|
1
|
Cheng YS, Colonno RJ and Yin FH:
Interferon induction of fibroblast proteins with guanylate binding
activity. J Biol Chem. 258:7746–7750. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vestal DJ, Buss JE, McKercher SR, Jenkins
NA, Copeland NG, Kelner GS, Asundi VK and Maki RA: Murine GBP-2: A
new IFN-gamma-induced member of the GBP family of GTPases isolated
from macrophages. J Interferon Cytokine Res. 18:977–985. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Quan ST, Jiao WW, Xu F, Sun L, Qi H and
Shen A: Advances in the regulation of inflammasome activation by
GBP family in infectious diseases. Yi Chuan. 45:1007–1017.
2023.PubMed/NCBI
|
|
4
|
Britzen-Laurent N, Bauer M, Berton V,
Fischer N, Syguda A, Reipschläger S, Naschberger E, Herrmann C and
Stürzl M: Intracellular trafficking of guanylate-binding proteins
is regulated by heterodimerization in a hierarchical manner. PLoS
One. 5:e142462010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Modiano N, Lu YE and Cresswell P: Golgi
targeting of human guanylate-binding protein-1 requires nucleotide
binding, isoprenylation, and an IFN-gamma-inducible cofactor. Proc
Natl Acad Sci USA. 102:8680–8685. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kirkby M, Enosi Tuipulotu D, Feng S, Lo
Pilato J and Man SM: Guanylate-binding proteins: Mechanisms of
pattern recognition and antimicrobial functions. Trends Biochem
Sci. 48:883–893. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kim BH, Chee JD, Bradfield CJ, Park ES,
Kumar P and MacMicking JD: Interferon-induced guanylate-binding
proteins in inflammasome activation and host defense. Nat Immunol.
17:481–489. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Luo Y, Jin H, Kim JH and Bae J:
Guanylate-binding proteins induce apoptosis of leukemia cells by
regulating MCL-1 and BAK. Oncogenesis. 10:542021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu YT and Sun ZJ: Turning cold tumors
into hot tumors by improving T-cell infiltration. Theranostics.
11:5365–5386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Galon J and Bruni D: Approaches to treat
immune hot, altered and cold tumours with combination
immunotherapies. Nat Rev Drug Discov. 18:197–218. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu B, Huang R, Fu T, He P, Du C, Zhou W,
Xu K and Ren T: GBP2 as a potential prognostic biomarker in
pancreatic adenocarcinoma. PeerJ. 9:e114232021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang S, Chen K, Zhao Z, Zhang X, Xu L,
Liu T and Yu S: Lower expression of GBP2 associated with less
immune cell infiltration and poor prognosis in skin cutaneous
melanoma (SKCM). J Immunother. 45:274–283. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tang JH: Structural study of human
guanylate binding protein GBP2. 2019.
|
|
14
|
Ban T, Heymann JA, Song Z, Hinshaw JE and
Chan DC: OPA1 disease alleles causing dominant optic atrophy have
defects in cardiolipin-stimulated GTP hydrolysis and membrane
tubulation. Hum Mol Genet. 19:2113–2122. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Daumke O and Praefcke GJK: Mechanisms of
GTP hydrolysis and conformational transitions in the dynamin
superfamily. Biopolymers. 109:e230792018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Roy S, Wang B, Roy K, Tian Y, Bhattacharya
M, Williams S and Yin Q: Crystal structures reveal
nucleotide-induced conformational changes in G motifs and distal
regions in human guanylate-binding protein 2. Commun Biol.
8:2822025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kravets E, Degrandi D, Ma Q, Peulen TO,
Klümpers V, Felekyan S, Kühnemuth R, Weidtkamp-Peters S, Seidel CA
and Pfeffer K: Guanylate binding proteins directly attack
Toxoplasma gondii via supramolecular complexes. Elife.
5:e114792016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kravets E, Degrandi D, Weidtkamp-Peters S,
Ries B, Konermann C, Felekyan S, Dargazanli JM, Praefcke GJ, Seidel
CA, Schmitt L, et al: The GTPase activity of murine
Guanylate-binding protein 2 (mGBP2) controls the intracellular
localization and recruitment to the parasitophorous vacuole of
toxoplasma gondii. J Biol Chem. 287:27452–27466. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Neun R, Richter MF, Staeheli P and
Schwemmle M: GTPase properties of the interferon-induced human
Guanylate-binding protein 2. FEBS Lett. 390:69–72. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rajan S, Pandita E, Mittal M and Sau AK:
Understanding the lower GMP formation in large GTPase hGBP-2 and
role of its individual domains in regulation of GTP hydrolysis.
