar : PubMed/NCBI | |
|
Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, French JD, Borre PV, LaBarbera DV, Tan AC, et al: Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 24:3059–3068. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pusztaszeri MP, Bongiovanni M and Faquin WC: Update on the cytologic and molecular features of medullary thyroid carcinoma. Adv Anat Pathol. 21:26–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rougier P, Parmentier C, Laplanche A, Lefevre M, Travagli JP, Caillou B, Schlumberger M, Lacour J and Tubiana M: Medullary thyroid carcinoma: Prognostic factors and treatment. Int J Radiat Oncol Biol Phys. 9:161–169. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Shakiba E, Boroomand S, Kheradmand Kia S and Hedayati M: MicroRNAs in thyroid cancer with focus on medullary thyroid carcinoma: Potential therapeutic targets and diagnostic/prognostic markers and web based tools. Oncol Res. 32:1011–1019. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sherman EJ, Harris J, Bible KC, Xia P, Ghossein RA, Chung CH, Riaz N, Gunn GB, Foote RL, Yom SS, et al: Radiotherapy and paclitaxel plus pazopanib or placebo in anaplastic thyroid cancer (NRG/RTOG 0912): A randomised, double-blind, placebo-controlled, multicentre, phase 2 trial. Lancet Oncol. 24:175–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski C, Cabanillas ME, Urbanowitz G, et al: Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 36:7–13. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sugarman AJ, Huynh LD, Shabro A and Di Cristofano A: Anaplastic thyroid cancer cells upregulate mitochondrial one-carbon metabolism to meet purine demand, eliciting a critical targetable vulnerability. Cancer Lett. 568:2163042023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J, Luo Y and Xiao L: USP26 promotes anaplastic thyroid cancer progression by stabilizing TAZ. Cell Death Dis. 13:3262022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Ying T, Yuan J, Wang Y, Su X, Chen S, Zhao Y, Zhao Y, Sheng J, Teng L, et al: BRAFV600E restructures cellular lactylation to promote anaplastic thyroid cancer proliferation. Endocr Relat Cancer. 30:e2203442023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Liang J, Liu R, Lv T, Fu K, Jiang L, Ma W, Pan Y, Tan Z, Liu Q, et al: Autophagic blockade potentiates anlotinib-mediated ferroptosis in anaplastic thyroid cancer. Endocr Relat Cancer. 30:2300362023. View Article : Google Scholar : PubMed/NCBI | |
|
Zaballos MA, Acuña-Ruiz A, Morante M, Riesco-Eizaguirre G, Crespo P and Santisteban P: Inhibiting ERK dimerization ameliorates BRAF-driven anaplastic thyroid cancer. Cell Mol Life Sci. 79:5042022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Ji W and Zhao X: MiR-155 promotes anaplastic thyroid cancer progression by directly targeting SOCS1. BMC Cancer. 19:10932019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Feng H, Yang Z, Liang J, Jin Z, Chen L, Zhan L, Xuan M, Yan J, Kuang J, et al: The central role of a two-way positive feedback pathway in molecular targeted therapies-mediated pyroptosis in anaplastic thyroid cancer. Clin Transl Med. 12:e7272022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Yin XD, Zhang XH, Li ZW and Wang DW: Comparison of pediatric and adult medullary thyroid carcinoma based on SEER program. Sci Rep. 10:133102020. View Article : Google Scholar : PubMed/NCBI | |
|
Alhejaily AG, Alhuzim O and Alwelaie Y: Anaplastic thyroid cancer: Pathogenesis, prognostic factors and genetic landscape (review). Mol Clin Oncol. 19:992023PubMed/NCBI | |
|
Zhao Y, Yu Z, Song Y, Fan L, Lei T, He Y and Hu S: The regulatory network of CREB3L1 and its roles in physiological and pathological conditions. Int J Med Sci. 21:123–136. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Z, Xu T, Bao L, Hu X, Jin T, Chen J, Chen J, Qian Y, Lu X, Li L, et al: CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol Cancer. 21:1902022. View Article : Google Scholar : PubMed/NCBI | |
|
Haroon Al Rasheed MR and Xu B: Molecular alterations in thyroid carcinoma. Surg Pathol Clin. 12:921–930. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Misiak D, Bauer M, Lange J, Haase J, Braun J, Lorenz K, Wickenhauser C and Hüttelmaier S: MiRNA deregulation distinguishes anaplastic thyroid carcinoma (ATC) and supports upregulation of oncogene expression. Cancers (Basel). 13:59132021. View Article : Google Scholar : PubMed/NCBI | |
