|
1
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang
J and Cao X: The roles of epigallocatechin gallate in the tumor
microenvironment, metabolic reprogramming, and immunotherapy. Front
Immunol. 15:13316412024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI
|
|
3
|
Lane DS and Smith RA: Cancer screening:
Patient and population strategies. Med Clin North Am. 107:989–999.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mamun TI, Younus S and Rahman MH: Gastric
cancer-Epidemiology, modifiable and non-modifiable risk factors,
challenges and opportunities: An updated review. Cancer Treat Res
Commun. 41:1008452024.PubMed/NCBI
|
|
5
|
Alessa AM and Khan AS: Epidemiology of
colorectal cancer in Saudi Arabia: A review. Cureus.
16:e645642024.PubMed/NCBI
|
|
6
|
Strzelec B, Chmielewski PP and Kielan W:
Esophageal cancer: Current status and new insights from
inflammatory markers-a brief review. Pol Przegl Chir. 96:83–87.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liang Z, Zheng X, Li M and Liu M:
Improving the prognosis of pancreatic cancer: Insights from
epidemiology, genomic alterations, and therapeutic challenges.
Front Med. 17:1135–1169. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Webb PM and Jordan SJ: Global epidemiology
of epithelial ovarian cancer. Nat Rev Clin Oncol. 21:389–400. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Gu Y, Mu Q and Cheng D: Androgens in
cervical cancer: Their role in epidemiology and biology. iScience.
27:1101552024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cirillo L, Innocenti S and Becherucci F:
Global epidemiology of kidney cancer. Nephrol Dial Transplant.
39:920–928. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Thomas A, Douglas E, Reis-Filho JS, Gurcan
MN and Wen HY: Metaplastic breast cancer: Current understanding and
future directions. Clin Breast Cancer. 23:775–783. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hasson RM, Bridges CJ, Curley RJ and
Erhunmwunsee L: Access to lung cancer screening. Thorac Surg Clin.
33:353–363. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Culp MB, Soerjomataram I, Efstathiou JA,
Bray F and Jemal A: Recent global patterns in prostate cancer
incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang L, Feng Q, Wang J, Tan Z, Li Q and
Ge M: Molecular basis and targeted therapy in thyroid cancer:
Progress and opportunities. Biochim Biophys Acta Rev Cancer.
1878:1889282023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Connal S, Cameron JM, Sala A, Brennan PM,
Palmer DS, Palmer JD, Perlow H and Baker MJ: Liquid biopsies: The
future of cancer early detection. J Transl Med. 21:1182023.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang
Y, Tian X, Guan X, Cen X and Zhao Y: Tumor biomarkers for
diagnosis, prognosis and targeted therapy. Signal Transduct Target
Ther. 9:1322024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Waarts MR, Stonestrom AJ, Park YC and
Levine RL: Targeting mutations in cancer. J Clin Invest.
132:e1549432022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Passaro A, Al Bakir M, Hamilton EG, Diehn
M, André F, Roy-Chowdhuri S, Mountzios G, Wistuba II, Swanton C and
Peters S: Cancer biomarkers: Emerging trends and clinical
implications for personalized treatment. Cell. 187:1617–1635. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zaidi SA, Shahzad F and Batool S: Progress
in cancer biomarkers monitoring strategies using graphene modified
support materials. Talanta. 210:1206692020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen L, Kong X, Fang Y, Paunikar S, Wang
X, Brown JAL, Bourke E, Li X and Wang J: Recent advances in the
role of discoidin domain receptor tyrosine kinase 1 and discoidin
domain receptor tyrosine kinase 2 in breast and ovarian cancer.
Front Cell Dev Biol. 9:7473142021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Agarwal G, Smith AW and Jones B: Discoidin
domain receptors: Micro insights into macro assemblies. Biochim
Biophys Acta Mol Cell Res. 1866:1184962019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G
and Lee K: The Journey of DDR1 and DDR2 kinase inhibitors as rising
stars in the fight against cancer. Int J Mol Sci. 22:65352021.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mariadoss AVA and Wang CZ: Exploring the
cellular and molecular mechanism of discoidin domain receptors
(DDR1 and DDR2) in bone formation, regeneration, and its associated
disease conditions. Int J Mol Sci. 24:148952023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zeltz C, Kusche-Gullberg M, Heljasvaara R
and Gullberg D: Novel roles for cooperating collagen receptor
families in fibrotic niches. Curr Opin Cell Biol. 85:1022732023.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gao Y, Zhou J and Li J: Discoidin domain
receptors orchestrate cancer progression: A focus on cancer
therapies. Cancer Sci. 112:962–969. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shimizu T, Kato Y, Sakai Y, Hisamoto N and
Matsumoto K: N-Glycosylation of the Discoidin domain receptor is
required for axon regeneration in caenorhabditis elegans. Genetics.