FEBS J. 286:4103–4121. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Honkala AT, Tailor D and Malhotra SV:
Guanylate-binding protein 1: An emerging target in inflammation and
cancer. Front Immunol. 10:31392019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cui W, Braun E, Wang W, Tang J, Zheng Y,
Slater B, Li N, Chen C, Liu Q, Wang B, et al: Structural basis for
GTP-induced dimerization and antiviral function of
guanylate-binding proteins. Proc Natl Acad Sci USA.
118:e20222691182021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Abdullah N, Balakumari M and Sau AK:
Dimerization and its role in GMP formation by human guanylate
binding proteins. Biophys J. 99:2235–2244. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Walker JE, Saraste M, Runswick MJ and Gay
NJ: Distantly related sequences in the alpha- and beta-subunits of
ATP synthase, myosin, kinases and other ATP-requiring enzymes and a
common nucleotide binding fold. EMBO J. 1:945–951. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wittinghofer A and Vetter IR:
Structure-function relationships of the G domain, a canonical
switch motif. Annu Rev Biochem. 80:943–971. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ghosh A, Praefcke GJ, Renault L,
Wittinghofer A and Herrmann C: How guanylate-binding proteins
achieve assembly-stimulated processive cleavage of GTP to GMP.
Nature. 440:101–104. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Olszewski MA, Gray J and Vestal DJ: In
silico genomic analysis of the human and murine Guanylate-binding
protein (GBP) gene clusters. J Interferon Cytokine Res. 26:328–352.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ramsauer K, Farlik M, Zupkovitz G, Seiser
C, Kröger A, Hauser H and Decker T: Distinct modes of action
applied by transcription factors STAT1 and IRF1 to initiate
transcription of the IFN-gamma-inducible gbp2 gene. Proc Natl Acad
Sci USA. 104:2849–2854. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Michalska A, Blaszczyk K, Wesoly J and
Bluyssen HAR: A positive feedback amplifier circuit that regulates
interferon (IFN)-Stimulated gene expression and controls type I and
type II IFN responses. Front Immunol. 9:11352018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Guimarães DP, Oliveira IM, de Moraes E,
Paiva GR, Souza DM, Barnas C, Olmedo DB, Pinto CE, Faria PA, De
Moura Gallo CV, et al: Interferon-inducible guanylate binding
protein (GBP)-2: A novel p53-regulated tumor marker in esophageal
squamous cell carcinomas. Int J Cancer. 124:272–279. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wu ZH, Cai F and Zhong Y: Comprehensive
analysis of the expression and prognosis for GBPs in head and neck
squamous cell carcinoma. Sci Rep. 10:60852020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Du CH, Wu YD, Yang K, Liao WN, Ran L, Liu
CN, Zhang SZ, Yu K, Chen J, Quan Y, et al: Apoptosis-resistant
megakaryocytes produce large and hyperreactive platelets in
response to radiation injury. Mil Med Res. 10:662023.PubMed/NCBI
|
|
33
|
Mondal S, Adhikari N, Banerjee S, Amin SA
and Jha T: Matrix metalloproteinase-9 (MMP-9) and its inhibitors in
cancer: A minireview. Eur J Med Chem. 194:1122602020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ngo CC and Man SM: Mechanisms and
functions of guanylate-binding proteins and related
interferon-inducible GTPases: Roles in intracellular lysis of
pathogens. Cell Microbiol. 192017.doi: 10.1111/cmi.12791.
|
|
35
|
Meunier E and Broz P: Interferon-inducible
GTPases in cell autonomous and innate immunity. Cell Microbiol.
18:168–180. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fu J and Wu H: Structural mechanisms of
NLRP3 inflammasome assembly and activation. Annu Rev Immunol.
