|
1
|
Omran AR: The epidemiological transition:
A theory of the epidemiology of population change. Millbank Mem
Fund Q. 49:509–538. 1971. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ferlay J, Ervik M, Lam F, Laversanne M,
Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and Bray F;
Global Cancer Observatory, : World. International Agency for
Research on Cancer; Lyon, France: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdfDecember
26–2024
|
|
3
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI
|
|
4
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
5
|
Panigrahi GK, Praharaj PP, Kittaka H,
Mridha AR, Black OM, Singh R, Mercer R, van Bokhoven A, Torkko KC,
Agarwal C, et al: Exosome proteomic analyses identify inflammatory
phenotype and novel biomarkers in African American prostate cancer
patients. Cancer Med. 8:1110–1123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rawla P: Epidemiology of prostate cancer.
World J Oncol. 10:63–89. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chan JM, Gann PH and Giovannucci EL: Role
of diet in prostate cancer development and progression. J Clin
Oncol. 23:8152–8160. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Platz EA, Leitzmann MF, Michaud DS,
Willett WC and Giovannucci E: Interrelation of energy intake, body
size, and physical activity with prostate cancer in a large
prospective cohort study. Cancer Res. 63:8542–8548. 2003.PubMed/NCBI
|
|
9
|
Hegde PS and Chen DS: Top 10 challenges in
cancer immunotherapy. Immunity. 52:17–35. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lopez-Bujanda Z and Drake CG:
Myeloid-derived cells in prostate cancer progression: Phenotype and
prospective therapies. J Leukoc Biol. 102:393–406. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Beltran H, Rickman DS, Park K, Chae SS,
Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, et
al: Molecular characterization of neuroendocrine prostate cancer
and identification of new drug targets. Cancer Discov. 1:487–495.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Fridman WH, Pagès F, Sautès-Fridman C and
Galon J: The immune contexture in human tumours: Impact on clinical
outcome. Nat Rev Cancer. 12:298–306. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
O'Donnell JS, Teng MWL and Smyth MJ:
Cancer immunoediting and resistance to T cell-based immunotherapy.
Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Langer CJ, Gadgeel SM, Borghaei H,
Papadimitrakopoulou VA, Patnaik A, Powell SF, Gentzler RD, Martins
RG, Stevenson JP, Jalal SI, et al: Carboplatin and pemetrexed with
or without pembrolizumab for advanced, non-squamous non-small-cell
lung cancer: A randomised, phase 2 cohort of the open-label
KEYNOTE-021 study. Lancet Oncol. 17:1497–1508. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Patel SH, Rimner A and Cohen RB: Combining
immunotherapy and radiation therapy for small cell lung cancer and
thymic tumors. Transl Lung Cancer Res. 6:186–195. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Orange JS and Ballas ZK: Natural killer
cells in human health and disease. Clin Immunol. 118:1–10. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Vivier E, Tomasello E, Baratin M, Walzer T
and Ugolini S: Functions of natural killer cells. Nat Immunol.
9:503–510. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Doherty DG and O'Farrelly C: Innate and
adaptive lymphoid cells in the human liver. Immunol Rev. 174:5–20.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Joyce JA and Pollard JW:
Microenvironmental regulation of metastasis. Nat Rev Cancer.
9:239–252. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ferlazzo G, Pack M, Thomas D, Paludan C,
Schmid D, Strowig T, Bougras G, Muller WA, Moretta L and Münz C:
Distinct roles of IL-12 and IL-15 in human natural killer cell
activation by dendritic cells from secondary lymphoid organs. Proc
Natl Acad Sci USA. 101:16606–16611. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Romagnani C, Juelke K, Falco M, Morandi B,
D'Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, et al:
CD56brightCD16- killer Ig-like receptor-NK cells display longer
telomeres and acquire features of CD56dim NK cells upon activation.
J Immunol. 178:4947–4955. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cooper MA, Fehniger TA and Caligiuri MA:
The biology of human natural killer-cell subsets. Trends Immunol.
22:633–640. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Domaica CI, Sierra JM, Zwirner NW and
Fuertes MB: Immunomodulation of NK cell activity. Methods Mol Biol.
2097:125–136. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Balsamo M, Scordamaglia F, Pietra G,
Manzini C, Cantoni C, Boitano M, Queirolo P, Vermi W, Facchetti F,
Moretta A, et al: Melanoma-associated fibroblasts modulate NK cell
phenotype and antitumor cytotoxicity. Proc Natl Acad Sci USA.
106:20847–20852. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lee HH and Cho H: Improved anti-cancer
effect of curcumin on breast cancer cells by increasing the
activity of natural killer cells. J Microbiol Biotechnol.