213:491–500. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH,
Lin HC and Friedman SL: DDR2 receptor promotes MMP-2-mediated
proliferation and invasion by hepatic stellate cells. J Clin
Invest. 108:1369–1378. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Juurikka K, Butler GS, Salo T, Nyberg P
and Åström P: The role of MMP8 in cancer: A systematic review. Int
J Mol Sci. 20:45062019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gong H, Xu HM and Zhang DK: Focusing on
discoidin domain receptors in premalignant and malignant liver
diseases. Front Oncol. 13:11236382023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schab AM, Greenwade MM, Stock E,
Lomonosova E, Cho K, Grither WR, Noia H, Wilke D, Mullen MM,
Hagemann AR, et al: Stromal DDR2 promotes ovarian cancer metastasis
through regulation of metabolism and secretion of extracellular
matrix proteins. Mol Cancer Res. 21:1234–1248. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wu C, Ying J, Dai M, Peng J and Zhang D:
Co-expression of DDR2 and IFITM1 promotes breast cancer cell
proliferation, migration and invasion and inhibits apoptosis. J
Cancer Res Clin Oncol. 148:3385–3398. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fathi Z, Mousavi SAJ, Roudi R and Ghazi F:
Distribution of KRAS, DDR2, and TP53 gene mutations in lung cancer:
An analysis of Iranian patients. PLoS One. 13:e02006332018.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sun M and Shen Z: Knockdown of long
non-coding RNA (lncRNA) Colon cancer-associated transcript-1
(CCAT1) suppresses oral squamous cell carcinoma proliferation,
invasion, and migration by inhibiting the discoidin domain receptor
2 (DDR2)/ERK/AKT Axis. Med Sci Monit. 26:e9200202020.PubMed/NCBI
|
|
34
|
Sideris M, Menon U and Manchanda R:
Screening and prevention of ovarian cancer. Med J Aust.
220:264–274. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Veneziani AC, Gonzalez-Ochoa E, Alqaisi H,
Madariaga A, Bhat G, Rouzbahman M, Sneha S and Oza AM:
Heterogeneity and treatment landscape of ovarian carcinoma. Nat Rev
Clin Oncol. 20:820–842. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schab AM, Greenwade MM, Stock E,
Lomonosova E, Cho K, Grither WR, Noia H, Wilke D, Mullen MM,
Hagemann AR, et al: Stromal DDR2 promotes ovarian cancer metastasis
through regulation of metabolism and secretion of extracellular
matrix proteins. Mol Cancer Res. 21:1234–1248. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yuan WC, Zhang JX, Chen HB, Yuan Y, Zhuang
YP, Zhou HL, Li MH, Qiu WL and Zhou HG: A bibliometric and visual
analysis of cancer-associated fibroblasts. Front Immunol.
14:13231152023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Akinjiyan FA, Ibitoye Z, Zhao P, Shriver
LP, Patti GJ, Longmore GD and Fuh KC: DDR2-regulated arginase
activity in ovarian cancer-associated fibroblasts promotes collagen
production and tumor progression. Oncogene. 43:189–201. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Arumi-Planas M, Rodriguez-Baena FJ,
Cabello-Torres F, Gracia F, Lopez-Blau C, Nieto MA and
Sanchez-Laorden B: Microenvironmental Snail1-induced
immunosuppression promotes melanoma growth. Oncogene. 42:2659–2672.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Baulida J and García de Herreros A:
Snail1-driven plasticity of epithelial and mesenchymal cells
sustains cancer malignancy. Biochim Biophys Acta. 1856:55–61.
2015.PubMed/NCBI
|
|
41
|
Dasari S and Tchounwou PB: Cisplatin in
cancer therapy: Molecular mechanisms of action. Eur J Pharmacol.