|
Vosgha H, Ariana A, Smith RA and Lam AK: miR-205 targets angiogenesis and EMT concurrently in anaplastic thyroid carcinoma. Endocr Relat Cancer. 25:323–337. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hou X, Chen C, He X and Lan X: Siglec-15 silencing inhibits cell proliferation and promotes cell apoptosis by inhibiting STAT1/STAT3 signaling in anaplastic thyroid carcinoma. Dis Markers. 2022:16064042022. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Z, Lu X, Xu T, Chen J, Bao L, Li Y, Gong Y, Che Y, Zou X, Tan Z, et al: Epigenetic inhibition of CTCF by HN1 promotes dedifferentiation and stemness of anaplastic thyroid cancer. Cancer Lett. 580:2164962024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao C, Li L, Zhang P, Zhang L, Li K, Fang R, Yuan L, Shi K, Pan L, Guo Q, et al: REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway. Cell Death Differ. 27:497–508. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Yu F, Yang L, Wang Y, Liu L, Jia C, Cai H, Yang J, Sheng S, Lv Z, et al: HOXD9/miR-451a/PSMB8 axis is implicated in the regulation of cell proliferation and metastasis via PI3K/AKT signaling pathway in human anaplastic thyroid carcinoma. J Transl Med. 21:8172023. View Article : Google Scholar : PubMed/NCBI | |
|
Fuziwara CS, Saito KC and Kimura ET: Thyroid follicular cell loss of differentiation induced by MicroRNA miR-17-92 cluster is attenuated by CRISPR/Cas9n gene silencing in anaplastic thyroid cancer. Thyroid. 30:81–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu B and Ghossein RA: Advances in thyroid pathology: High grade follicular Cell-derived thyroid carcinoma and anaplastic thyroid carcinoma. Adv Anat Pathol. 30:3–10. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Z, Fang Q, Li L, Zhang Y, Xu T, Liu Y, Zheng X, Tan Z, Huang P and Ge M: HN1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by interacting with STMN1. Cancer Lett. 501:31–42. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu D, Yu J, Yang Y, Du Y, Lu H, Zhang S, Feng Q, Yu Y, Hao L, Shao J and Chen L: RBX1 regulates PKM alternative splicing to facilitate anaplastic thyroid carcinoma metastasis and aerobic glycolysis by destroying the SMAR1/HDAC6 complex. Cell Biosci. 13:362023. View Article : Google Scholar : PubMed/NCBI | |
|
Angela De Stefano M, Porcelli T, Ambrosio R, Luongo C, Raia M, Schlumberger M and Salvatore D: Type 2 deiodinase is expressed in anaplastic thyroid carcinoma and its inhibition causes cell senescence. Endocr Relat Cancer. 30:e2300162023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Cheng X, Wu L, Zheng J, Wang X, Wu J, Yu H, Bao J and Zhang L: Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal. 75:1097332020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi XZ, Zhao S, Wang Y, Wang MY, Su SW, Wu YZ and Xiong C: Antitumor activity of berberine by activating autophagy and apoptosis in CAL-62 and BHT-101 anaplastic thyroid carcinoma cell lines. Drug Des Devel Ther. 17:1889–1906. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Lin Q and Rao Y: A-Kinase interacting protein 1 knockdown restores chemosensitivity via inactivating PI3K/AKT and β-catenin pathways in anaplastic thyroid carcinoma. Front Oncol. 12:8547022022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao H, Wang W and Li Q: GANT61 suppresses cell survival, invasion and epithelial-mesenchymal transition through inactivating AKT/mTOR and JAK/STAT3 pathways in anaplastic thyroid carcinoma. Cancer Biol Ther. 23:369–377. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sugitani I, Miyauchi A, Sugino K, Okamoto T, Yoshida A and Suzuki S: Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC Research Consortium of Japan cohort study of 677 patients. World J Surg. 36:1247–1254. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Califano I, Smulever A, Jerkovich F and Pitoia F: Advances in the management of anaplastic thyroid carcinoma: Transforming a life-threatening condition into a potentially treatable disease. Rev Endocr Metab Disord. 25:123–147. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kanematsu R, Hirokawa M, Tanaka A, Suzuki A, Higuchi M, Kuma S, Hayashi T and Miyauchi A: Evaluation of E-Cadherin and β-Catenin immunoreactivity for determining undifferentiated cells in anaplastic thyroid carcinoma. Pathobiology. 88:351–358. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shao C, Li Z, Zhang C, Zhang W, He R, Xu J and Cai Y: Optical diagnostic imaging and therapy for thyroid cancer. Mater Today Bio. 17:1004412022. View Article : Google Scholar : PubMed/NCBI | |