41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wandel MP, Kim BH, Park ES, Boyle KB,
Nayak K, Lagrange B, Herod A, Henry T, Zilbauer M, Rohde J, et al:
Guanylate-binding proteins convert cytosolic bacteria into
caspase-4 signaling platforms. Nat Immunol. 21:880–891. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K,
Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT,
et al: Caspase-11 cleaves gasdermin D for non-canonical
inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang S, Dong W, Lin X, Xu K, Li K, Xiong
S, Wang Z, Nie X and Bian JS: Disruption of the
Na+/K+-ATPase-purinergic P2X7 receptor complex in microglia
promotes Stress-induced anxiety. Immunity. 57:495–512.e11. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Garlanda C, Dinarello CA and Mantovani A:
The interleukin-1 family: Back to the future. Immunity.
39:1003–1018. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang Y, Liao Y, Hang Q, Sun D and Liu Y:
GBP2 acts as a member of the interferon signalling pathway in lupus
nephritis. BMC Immunology. 23:442022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li X, Liu J, Zeng M, Yang K, Zhang S, Liu
Y, Yin X, Zhao C, Wang W and Xiao L: GBP2 promotes M1 macrophage
polarization by activating the notch1 signaling pathway in diabetic
nephropathy. Front Immunol. 14:11276122023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Schori C, Trachsel C, Grossmann J, Barben
M, Klee K, Storti F, Samardzija M and Grimm C: A chronic hypoxic
response in photoreceptors alters the vitreous proteome in mice.
Exp Eye Res. 185:1076902019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
An Y, Xu J, Hu X, Xu M, Yang X and Liu T:
GBP2 regulates lipid metabolism by inhibiting the HIF-1 pathway to
alleviate the progression of allergic rhinitis. Cell Biochem
Biophys. 83:1689–1701. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang G, Jin S, Ling X, Li Y, Hu Y, Zhang
Y, Huang Y, Chen T, Lin J, Ning Z, et al: Proteomic profiling of
LPS-induced Macrophage-derived exosomes indicates their involvement
in acute liver injury. Proteomics. 19:e18002742019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Huang W, Zhang Y, Zheng B, Ling X, Wang G,
Li L and Meng Y: GBP2 upregulated in LPS-stimulated
macrophages-derived exosomes accelerates septic lung injury by
activating epithelial cell NLRP3 signaling. Int Immunopharmacol.
124:1110172023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gao R, Ali T, Liu Z, Li A, Hao L, He L, Yu
X and Li S: Ceftriaxone averts neuroinflammation and relieves
depressive-like behaviors via GLT-1/TrkB signaling. Biochem Biophys
Res Commun. 701:1495502024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ren Y, Yang B, Guo G, Zhang J, Sun Y, Liu
D, Guo S, Wu Y, Wang X, Wang S, et al: GBP2 facilitates the
progression of glioma via regulation of KIF22/EGFR signaling. Cell
Death Discov. 8:2082022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yu S, Yu X, Sun L, Zheng Y, Chen L, Xu H,
Jin J, Lan Q, Chen CC and Li M: GBP2 enhances glioblastoma invasion
through Stat3/fibronectin pathway. Oncogene. 39:5042–5055. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Verdugo E, Puerto I and Medina MÁ: An
update on the molecular biology of glioblastoma, with clinical
implications and progress in its treatment. Cancer Commun (Lond).
42:1083–111. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Meng K, Li YY, Liu DY, Hu LL, Pan YL,
Zhang CZ and He QY: A five-protein prognostic signature with GBP2
functioning in immune cell infiltration of clear cell renal cell
carcinoma. Comput Struct Biotechnol J. 21:2621–2630. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Rahvar F, Salimi M and Mozdarani H: Plasma
GBP2 promoter methylation is associated with advanced stages in
breast cancer. Genet Mol Biol. 43:e201902302020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Godoy P, Cadenas C, Hellwig B, Marchan R,
Stewart J, Reif R, Lohr M, Gehrmann M, Rahnenführer J, Schmidt M
and Hengstler JG: Interferon-inducible guanylate binding protein
(GBP2) is associated with better prognosis in breast cancer and
indicates an efficient T cell response. Breast Cancer. 21:491–499.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li NN, Qiu XT, Xue JS, Yi LM, Chen ML and
Huang ZJ: Predicting the prognosis and immunotherapeutic response
of Triple-negative breast cancer by constructing a prognostic model
based on CD8+ T Cell-related immune genes. Biomed Environ Sci.