740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu
Y, Mo Q, Zhao X, Fan Q, Deng F, et al: Regulation of cisplatin
resistance in bladder cancer by epigenetic mechanisms. Drug Resist
Updat. 68:1009382023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Heiserman JP, Nallanthighal S, Gifford CC,
Graham K, Samarakoon R, Gao C, Sage JJ, Zhang W, Higgins PJ and
Cheon DJ: Heat shock protein 27, a novel downstream target of
collagen type XI alpha 1, synergizes with fatty acid oxidation to
confer cisplatin resistance in ovarian cancer cells. Cancers
(Basel). 13:48552021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang L, Hu Q and Huang T: Breast cancer
treatment strategies targeting the tumor microenvironment: How to
Convert ‘Cold’ Tumors to ‘Hot’ Tumors. Int J Mol Sci. 25:72082024.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Corsa CA, Brenot A, Grither WR, Van Hove
S, Loza AJ, Zhang K, Ponik SM, Liu Y, DeNardo DG, Eliceiri KW, et
al: The action of discoidin domain receptor 2 in basal tumor cells
and stromal Cancer-associated fibroblasts is critical for breast
cancer metastasis. Cell Rep. 15:2510–2523. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin CC, Yang WH, Lin YT, Tang X, Chen PH,
Ding CC, Qu DC, Alvarez JV and Chi JT: DDR2 upregulation confers
ferroptosis susceptibility of recurrent breast tumors through the
Hippo pathway. Oncogene. 40:2018–2034. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y,
Sun Y, Zeng F, Chen X and Deng G: Ferroptosis in cancer: From
molecular mechanisms to therapeutic strategies. Signal Transduct
Target Ther. 9:552024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Carvalho FM: Triple-negative breast
cancer: From none to multiple therapeutic targets in two decades.
Front Oncol. 13:12447812023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Varzaru VB, Vlad T, Popescu R, Vlad CS,
Moatar AE and Cobec IM: Triple-negative breast cancer: Molecular
particularities still a challenge. Diagnostics (Basel).
14:18752024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Toy KA, Valiathan RR, Núñez F, Kidwell KM,
Gonzalez ME, Fridman R and Kleer CG: Tyrosine kinase discoidin
domain receptors DDR1 and DDR2 are coordinately deregulated in
triple-negative breast cancer. Breast Cancer Res Treat. 150:9–18.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z,
Liang Z and Wu X: Targeting gastric cancer stem cells to enhance
treatment response. Cells. 11:28282022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li Z, Wang J, Wang Z and Xu Y: Towards an
optimal model for gastric cancer peritoneal metastasis: Current
challenges and future directions. EBioMedicine. 92:1046012023.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yao X, Ajani JA and Song S: Molecular
biology and immunology of gastric cancer peritoneal metastasis.
Transl Gastroenterol Hepatol. 5:572020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kurashige J, Hasegawa T, Niida A,
Sugimachi K, Deng N, Mima K, Uchi R, Sawada G, Takahashi Y, Eguchi
H, et al: Integrated molecular profiling of human gastric cancer
identifies DDR2 as a potential regulator of peritoneal
dissemination. Sci Rep. 6:223712016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang YG, Xu L, Jia RR, Wu Q, Wang T, Wei
J, Ma JL, Shi M and Li ZS: DDR2 induces gastric cancer cell
activities via activating mTORC2 signaling and is associated with
clinicopathological characteristics of gastric cancer. Dig Dis Sci.
61:2272–2283. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Firouzjaei AA, Aghaee-Bakhtiari SH, Tafti
A, Sharifi K, Abadi MHJN, Rezaei S and Mohammadi-Yeganeh S: Impact
of curcumin on ferroptosis-related genes in colorectal cancer:
Insights from in-silico and in-vitro studies. Cell Biochem Funct.
41:1488–1502. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ruff SM, Brown ZJ and Pawlik TM: A review
of targeted therapy and immune checkpoint inhibitors for metastatic
colorectal cancer. Surg Oncol. 51:1019932023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lafitte M, Sirvent A and Roche S: Collagen
kinase receptors as potential therapeutic targets in metastatic
colon cancer. Front Oncol. 10:1252020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Beauchemin N: The colorectal tumor
microenvironment: The next decade. Cancer Microenviron. 4:181–185.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xu X, Duan X, Wang S, Zhang Y, Gao Y, Xu
X, Yeerkenbieke G, Zhou J and Li J: Special issue ‘The advance of
solid tumor research in China’: Discoidin domain receptor 2
promotes colorectal cancer metastasis by regulating epithelial
mesenchymal transition via activating AKT signaling. Int J Cancer.