|
Moon J, Lee JH, Roh J, Lee DH and Ha EJ: Contrast-enhanced CT-based radiomics for the differentiation of anaplastic or poorly differentiated thyroid carcinoma from differentiated thyroid carcinoma: A pilot study. Sci Rep. 13:45622023. View Article : Google Scholar : PubMed/NCBI | |
|
Haase J, Misiak D, Bauer M, Pazaitis N, Braun J, Pötschke R, Mensch A, Bell JL, Dralle H, Siebolts U, et al: IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis. Mod Pathol. 34:32–41. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Y, Wang JR, Wang Y, Iyer P, Cote GJ, Busaidy NL, Dadu R, Zafereo M, Williams MD, Ferrarotto R, et al: Clinical utility of circulating Cell-Free DNA mutations in anaplastic thyroid carcinoma. Thyroid. 31:1235–1243. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Han PZ, Ye WD, Yu PC, Tan LC, Shi X, Chen XF, He C, Hu JQ, Wei WJ, Lu ZW, et al: A distinct tumor microenvironment makes anaplastic thyroid cancer more lethal but immunotherapy sensitive than papillary thyroid cancer. JCI Insight. 9:e1737122024.PubMed/NCBI | |
|
Ukita M, Hamanishi J, Yoshitomi H, Yamanoi K, Takamatsu S, Ueda A, Suzuki H, Hosoe Y, Furutake Y, Taki M, et al: CXCL13-producing CD4+ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. JCI Insight. 7:e1572152022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Liang Y, Xue A, Xiao J, Zhao X, Cao S, Li P, Dong J, Li Y, Xu Z and Yang L: Intratumoral CXCL13+ CD160+ CD8+ T cells promote the formation of tertiary lymphoid structures to enhance the efficacy of immunotherapy in advanced gastric cancer. J Immunother Cancer. 12:e0096032024. View Article : Google Scholar : PubMed/NCBI | |
|
Han D, Lee AY, Kim T, Choi JY, Cho MY, Song A, Kim C, Shim JH, Kim HJ, Kim H, et al: Microenvironmental network of clonal CXCL13+CD4+ T cells and Tregs in pemphigus chronic blisters. J Clin Invest. 133:e1663572023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Tian H, Chen X, Li B, Bai G, Cai Q, Xu J, Guo W, Wang S, Peng Y, et al: Single-cell sequencing reveals immune features of treatment response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Nat Commun. 15:90972024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Zhang Y, Wang D, Hu X and Zhang Z: Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat Cancer. 3:1123–1136. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen I, Lambein K, et al: A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med. 27:820–832. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lucotti S, Ogitani Y, Kenific CM, Geri J, Kim YH, Gu J, Balaji U, Bojmar L, Shaashua L, Song Y, et al: Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated thrombosis and metastasis via integrin β2. Cell. 188:1642–1661.e24. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gao SH, Liu SZ, Wang GZ and Zhou GB: CXCL13 in cancer and other diseases: Biological functions, clinical significance, and therapeutic opportunities. Life (Basel). 11:12822021.PubMed/NCBI | |
|
Sakai SA, Oyoshi H, Nakamura M, Taki T, Nomura K, Hojo H, Hirata H, Motegi A, Nakamura Y, Zenkoh J, et al: Single-cell spatial analysis with Xenium reveals anti-tumour responses of CXCL13 + T and CXCL9+ cells after radiotherapy combined with anti-PD-L1 therapy. Br J Cancer. Jul 16–2025.doi: 10.1038/s41416-025-03088-0 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Yuan Y, Wan X, Yin D, Li R, Chen W, Suo C and Song H: Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst Rev. 12:CD0113002021.PubMed/NCBI | |
|
Huang Y, Liang B, Chen X, Li Z, Deng Y, Du J, Zhong Y, Lin X, Fu J, Xie J, et al: Enhanced immunotherapy response in lung adenocarcinoma patients with COPD: Insights into tumor cells and immune microenvironment characteristics. Cell Commun Signal. 23:3242025. View Article : Google Scholar : PubMed/NCBI | |