28:874–882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Montagner IM, Penna A, Fracasso G,
Carpanese D, Dalla Pietà A, Barbieri V, Zuccolotto G and Rosato A:
Anti-PSMA CAR-engineered NK-92 cells: An off-the-shelf cell therapy
for prostate cancer. Cells. 9:13822020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lundholm M, Schröder M, Nagaeva O, Baranov
V, Widmark A, Mincheva-Nilsson L and Wikström P: Prostate
tumor-derived exosomes down-regulate NKG2D expression on natural
killer cells and CD8+ T cells: Mechanism of immune evasion. PLoS
One. 9:e1089252014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Levy EM, Roberti MP and Mordoh J: Natural
killer cells in human cancer: From biological functions to clinical
applications. Biomed Res Int. 2011:6761982011. View Article : Google Scholar
|
|
30
|
Tian T and Li Z: Targeting Tim-3 in cancer
with resistance to PD-1/PD-L1 blockade. Front Oncol. 11:7311752021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Siemińska I and Baran J: Myeloid-derived
suppressor cells as key players and promising therapy targets in
prostate cancer. Front Oncol. 12:8624162022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Modena A, Ciccarese C, Iacovelli R,
Brunelli M, Montironi R, Fiorentino M, Tortora G and Massari F:
Immune checkpoint inhibitors and prostate cancer: A new frontier?
Oncol Rev. 10:2932016.PubMed/NCBI
|
|
33
|
Kamada T, Togashi Y, Tay C, Ha D, Sasaki
A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, et al: PD-1(+)
regulatory T cells amplified by PD-1 blockade promote
hyperprogression of cancer. Proc Natl Acad Sci USA. 116:9999–10008.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Quatrini L, Mariotti FR, Munari E, Tumino
N, Vacca P and Moretta L: The immune checkpoint PD-1 in natural
killer cells: Expression, function and targeting in tumour
immunotherapy. Cancers (Basel). 12:32852020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Majdalawieh AF and Fayyad MW: Recent
advances on the anti-cancer properties of Nigella sativa, a widely
used food additive. J Ayurveda Integr Med. 7:173–180. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Dajani EZ, Shahwan TG and Dajani NE:
Overview of the preclinical pharmacological properties of Nigella
sativa (black seeds): A complementary drug with historical and
clinical significance. J Physiol Pharmacol. 67:801–817.
2016.PubMed/NCBI
|
|
37
|
Bayır AG and Karakaş I: The Role of
Nigella sativa and Its Active Component Thymoquinone in
Cancer Prevention and Treatment: A Review Article. Eurasian J Med
Biol Sci. 1:1–12. 2021.
|
|
38
|
Ramadan MF: Nutritional value, functional
properties and nutraceutical applications of black cumin (Nigella
sativa L.): An overview. Int J Food Sci Technol. 42:1208–1218.
2007. View Article : Google Scholar
|
|
39
|
AlShaibi HF, Ahmed F, Buckle C, Fowles
ACM, Awlia J, Cecchini MG and Eaton CL: The BMP antagonist Noggin
is produced by osteoblasts in response to the presence of prostate
cancer cells. Biotechnol Appl Biochem. 65:407–418. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Randhawa MA and Alghamdi MS: Anticancer
activity of Nigella sativa (black seed)-a review. Am J Chin Med.
39:1075–1091. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schneider-Stock R, Fakhoury IH, Zaki AM,
El-Baba CO and Gali-Muhtasib HU: Thymoquinone: Fifty years of
success in the battle against cancer models. Drug Discov Today.
19:18–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Khan MA, Tania M, Fu S and Fu J:
Thymoquinone, as an anticancer molecule: From basic research to
clinical investigation. Oncotarget. 8:519072017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Khan MA, Tania M, Wei C, Mei Z, Fu S,
Cheng J, Xu J and Fu J: Thymoquinone inhibits cancer metastasis by
downregulating TWIST1 expression to reduce epithelial to
mesenchymal transition. Oncotarget. 6:19580–19591. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Majdalawieh AF, Hmaidan R and Carr RI:
Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine
profile, macrophage function and NK anti-tumor activity. J
Ethnopharmacol. 131:268–275. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sjs B, Kavithaa K, Poornima A, Haribalan
P, Renukadevi B and Sumathi S: Modulation of gene expression by
thymoquinone conjugated zinc oxide nanoparticles arrested cell
cycle, DNA damage and increased apoptosis in triple negative breast
cancer cell line MDA-MB-231. Drug Dev Ind Pharm. 47:1–19. 2022.
|
|
46
|
Alshaibi HF, Aldarmahi NA, Alkhattabi NA,
Alsufiani HM and Tarbiah NI: Studying the anticancer effects of
thymoquinone on breast cancer cells through natural killer cell
activity. Biomed Res Int. 2022:92186402022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Murphy EM, Centner CS, Bates PJ, Malik MT
and Kopechek JA: Delivery of thymoquinone to cancer cells with
as1411-conjugated nanodroplets. PLoS One. 15:e02334662020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Peng L, Liu A, Shen Y, Xu HZ, Yang SZ,
Ying XZ, Liao W, Liu HX, Lin ZQ, Chen QY, et al: Antitumor and
anti-angiogenesis effects of thymoquinone on osteosarcoma through
the NF-κB pathway. Oncol Rep. 29:571–578. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Waggoner SN, Daniels KA and Welsh RM:
Therapeutic depletion of natural killer cells controls persistent
infection. J Virol. 88:1953–1960. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Krebs P, Barnes MJ, Lampe K, Whitley K,
Bahjat KS, Beutler B, Janssen E and Hoebe K: NK cell-mediated
killing of target cells triggers robust antigen-specific T
cell-mediated and humoral responses. Blood. 113:6593–6602. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Karim S, Burzangi AS, Ahmad A, Siddiqui
NA, Ibrahim IM, Sharma P, Abualsunun WA and Gabr GA: PI3K-AKT
pathway modulation by thymoquinone limits tumor growth and
glycolytic metabolism in colorectal cancer. Int J Mol Sci.