152:51–65. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chidambaranathan-Reghupaty S, Fisher PB
and Sarkar D: Hepatocellular carcinoma (HCC): Epidemiology,
etiology and molecular classification. Adv Cancer Res. 149:1–61.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Piñero F, Dirchwolf M and Pessôa MG:
Biomarkers in hepatocellular carcinoma: Diagnosis, prognosis and
treatment response assessment. Cells. 9:13702020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wu L, Zhao X, Ma H, Zhang L and Li X:
Discoidin domain receptor 1, a potential biomarker and therapeutic
target in hepatocellular carcinoma. Int J Gen Med. 15:2037–2044.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Park JW, Lee YS, Kim JS, Lee SK, Kim BH,
Lee JA, Lee NO, Kim SH and Hong EK: Downregulation of discoidin
domain receptor 2 decreases tumor growth of hepatocellular
carcinoma. J Cancer Res Clin Oncol. 141:1973–1983. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xie B, Lin W, Ye J, Wang X, Zhang B, Xiong
S, Li H and Tan G: DDR2 facilitates hepatocellular carcinoma
invasion and metastasis via activating ERK signaling and
stabilizing SNAIL1. J Exp Clin Cancer Res. 34:1012015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y,
Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of
immune-checkpoint inhibitors in human cancers. Front Immunol.
13:9644422022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hao L, Li S and Deng J: The current status
and future of PD-L1 in liver cancer. Front Immunol. 14:13235812023.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wen Q, Han T, Wang Z and Jiang S: Role and
mechanism of programmed death-ligand 1 in hypoxia-induced liver
cancer immune escape. Oncol Lett. 19:2595–2601. 2020.PubMed/NCBI
|
|
69
|
Kang L, Tian Y, Xu S and Chen H:
Oxaliplatin-induced peripheral neuropathy: Clinical features,
mechanisms, prevention and treatment. J Neurol. 268:3269–3282.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu W, Zhang F, Quan B, Yao F, Chen R, Ren
Z, Dong L and Yin X: DDR2/STAT3 positive feedback loop mediates the
immunosuppressive microenvironment by upregulating PD-L1 and
recruiting MDSCs in Oxaliplatin-resistant HCC. Cell Mol
Gastroenterol Hepatol. 18:1013772024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y,
Shu P, Li D and Wang Y: Myeloid-derived suppressor cells as
immunosuppressive regulators and therapeutic targets in cancer.
Signal Transduct Target Ther. 6:3622021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li Q, Chen K, Zhang T, Jiang D, Chen L,
Jiang J, Zhang C and Li S: Understanding sorafenib-induced
ferroptosis and resistance mechanisms: Implications for cancer
therapy. Eur J Pharmacol. 955:1759132023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B,
Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of
sorafenib resistance in hepatocellular carcinoma: Theoretical basis
and therapeutic aspects. Signal Transduct Target Ther. 5:872020.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu QQ, Liu YW, Xie YK, Zhang JH, Song CX,
Wang JZ and Xie BH: Amplification of DDR2 mediates sorafenib
resistance through NF-κB/c-Rel signaling in hepatocellular
carcinoma. Cell Biol Int. 45:1906–1916. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cai Y, Lyu T, Li H, Liu C, Xie K, Xu L, Li
W, Liu H, Zhu J, Lyu Y, et al: LncRNA CEBPA-DT promotes liver
cancer metastasis through DDR2/β-catenin activation via interacting
with hnRNPC. J Exp Clin Cancer Res. 41:3352022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chung C, Boterberg T, Lucas J, Panoff J,
Valteau-Couanet D, Hero B, Bagatell R and Hill-Kayser CE:
Neuroblastoma. Pediatr Blood Cancer. 68 (Suppl 2):e284732021.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Vessella T, Xiang S, Xiao C, Stilwell M,
Fok J, Shohet J, Rozen E, Zhou HS and Wen Q: DDR2 signaling and
mechanosensing orchestrate neuroblastoma cell fate through
different transcriptome mechanisms. FEBS Open Bio. 14:867–882.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Karam JA, Msaouel P, Haymaker CL, Matin
SF, Campbell MT, Zurita AJ, Shah AY, Wistuba II, Marmonti E, Duose
DY, et al: Phase II trial of neoadjuvant sitravatinib plus
nivolumab in patients undergoing nephrectomy for locally advanced
clear cell renal cell carcinoma. Nat Commun. 14:26842023.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rozen EJ, Frantz W, Wigglesworth K,
Vessella T, Zhou HS and Shohet JM: Blockade of discoidin domain
receptor signaling with sitravatinib reveals DDR2 as a mediator of
neuroblastoma pathogenesis and metastasis. Mol Cancer Ther.