|
Siyuan D, Han Z, Zhaopei L, Kaifeng J, Wenbin J, Zewei W, Zhiyuan L, Ying X, Jiajun W, Yuan C, et al: Intratumoral CXCL13+CD8+T cell infiltration determines poor clinical outcomes and immunoevasive contexture in patients with clear cell renal cell carcinoma. J Immunother Cancer. 9:e0018232021. View Article : Google Scholar | |
|
Dierks C, Seufert J, Aumann K, Ruf J, Klein C, Kiefer S, Rassner M, Boerries M, Zielke A, la Rosee P, et al: Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma. Thyroid. 31:1076–1085. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cabanillas ME, Ferrarotto R, Garden AS, Ahmed S, Busaidy NL, Dadu R, Williams MD, Skinner H, Gunn GB, Grosu H, et al: Neoadjuvant BRAF- and Immune-directed therapy for anaplastic thyroid carcinoma. Thyroid. 28:945–951. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Li S, Wang Y, Zhao Y and Li Q: Protein tyrosine kinase inhibitor resistance in malignant tumors: Molecular mechanisms and future perspective. Signal Transduct Target Ther. 7:3292022. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YS, Kwon H, You MH, Kim TY, Kim WB, Shong YK, Jeon MJ and Kim WG: Effects of dabrafenib and erlotinib combination treatment on anaplastic thyroid carcinoma. Endocr Relat Cancer. 29:307–319. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Capdevila J, Wirth LJ, Ernst T, Ponce Aix S, Lin CC, Ramlau R, Butler MO, Delord JP, Gelderblom H, Ascierto PA, et al: PD-1 blockade in anaplastic thyroid carcinoma. J Clin Oncol. 38:2620–2627. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ahn S, Kim TH, Kim SW, Ki CS, Jang HW, Kim JS, Kim JH, Choe JH, Shin JH, Hahn SY, et al: Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 24:97–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cantara S, Bertelli E, Occhini R, Regoli M, Brilli L, Pacini F, Castagna MG and Toti P: Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine. 64:122–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hamidi S, Iyer PC, Dadu R, Gule-Monroe MK, Maniakas A, Zafereo ME, Wang JR, Busaidy NL and Cabanillas ME: Checkpoint inhibition in addition to Dabrafenib/Trametinib for BRAF(V600E)-Mutated anaplastic thyroid carcinoma. Thyroid. 34:336–346. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Min IM, Shevlin E, Vedvyas Y, Zaman M, Wyrwas B, Scognamiglio T, Moore MD, Wang W, Park S, Park S, et al: CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors. Clin Cancer Res. 23:7569–7583. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Tao C, Shimura T, Huang AC, Kong N, Dai Y, Yao S, Xi Y, Wang X, Fang J, et al: ICAM1 antibody drug conjugates exert potent antitumor activity in papillary and anaplastic thyroid carcinoma. iScience. 26:1072722023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Zhang L, Xu M, Li C, Fu H, Huang J, Jin X, Liang S and Wang H: Co-Delivery of 131 I and Prima-1 by Self-Assembled CD44-Targeted Nanoparticles for Anaplastic Thyroid Carcinoma Theranostics. Adv Healthc Mater. 10:e20010292021. View Article : Google Scholar : PubMed/NCBI | |
|
Landa I and Cabanillas ME: Genomic alterations in thyroid cancer: Biological and clinical insights. Nat Rev Endocrinol. 20:93–110. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xing M: Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS and Bhatti JS: Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci. 332:1221102023. View Article : Google Scholar : PubMed/NCBI | |
|
Shay JW, Homma N, Zhou R, Naseer MI, Chaudhary AG, Al-Qahtani M, Hirokawa N, Goudarzi M, Fornace AJ Jr, Baeesa S, et al: Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015): Jeddah, Kingdom of Saudi Arabia. 30 November-3 December 2015. BMC Genomics. 17 (Suppl 6):S4872016. View Article : Google Scholar | |
|
Guo M, Sun Y, Wei Y, Xu J and Zhang C: Advances in targeted therapy and biomarker research in thyroid cancer. Front Endocrinol (Lausanne). 15:13725532024. View Article : Google Scholar : PubMed/NCBI | |
|