37:581–593. 2024.PubMed/NCBI
|
|
55
|
Ji G, Luo B, Chen L, Shen G and Tian T:
GBP2 is a favorable prognostic marker of skin cutaneous melanoma
and affects its progression via the Wnt/β-catenin pathway. Ann Clin
Lab Sci. 51:772–782. 2021.PubMed/NCBI
|
|
56
|
Zheng W, Ye S, Liu B, Liu D, Yan R, Guo H,
Yu H, Hu X, Zhao H, Zhou K and Li G: Crosstalk between GBP2 and M2
macrophage promotes the ccRCC progression. Cancer Science.
115:3570–3586. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tian Y, Wang H, Guan W, Tu X, Zhang X, Sun
Y, Qian C, Song X, Peng B and Cui X: GBP2 serves as a novel
prognostic biomarker and potential immune microenvironment
indicator in renal cell carcinoma. Mol Carcinog. 61:1082–1098.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
AmeliMojarad M, AmeliMojarad M and Cui X:
Weighted gene co-expression network analysis identified GBP2
connected to PPARα activity and liver cancer. Sci Rep.
14:207452024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang H, Zhou Y, Zhang Y, Fang S, Zhang M,
Li H, Xu F, Liu L, Liu J, Zhao Q and Wang F: Subtyping of
microsatellite stability colorectal cancer reveals guanylate
binding protein 2 (GBP2) as a potential immunotherapeutic target. J
Immunother Cancer. 10:e0043022022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qi F, Gao N, Li J, Zhou C, Jiang J, Zhou
B, Guo L, Feng X, Ji J, Cai Q, et al: A multidimensional
recommendation framework for identifying biological targets to aid
the diagnosis and treatment of liver metastasis in patients with
colorectal cancer. Mol Cancer. 23:2392024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang Y, Pan J, An F, Chen K, Chen J, Nie
H, Zhu Y, Qian Z and Zhan Q: GBP2 is a prognostic biomarker and
associated with immunotherapeutic responses in gastric cancer. BMC
Cancer. 23:9252023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xiong J, Huang J, Xu H, Wu Q, Zhao J, Chen
Y, Fan G, Guan H, Xiao R, He Z, et al: CpG-based nanovaccines
enhance ovarian cancer immune response by Gbp2-mediated remodeling
of tumor-associated macrophages. Adv Sci (Weinh). 12:e24128812025.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Feng D, Zhu W, Shi X, Wang Z, Wei W, Wei
Q, Yang L and Han P: Immune-related gene index predicts metastasis
for prostate cancer patients undergoing radical radiotherapy. Exp
Hematol Oncol. 12:82023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Uribe ML, Marrocco I and Yarden Y: EGFR in
cancer: Signaling mechanisms, drugs, and acquired resistance.
Cancers (Basel). 13:27482021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang W, Tang X, Peng Y, Xu Y, Liu L and
Liu S: GBP2 enhances paclitaxel sensitivity in triple-negative
breast cancer by promoting autophagy in combination with ATG2 and
inhibiting the PI3K/AKT/mTOR pathway. Int J Oncol. 64:342024.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li X, He S and Ma B: Autophagy and
autophagy-related proteins in cancer. Mol Cancer. 19:122020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang H, Sun Z, Li Y, Fan D and Jiang H:
MicroRNA-200c binding to FN1 suppresses the proliferation,
migration and invasion of gastric cancer cells. Biomed
Pharmacother. 88:285–292. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shibata K, Kikkawa F, Nawa A, Thant AA,
Naruse K, Mizutani S and Hamaguchi M: Both focal adhesion kinase
and c-Ras are required for the enhanced matrix metalloproteinase 9
secretion by fibronectin in ovarian cancer cells. Cancer Res.
58:900–1093. 1998.PubMed/NCBI
|
|
70
|
Xu TP, Huang MD, Xia R, Liu XX, Sun M, Yin
L, Chen WM, Han L, Zhang EB, Kong R, et al: Decreased expression of
the long non-coding RNA FENDRR is associated with poor prognosis in
gastric cancer and FENDRR regulates gastric cancer cell metastasis
by affecting fibronectin1 expression. J Hematol Oncol. 7:632014.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xue W, Yang L, Chen C, Ashrafizadeh M,
Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human
cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Peña-Blanco A and García-Sáez AJ: Bax, Bak
and beyond-mitochondrial performance in apoptosis. FEBS J.