23:1124–1138. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Agosto Salgado S, Kaye ER, Sargi Z, Chung
CH and Papaleontiou M: Management of advanced thyroid cancer:
Overview, advances, and opportunities. Am Soc Clin Oncol Educ Book.
43:e3897082023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lam AK: Papillary thyroid carcinoma:
Current position in epidemiology, genomics, and classification.
Methods Mol Biol. 2534:1–15. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liang Z, Xie WJ, Zhao M, Cheng GP and Wu
MJ: DDR2 facilitates papillary thyroid carcinoma epithelial
mesenchymal transition by activating ERK2/Snail1 pathway. Oncol
Lett. 14:8114–8121. 2017.PubMed/NCBI
|
|
83
|
Wilson TK and Zishiri OT: Prostate cancer:
A review of genetics, current biomarkers and personalised
treatments. Cancer Rep (Hoboken). 7:e700162024.PubMed/NCBI
|
|
84
|
Nevo A, Navaratnam A and Andrews P:
Prostate cancer and the role of biomarkers. Abdom Radiol (NY).
45:2120–2132. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Azemikhah M, Ashtiani HA, Aghaei M and
Rastegar H: Evaluation of discoidin domain receptor-2 (DDR2)
expression level in normal, benign, and malignant human prostate
tissues. Res Pharm Sci. 10:356–363. 2015.PubMed/NCBI
|
|
86
|
Huang RH, Ge ZL, Xu G, Zeng QM, Jiang B,
Xiao GC, Xia W, Wu YT and Liao YF: Prognosis and diagnosis of
prostate cancer based on hypergraph regularization sparse least
partial squares regression algorithm. Aging (Albany NY).
16:9599–9624. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y,
Yue T, Juan L, Jing L, Libo Y and Xu L: Discoidin domain receptor 2
facilitates prostate cancer bone metastasis via regulating
parathyroid hormone-related protein. Biochim Biophys Acta.
1842:1350–1363. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tang G, Liu J, Qi L and Li Y: The evolving
role of checkpoint inhibitors in the treatment of urothelial
carcinoma. Br J Clin Pharmacol. 89:93–113. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tsai MC, Li WM, Huang CN, Ke HL, Li CC,
Yeh HC, Chan TC, Liang PI, Yeh BW, Wu WJ, et al: DDR2
overexpression in urothelial carcinoma indicates an unfavorable
prognosis: A large cohort study. Oncotarget. 7:78918–78931. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cario M: DDR1 and DDR2 in skin. Cell Adh
Migr. 12:386–393. 2018.PubMed/NCBI
|
|
91
|
Sala M, Allain N, Moreau M, Jabouille A,
Henriet E, Abou-Hammoud A, Uguen A, Di-Tommaso S, Dourthe C,
Raymond AA, et al: Discoidin domain receptor 2 orchestrates
melanoma resistance combining phenotype switching and
proliferation. Oncogene. 41:2571–2586. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Poudel B, Lee YM and Kim DK: DDR2
inhibition reduces migration and invasion of murine metastatic
melanoma cells by suppressing MMP2/9 expression through ERK/NF-κB
pathway. Acta Biochim Biophys Sin (Shanghai). 47:292–298. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xiao Y and Yu D: Tumor microenvironment as
a therapeutic target in cancer. Pharmacol Ther. 221:1077532021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fu X, He Y, Li M, Huang Z and Najafi M:
Targeting of the tumor microenvironment by curcumin. Biofactors.
47:914–932. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S,
Lin S and Qiao Y: Extracellular matrix and its therapeutic
potential for cancer treatment. Signal Transduct Target Ther.
6:1532021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jiang Y, Zhang H, Wang J, Liu Y, Luo T and
Hua H: Targeting extracellular matrix stiffness and
mechanotransducers to improve cancer therapy. J Hematol Oncol.
15:342022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu
X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in
tumor progression and immune escape: From mechanisms to treatments.
Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Prakash J and Shaked Y: The Interplay
between extracellular matrix remodeling and cancer therapeutics.