Sekihara K, Himuro H, Toda S, Saito N, Hirayama R, Suganuma N, Sasada T and Hoshino D: Recent trends and potential of radiotherapy in the treatment of anaplastic thyroid cancer. Biomedicines. 12:12862024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Xing Z, Liu T, Tang M, Mi L, Zhu J, Wu W and Wei T: Targeted therapy and drug resistance in thyroid cancer. Eur J Med Chem. 238:1145002022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Feng Q, Wang J, Tan Z, Li Q and Ge M: Molecular basis and targeted therapy in thyroid cancer: Progress and opportunities. Biochim Biophys Acta Rev Cancer. 1878:1889282023. View Article : Google Scholar : PubMed/NCBI | |
|
Deshmukh VG, Sapkal SB, Gadekar SS and Deshmukh V: EGFR inhibitors across generations: Progress, challenges, and future directions. J Mol Structure. 13392025. | |
|
Chen MF, Repetto M, Wilhelm C and Drilon A: RET Inhibitors in RET Fusion-positive lung cancers: Past, present, and future. Drugs. 84:1035–1053. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Krajewska J, Paliczka-Cieslik E and Jarzab B: Managing tyrosine kinase inhibitors side effects in thyroid cancer. Expert Rev Endocrinol Metab. 12:117–127. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li J and Yu Y: POU5F1B is responsible for the acquired resistance to dabrafenib in papillary thyroid cancer cells with the BRAF V600E mutation. Endocrine. 87:220–233. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang S, Huang Y, Li Y, Gu Q, Jiang C, Tao X and Sun J: Silencing FOXP2 reverses vemurafenib resistance in BRAF(V600E) mutant papillary thyroid cancer and melanoma cells. Endocrine. 79:86–97. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma W, Tian M, Hu L, Ruan X, Zhang W, Zheng X and Gao M: Early combined SHP2 targeting reverses the therapeutic resistance of vemurafenib in thyroid cancer. J Cancer. 14:1592–1604. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cavallo MR, Yo JC, Gallant KC, Cunanan CJ, Amirfallah A, Daniali M, Sanders AB, Aplin AE, Pribitkin EA and Hartsough EJ: Mcl-1 mediates intrinsic resistance to RAF inhibitors in mutant BRAF papillary thyroid carcinoma. Cell Death Discov. 10:1752024. View Article : Google Scholar : PubMed/NCBI | |
|
Hou X, Dong Q, Hao J, Liu M, Ning J, Tao M, Wang Z, Guo F, Huang D, Shi X, et al: NSUN2-mediated m(5)C modification drives alternative splicing reprogramming and promotes multidrug resistance in anaplastic thyroid cancer through the NSUN2/SRSF6/UAP1 signaling axis. Theranostics. 15:2757–2777. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Molteni E, Baldan F, Damante G and Allegri L: GSK2801 reverses paclitaxel resistance in anaplastic thyroid cancer cell lines through MYCN downregulation. Int J Mol Sci. 24:59932023. View Article : Google Scholar : PubMed/NCBI | |
|
Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, Wen PY, Dietrich S, de Jonge MJA, Blay JY, et al: Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat Med. 29:1103–1112. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tahara M, Kiyota N, Imai H, Takahashi S, Nishiyama A, Tamura S, Shimizu Y, Kadowaki S, Ito KI, Toyoshima M, et al: A phase 2 study of encorafenib in combination with binimetinib in patients with metastatic BRAF-Mutated thyroid cancer in Japan. Thyroid. 34:467–476. 2024.PubMed/NCBI | |
|
Cabanillas ME, Dadu R, Ferrarotto R, Gule-Monroe M, Liu S, Fellman B, Williams MD, Zafereo M, Wang JR, Lu C, et al: Anti-programmed death ligand 1 plus targeted therapy in anaplastic thyroid carcinoma: A nonrandomized clinical trial. JAMA Oncol. 10:1672–1680. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Higashiyama T, Sugino K, Hara H, Ito KI, Nakashima N, Onoda N, Tori M, Katoh H, Kiyota N, Ota I, et al: Phase II study of the efficacy and safety of lenvatinib for anaplastic thyroid cancer (HOPE). Eur J Cancer. 173:210–218. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Loo E, Khalili P, Beuhler K, Siddiqi I and Vasef MA: BRAF V600E mutation across multiple tumor types: Correlation between DNA-based sequencing and Mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol. 26:709–713. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cece A, Agresti M, De Falco N, Sperlongano P, Moccia G, Luongo P, Miele F, Allaria A, Torelli F, Bassi P, et al: Role of artificial intelligence in thyroid cancer diagnosis. J Clin Med. 14:24222025. View Article : Google Scholar : PubMed/NCBI |