|
1
|
Webb PM and Jordan SJ: Global epidemiology
of epithelial ovarian cancer. Nat Rev Clin Oncol. 21:389–400. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang A, Wang Y, Du C, Yang H, Wang Z, Jin
C and Hamblin MR: Pyroptosis and the tumor immune microenvironment:
A new battlefield in ovarian cancer treatment. Biochim Biophys Acta
Rev Cancer. 1879:1890582024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sideris M, Menon U and Manchanda R:
Screening and prevention of ovarian cancer. Med J Aust.
220:264–274. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang Y, Dun Y, Zhou S and Huang XH:
LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells
proliferation and invasion by targeting miR-133a-3p and activating
Wnt/beta-catenin signaling pathway. Biomed Pharmacother.
96:1216–1221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu J, Zhang Q, Yang D, Xie F and Wang Z:
The role of long non-coding RNAs in angiogenesis and
anti-angiogenic therapy resistance in cancer. Mol Ther Nucleic
Acids. 28:397–407. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhu YS and Zhu J: Molecular and cellular
functions of long non-coding RNAs in prostate and breast cancer.
Adv Clin Chem. 106:91–179. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhou Z, Leng C, Wang Z, Long L, Lv Y, Gao
Z, Wang Y, Wang S and Li P: The potential regulatory role of the
lncRNA-miRNA-mRNA axis in teleost fish. Front Immunol.
14:10653572023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhao Y, Yuan D, Zhu D, Xu T, Huang A,
Jiang L, Liu C, Qian H and Bu X: LncRNA-MSC-AS1 inhibits the
ovarian cancer progression by targeting miR-425-5p. J Ovarian Res.
14:1092021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fang W and Xia Y: LncRNA HLA-F-AS1
attenuates the ovarian cancer development by targeting
miR-21-3p/PEG3 axis. Anticancer Drugs. 33:671–681. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dong Q, Qiu H, Piao C, Li Z and Cui X:
LncRNA SNHG4 promotes prostate cancer cell survival and resistance
to enzalutamide through a let-7a/RREB1 positive feedback loop and a
ceRNA network. J Exp Clin Cancer Res. 42:2092023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju
HQ: LncRNA-mediated posttranslational modifications and
reprogramming of energy metabolism in cancer. Cancer Commun (Lond).
41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhou D, Wang Y, Hu H, Liu H, Deng J, Li L
and Zheng C: lncRNA MALAT1 promotes HCC metastasis through the
peripheral vascular infiltration via miRNA-613: A primary study
using contrast ultrasound. World J Surg Oncol. 20:2032022.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lin X, Zhuang S, Chen X, Du J, Zhong L,
Ding J, Wang L, Yi J, Hu G, Tang G, et al: lncRNA ITGB8-AS1
functions as a ceRNA to promote colorectal cancer growth and
migration through integrin-mediated focal adhesion signaling. Mol
Ther. 30:688–702. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fan L, Lei H, Lin Y, Zhou Z, Li J, Wu A,
Shu G, Roger S and Yin G: Hotair promotes the migration and
proliferation in ovarian cancer by miR-222-3p/CDK19 axis. Cell Mol
Life Sci. 79:2542022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lei R, Xue M, Zhang L and Lin Z: Long
noncoding RNA MALAT1-regulated microRNA 506 modulates ovarian
cancer growth by targeting iASPP. Onco Targets Ther. 10:35–46.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xu Q, Lin YB, Li L and Liu J: LncRNA
TLR8-AS1 promotes metastasis and chemoresistance of ovarian cancer
through enhancing TLR8 mRNA stability. Biochem Biophys Res Commun.
526:857–864. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang L, Yu M and Zhao S: lncRNA MEG3
modified epithelial-mesenchymal transition of ovarian cancer cells
by sponging miR-219a-5p and regulating EGFR. J Cell Biochem.
120:17709–17722. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ren B, Kwah MX, Liu C, Ma Z, Shanmugam MK,
Ding L, Xiang X, Ho PC, Wang L, Ong PS and Goh BC: Resveratrol for
cancer therapy: Challenges and future perspectives. Cancer Lett.
515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rauf A, Imran M, Butt MS, Nadeem M, Peters
DG and Mubarak MS: Resveratrol as an anti-cancer agent: A review.