23:23052022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh
H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA,
Almatroudi AA, et al: Experimental and theoretical insights on
chemopreventive effect of the liposomal thymoquinone against benzo
[a] pyrene-induced lung cancer in swiss albino mice. J Inflamm Res.
15:2263–2280. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mirzaei S, Zarrabi A, Hashemi F, Zabolian
A, Saleki H, Ranjbar A, Saleh SH, Bagherian M, Sharifzadeh SO,
Hushmandi K, et al: Regulation of nuclear factor-KappaB (NF-κB)
signaling pathway by non-coding RNAs in cancer: Inhibiting or
promoting carcinogenesis? Cancer Lett. 509:63–80. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang N and Bevan MJ: CD8+ T cells: Foot
soldiers of the immune system. Immunity. 35:161–168. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ibrahim S, Fahim SA, Tadros SA and Badary
OA: Suppressive effects of thymoquinone on the initiation stage of
diethylnitrosamine hepatocarcinogenesis in rats. J Biochem Mol
Toxicol. 36:e230782022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang B, Ting WJ, Gao J, Kang ZF, Huang CY
and Weng YJ: Erk phosphorylation reduces the thymoquinone toxicity
in human hepatocarcinoma. Environ Toxicol. 36:1990–1998. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang R, Wu T, Zheng P, Liu M, Xu G, Xi M
and Yu J: Thymoquinone sensitizes human hepatocarcinoma cells to
TRAIL-induced apoptosis via oxidative DNA damage. DNA Repair
(Amst). 103:1031172021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Narayanan P, Farghadani R, Nyamathulla S,
Rajarajeswaran J, Thirugnanasampandan R and Bhuwaneswari G: Natural
quinones induce ROS-mediated apoptosis and inhibit cell migration
in PANC-1 human pancreatic cancer cell line. J Biochem Mol Toxicol.
36:e230082022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang M, Du H, Wang L, Yue Y, Zhang P,
Huang Z, Lv W, Ma J, Shao Q, Ma M, et al: Thymoquinone suppresses
invasion and metastasis in bladder cancer cells by reversing EMT
through the Wnt/β-catenin signaling pathway. Chem Biol Interact.
320:1090222020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sutton VR, Davis JE, Cancilla M, Johnstone
RW, Ruefli AA, Sedelies K, Browne KA and Trapani JA: Initiation of
apoptosis by granzyme B requires direct cleavage of bid, but not
direct granzyme B-mediated caspase activation. J Exp Med.
192:1403–1414. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shimasaki N, Jain A and Campana D: NK
cells for cancer immunotherapy. Nat Rev Drug Discov. 19:200–218.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Smyth MJ, Cretney E, Kelly JM, Westwood
JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti
MA and Hayakawa Y: Activation of NK cell cytotoxicity. Mol Immunol.
42:501–510. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kingdom of Saudi Arabia, Saudi Health
Council, National Cancer Center, Saudi Cancer Registry, . Cancer
Incididence Report Saudi Arabia 2020. https://shc.gov.sa/Arabic/NewNCC/Activities/AnnualReports/2020.pdfJanuary
5–2025
|
|
64
|
Chowdhury D and Lieberman J: Death by a
thousand cuts: Granzyme pathways of programmed cell death. Annu Rev
Immunol. 26:389–420. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Young JD, Hengartner H, Podack ER and Cohn
ZA: Purification and characterization of a cytolytic pore-forming
protein from granules of cloned lymphocytes with natural killer
activity. Cell. 44:849–859. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Singh SK, Mishra MK, Lillard JW and Singh
R: Thymoquinone enhanced the tumoricidal activity of NK cells
against lung cancer. J Immunol. 200 (Supplement_1):S124–S125. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sethi G, Ahn KS and Aggarwal BB: Targeting
nuclear factor-κB activation pathway by thymoquinone: role in
suppression of antiapoptotic gene products and enhancement of
apoptosis. Mol Cancer Res. 6:1059–1070. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sadeghi E, Imenshahidi M and Hosseinzadeh
H: Molecular mechanisms and signaling pathways of black cumin
(Nigella sativa) and its active constituent, thymoquinone: A
review. Mol Biol Rep. 50:5439–5454. 2023. View Article : Google Scholar : PubMed/NCBI
|