285:416–431. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang J, Zhang Y, Wu W, Wang F, Liu X,
Shui G and Nie C: Guanylate-binding protein 2 regulates
Drp1-mediated mitochondrial fission to suppress breast cancer cell
invasion. Cell Death Dis. 8:e31512017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu W, Chen Y, Xie H, Guo Y, Ren D, Li Y,
Jing X, Li D, Wang X, Zhao M, et al: TIPE1 suppresses invasion and
migration through down-regulating Wnt/β-catenin pathway in gastric
cancer. J Cell Mol Med. 22:1103–1117. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang J, Min H, Hu B, Xue X and Liu Y:
Guanylate-binding protein-2 inhibits colorectal cancer cell growth
and increases the sensitivity to paclitaxel of paclitaxel-resistant
colorectal cancer cells by interfering Wnt signaling. J Cell
Biochem. 121:1250–129. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Song JX, Wang Y, Hua ZP, Huang Y, Hu LF,
Tian MR, Qiu L, Liu H and Zhang J: FATS inhibits the Wnt pathway
and induces apoptosis through degradation of MYH9 and enhances
sensitivity to paclitaxel in breast cancer. Cell Death Dis.
15:8352024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang SW, Feng TB, Ning YL, Zhang XH and
Qi CJ: Guanylate-binding protein 2 regulates the maturation of
mouse dendritic cells induced by β-glucan. Xi Bao Yu Fen Zi Mian Yi
Xue Za Zhi. 33:1153–1159. 2017.(In Chinese). PubMed/NCBI
|
|
78
|
Xu X, Ding X, Wang Z, Ye S, Xu J, Liang Z,
Luo R, Xu J, Li X and Ren Z: GBP2 inhibits pathological
angiogenesis in the retina via the AKT/mTOR/VEGFA axis. Microvasc
Res. 154:1046892024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Du F, Liu M, Wang J, Hu L, Zeng D, Zhou S,
Zhang L, Wang M, Xu X, Li C, et al: Metformin coordinates with
mesenchymal cells to promote VEGF-mediated angiogenesis in diabetic
wound healing through Akt/mTOR activation. Metabolism.
140:1553982023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Inoki K, Li Y, Zhu T, Wu J and Guan KL:
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR
signalling. Nat Cell Biol. 4:648–6457. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ruchko MV, Gorodnya OM, Pastukh VM, Swiger
BM, Middleton NS, Wilson GL and Gillespie MN: Hypoxia-induced
oxidative base modifications in the VEGF hypoxia-response element
are associated with transcriptionally active nucleosomes. Free
Radic Biol Med. 46:352–359. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wenger RH, Stiehl DP and Camenisch G:
Integration of oxygen signaling at the consensus HRE. Sci STKE.
2005:re122005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Balasubramanian S, Fan M, Messmer-Blust
AF, Yang CH, Trendel JA, Jeyaratnam JA, Pfeffer LM and Vestal DJ:
The interferon-gamma-induced GTPase, mGBP-2, inhibitsc (TNF-alpha)
induction of matrix metalloproteinase-9 (MMP-9) by inhibiting
NF-kappaB and Rac protein. J Biol Chem. 286:20054–20064. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Raskov H, Orhan A, Christensen JP and
Gögenur I: Cytotoxic CD8+ T cells in cancer and cancer
immunotherapy. Br J Cancer. 124:359–367. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ye S, Li S, Qin L, Zheng W, Liu B, Li X,
Ren Z, Zhao H, Hu X, Ye N and Li G: GBP2 promotes clear cell renal
cell carcinoma progression through immune infiltration and
regulation of PD-L1 expression via STAT1 signaling. Oncol Rep.
49:492023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kutsch M and Coers J: Human guanylate
binding proteins: Nanomachines orchestrating host defense. FEBS J.
288:5826–5849. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chakraborty S, Kasirajan A, Mariappan V,
Green SR and Pillai AKB: Guanylate binding proteins (GBPs) as novel
therapeutic targets against single-stranded RNA viruses. Mol Biol
Rep. 52:7802025. View Article : Google Scholar : PubMed/NCBI
|