Crit Rev Food Sci Nutr. 58:1428–1447. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Asemi R, Rajabpoor Nikoo N, Asemi Z,
Shafabakhsh R, Hajijafari M, Sharifi M, Homayoonfal M, Davoodvandi
A and Hakamifard A: Modulation of long non-coding RNAs by
resveratrol as a potential therapeutic approach in cancer: A
comprehensive review. Pathol Res Pract. 246:1545072023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhu W, Zhang Y, Zhou Q, Zhen C, Huang H
and Liu X: Identification and Comprehensive analysis of
circRNA-miRNA-mRNA regulatory networks in A2780 cells treated with
resveratrol. Genes (Basel). 15:9652024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen S, Zhou Y, Chen Y and Gu J: Fastp: An
ultra-fast all-in-one FASTQ preprocessor. Bioinformatics.
34:i884–i890. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Trapnell C, Williams BA, Pertea G,
Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ and Pachter
L: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell
differentiation. Nat Biotechnol. 28:511–515. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pertea M, Pertea GM, Antonescu CM, Chang
TC, Mendell JT and Salzberg SL: StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat
Biotechnol. 33:290–295. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pertea M, Kim D, Pertea GM, Leek JT and
Salzberg SL: Transcript-level expression analysis of RNA-seq
experiments with HISAT, StringTie and Ballgown. Nat Protoc.
11:1650–1667. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C,
Liu Y, Chen R and Zhao Y: Utilizing sequence intrinsic composition
to classify protein-coding and long non-coding transcripts. Nucleic
Acids Res. 41:e1662013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ,
Wei L and Gao G: CPC: Assess the protein-coding potential of
transcripts using sequence features and support vector machine.
Nucleic Acids Res. 35:W345–W349. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wucher V, Legeai F, Hedan B, Rizk G,
Lagoutte L, Leeb T, Jagannathan V, Cadieu E, David A, Lohi H, et
al: FEELnc: A tool for long non-coding RNA annotation and its
application to the dog transcriptome. Nucleic Acids Res.
45:e572017.PubMed/NCBI
|
|
30
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tafer H and Hofacker IL: RNAplex: A fast
tool for RNA-RNA interaction search. Bioinformatics. 24:2657–2663.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wilusz JE, Sunwoo H and Spector DL: Long
noncoding RNAs: Functional surprises from the RNA world. Genes Dev.
23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Nadile M, Retsidou MI, Gioti K, Beloukas A
and Tsiani E: Resveratrol against Cervical Cancer: Evidence from in
vitro and in vivo studies. Nutrients. 14:52732022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu X, Li P, Yan K, Du Y, Peng K, Li M,
Cui K, Zhang H, Yang X, Lu S and Liang X: Resveratrol ameliorates
the defects of meiotic maturation in lipopolysaccharide exposed
porcine oocytes. Reprod Toxicol. 115:85–93. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wu H, Chen L, Zhu F, Han X, Sun L and Chen
K: The cytotoxicity effect of resveratrol: Cell cycle arrest and
induced apoptosis of breast cancer 4T1 cells. Toxins (Basel).
11:7312019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xu XL, Deng SL, Lian ZX and Yu K:
Resveratrol targets a variety of oncogenic and oncosuppressive
signaling for ovarian cancer prevention and treatment. Antioxidants
(Basel). 10:17182021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Poyton MF, Feng XA, Ranjan A, Lei Q, Wang
F, Zarb JS, Louder RK, Park G, Jo MH, Ye J, et al: Coordinated DNA
and histone dynamics drive accurate histone H2A.Z exchange. Sci
Adv. 8:eabj55092022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Oberdoerffer P and Miller KM: Histone H2A
variants: Diversifying chromatin to ensure genome integrity. Semin
Cell Dev Biol. 135:59–72. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Geng X, Zhao J, Huang J, Li S, Chu W, Wang
WS, Chen ZJ and Du Y: lnc-MAP3K13-7:1 inhibits ovarian GC
proliferation in PCOS via DNMT1 Downregulation-mediated CDKN1A
promoter hypomethylation. Mol Ther. 29:1279–1293. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wu Q, Xiang S, Ma J, Hui P, Wang T, Meng
W, Shi M and Wang Y: Long non-coding RNA CASC15 regulates gastric
cancer cell proliferation, migration and epithelial mesenchymal
transition by targeting CDKN1A and ZEB1. Mol Oncol. 12:799–813.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hu CC, Liang YW, Hu JL, Liu LF, Liang JW
and Wang R: LncRNA RUSC1-AS1 promotes the proliferation of breast
cancer cells by epigenetic silence of KLF2 and CDKN1A. Eur Rev Med
Pharmacol Sci. 23:6602–6611. 2019.PubMed/NCBI
|
|
44
|
Guo M and Zhang X: LncRNA MSTO2P promotes
colorectal cancer progression through epigenetically silencing
CDKN1A mediated by EZH2. World J Surg Oncol. 20:952022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ma JX, Yang YL, He XY, Pan XM, Wang Z and
Qian YW: Long noncoding RNA MNX1-AS1 overexpression promotes the
invasion and metastasis of gastric cancer through repressing
CDKN1A. Eur Rev Med Pharmacol Sci. 23:4756–4762. 2019.PubMed/NCBI
|
|
46
|
Bi M, Yu H, Huang B and Tang C: Long
non-coding RNA PCAT-1 over-expression promotes proliferation and
metastasis in gastric cancer cells through regulating CDKN1A. Gene.