Cancer Discov. 14:1375–1388. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Borza CM and Pozzi A: Discoidin domain
receptors in disease. Matrix Biol. 34:185–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chen Y, McAndrews KM and Kalluri R:
Clinical and therapeutic relevance of cancer-associated
fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang
N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated
fibroblasts (CAFs) in the tumor microenvironment: New opportunities
in cancer immunotherapy and advances in clinical trials. Mol
Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wright K, Ly T, Kriet M, Czirok A and
Thomas SM: Cancer-associated fibroblasts: Master tumor
microenvironment modifiers. Cancers (Basel). 15:18992023.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio
G, Yashiro M and Maeda K: The heterogeneity of cancer-associated
fibroblast subpopulations: Their origins, biomarkers, and roles in
the tumor microenvironment. Cancer Sci. 114:16–24. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Akinjiyan FA, Dave RM, Alpert E, Longmore
GD and Fuh KC: DDR2 expression in Cancer-associated fibroblasts
promotes ovarian cancer tumor invasion and metastasis through
periostin-ITGB1. Cancers (Basel). 14:34822022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Barcus CE, Hwang PY, Morikis V, Brenot A,
Pence P, Clarke M and Longmore GD: Tyrosine kinase-independent
actions of DDR2 in tumor cells and cancer-associated fibroblasts
influence tumor invasion, migration and metastasis. J Cell Sci.
134:jcs2584312021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tang T, Huang X, Zhang G, Hong Z, Bai X
and Liang T: Advantages of targeting the tumor immune
microenvironment over blocking immune checkpoint in cancer
immunotherapy. Signal Transduct Target Ther. 6:722021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z and
Ma D: Immune checkpoint therapy for solid tumours: Clinical
dilemmas and future trends. Signal Transduct Target Ther.
8:3202023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Labrie M, Brugge JS, Mills GB and
Zervantonakis IK: Therapy resistance: Opportunities created by
adaptive responses to targeted therapies in cancer. Nat Rev Cancer.
22:323–339. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Rammal H, Saby C, Magnien K, Van-Gulick L,
Garnotel R, Buache E, El Btaouri H, Jeannesson P and Morjani H:
Discoidin domain receptors: Potential actors and targets in cancer.
Front Pharmacol. 7:552016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Reger de Moura C, Prunotto M, Sohail A,
Battistella M, Jouenne F, Marbach D, Lebbé C, Fridman R and Mourah
S: Discoidin domain receptors in melanoma: Potential therapeutic
targets to overcome MAPK inhibitor resistance. Front Oncol.
10:17482020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong
T, Chen H and Wang C: Immunotherapy: Reshape the tumor immune
microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fontana R, Mestre-Farrera A and Yang J:
Update on Epithelial-Mesenchymal plasticity in cancer progression.
Annu Rev Pathol. 19:133–156. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Pharnexcloud Cloud database: CIDD-0108633.
https://data.pharnexcloud.com/1/detail/44/b112ca4087d668785e947a57493d1740?detailTitle=CIDD-0108633November
10–2024
|
|
114
|
Pharnexcloud Cloud database ICP-033.
https://data.pharnexcloud.com/1/detail/44/06d801cb636235b298c40029ad9921e7?detailTitle=ICP-033November
10–2024
|
|
115
|
Pharnexcloud Cloud database BK-40143.
https://data.pharnexcloud.com/1/detail/44/654784daf0b133e42d02214b22cb03a6?detailTitle=BK-40143November
10–2024
|
|
116
|
Pharnexcloud Cloud database PB-1.
https://data.pharnexcloud.com/1/detail/44/6368349d3319f374ddfd35dfd477ea29?detailTitle=PB-1November
10–2024
|
|
117
|
Pharnexcloud Cloud database
Dual-DDR1/2inhibitors. https://data.pharnexcloud.com/1/detail/44/06c9c2f149b73e46fba1487930c5acb8?detailTitle=dual%20DDR-1%2F2%20inhibitors%20%28acute%20lung%20injury%2Finflammation%29November
10–2024
|
|
118
|
Dasatinib. https://data.pharnexcloud.com/1/detail/44/0245952ecff55018e2a459517fdb40e3?detailTitle=dasatinibhttps://data.pharnexcloud.com/1/detail/44/0245952ecff55018e2a459517fdb40e3?detailTitle=dasatinibNovember
10–2024
|
|
119
|
Trono P, Ottavi F and Rosano' L: Novel
insights into the role of Discoidin domain receptor 2 (DDR2) in
cancer progression: A new avenue of therapeutic intervention.
Matrix Biol. 125:31–39. 2024. View Article : Google Scholar : PubMed/NCBI
|