626:337–343. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xu C, Chen C, Xu Y, Li Z, Chen H and Wang
G: Prognostic significance of CDK1 in Ovarian and Cervical Cancers.
J Cancer. 16:1656–1667. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pan Y, Zhou J, Zhang W, Yan L, Lu M, Dai
Y, Zhou H, Zhang S and Yang J: The Sonic Hedgehog signaling pathway
regulates autophagy and migration in ovarian cancer. Cancer Med.
10:4510–4521. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Manousakis E, Miralles CM, Esquerda MG and
Wright RHG: CDKN1A/p21 in breast cancer: Part of the problem, or
part of the solution? Int J Mol Sci. 24:174882023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao S, Bellone S, Lopez S, Thakral D,
Schwab C, English DP, Black J, Cocco E, Choi J, Zammataro L, et al:
Mutational landscape of uterine and ovarian carcinosarcomas
implicates histone genes in epithelial-mesenchymal transition. Proc
Natl Acad Sci USA. 113:12238–12243. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Saravi S, Katsuta E, Jeyaneethi J, Amin
HA, Kaspar M, Takabe K, Pados G, Drenos F, Hall M and Karteris E:
H2A histone family member X (H2AX) is upregulated in ovarian cancer
and demonstrates utility as a prognostic biomarker in terms of
overall survival. J Clin Med. 9:28442020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yuan Y, Cao W, Zhou H, Qian H and Wang H:
H2A.Z acetylation by lincZNF337-AS1 via KAT5 implicated in the
transcriptional misregulation in cancer signaling pathway in
hepatocellular carcinoma. Cell Death Dis. 12:6092021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu A, Zhou L, Huang Y and Peng D:
Analysis of copy number variants detected by sequencing in
spontaneous abortion. Mol Cytogenet. 17:132024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ibeagha-Awemu EM, Bissonnette N, Bhattarai
S, Wang M, Dudemaine PL, McKay S and Zhao X: Whole genome
methylation analysis reveals role of DNA methylation in Cow's ileal
and ileal lymph node responses to mycobacterium avium subsp.
paratuberculosis infection. Front Genet. 12:7974902021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
De Los Santos JA, Andrade JPN, Cangiano
LR, Iriarte A, Penagaricano F and Parrish JJ: Transcriptomic
analysis reveals gene expression changes in peripheral white blood
cells of cows after embryo transfer: Implications for pregnancy
tolerance. Reprod Domest Anim. 58:946–954. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lei K, Qu L, Liu F, Hao N, Chen J, Liu J
and Lin A: Long non-coding RNAs regulate fatty acid and cholesterol
metabolism. Genome Instability Dis. 3:70–82. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Braga EA, Filippova EA, Uroshlev LA,
Lukina SS, Pronina IV, Kazubskaya TP, Kushlinskiy DN, Loginov VI,
Fridman MV, Burdennyy AM and Kushlinskii NE: LncRNA genes of the
SNHG family: Co-methylation and common functions in ovarian cancer.
Biochemistry (Mosc). 89:2051–2068. 2024. View Article : Google Scholar : PubMed/NCBI
|