|
1
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View
Article : Google Scholar
|
|
2
|
Mossmann D, Park S and Hall MN: mTOR
signalling and cellular metabolism are mutual determinants in
cancer. Nat Rev Cancer. 18:744–757. 2018. View Article : Google Scholar
|
|
3
|
Wang W and Zou W: Amino acids and their
transporters in T cell immunity and cancer therapy. Mol Cell.
80:384–395. 2020. View Article : Google Scholar
|
|
4
|
Yoneshiro T, Wang Q, Tajima K, Matsushita
M, Maki H, Igarashi K, Dai Z, White PJ, McGarrah RW, Ilkayeva OR,
et al: BCAA catabolism in brown fat controls energy homeostasis
through SLC25A44. Nature. 572:614–619. 2019. View Article : Google Scholar
|
|
5
|
Gao X, Locasale JW and Reid MA: Serine and
methionine metabolism: Vulnerabilities in lethal prostate cancer.
Cancer Cell. 35:339–341. 2019. View Article : Google Scholar
|
|
6
|
Kelly B and Pearce EL: Amino assets: How
amino acids support immunity. Cell Metab. 32:154–175. 202
View Article : Google Scholar
|
|
7
|
Labuschagne CF, van den Broek NJ, Mackay
GM, Vousden KH and Maddocks OD: Serine, but not glycine, supports
one-carbon metabolism and proliferation of cancer cells. Cell Rep.
7:1248–1258. 2014. View Article : Google Scholar
|
|
8
|
Longchamp A, Mirabella T, Arduini A,
MacArthur MR, Das A, Treviño-Villarreal JH, Hine C, Ben-Sahra I,
Knudsen NH, Brace LE, et al: Amino acid restriction triggers
angiogenesis via GCN2/ATF4 regulation of VEGF and H(2)S production.
Cell. 173:117–129.e14. 2018. View Article : Google Scholar
|
|
9
|
Knaus LS, Basilico B, Malzl D, Gerykova
Bujalkova M, Smogavec M, Schwarz LA, Gorkiewicz S, Amberg N, Pauler
FM, Knittl-Frank C, et al: Large neutral amino acid levels tune
perinatal neuronal excitability and survival. Cell.
186:1950–1967.e25. 2023. View Article : Google Scholar
|
|
10
|
Handzlik MK, Gengatharan JM, Frizzi KE,
McGregor GH, Martino C, Rahman G, Gonzalez A, Moreno AM, Green CR,
Guernsey LS, et al: Insulin-regulated serine and lipid metabolism
drive peripheral neuropathy. Nature. 614:118–124. 2023. View Article : Google Scholar
|
|
11
|
Zhang Y, Lin S, Peng J, Liang X, Yang Q,
Bai X, Li Y, Li J, Dong W, Wang Y, et al: Amelioration of hepatic
steatosis by dietary essential amino acid-induced ubiquitination.
Mol Cell. 82:1528–1542.e10. 2022. View Article : Google Scholar
|
|
12
|
Schulte ML, Fu A, Zhao P, Li J, Geng L,
Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC, et al:
Pharmacological blockade of ASCT2-dependent glutamine transport
leads to antitumor efficacy in preclinical models. Nat Med.
24:194–202. 2018. View
Article : Google Scholar
|
|
13
|
Muthusamy T, Cordes T, Handzlik MK, You L,
Lim EW, Gengatharan J, Pinto AFM, Badur MG, Kolar MJ, Wallace M, et
al: Serine restriction alters sphingolipid diversity to constrain
tumour growth. Nature. 586:790–795. 2020. View Article : Google Scholar
|
|
14
|
Gao X, Sanderson SM, Dai Z, Reid MA,
Cooper DE, Lu M, Richie JP Jr, Ciccarella A, Calcagnotto A, Mikhael
PG, et al: Dietary methionine influences therapy in mouse cancer
models and alters human metabolism. Nature. 572:397–401. 2019.
View Article : Google Scholar
|
|
15
|
Mossmann D, Müller C, Park S, Ryback B,
Colombi M, Ritter N, Weißenberger D, Dazert E, Coto-Llerena M,
Nuciforo S, et al: Arginine reprograms metabolism in liver cancer
via RBM39. Cell. 186:5068–5083.e23. 2023. View Article : Google Scholar
|
|
16
|
Krall AS, Mullen PJ, Surjono F, Momcilovic
M, Schmid EW, Halbrook CJ, Thambundit A, Mittelman SD, Lyssiotis
CA, Shackelford DB, et al: Asparagine couples mitochondrial
respiration to ATF4 activity and tumor growth. Cell Metab.
33:1013–1026.e6. 2021. View Article : Google Scholar
|
|
17
|
Missiaen R, Anderson NM, Kim LC, Nance B,
Burrows M, Skuli N, Carens M, Riscal R, Steensels A, Li F and Simon
MC: GCN2 inhibition sensitizes arginine-deprived hepatocellular
carcinoma cells to senolytic treatment. Cell Metab.
34:1151–1167.e7. 2022. View Article : Google Scholar
|
|
18
|
Badgley MA, Kremer DM, Maurer HC,
DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J,
Firl CEM, et al: Cysteine depletion induces pancreatic tumor
ferroptosis in mice. Science. 368:85–89. 2020. View Article : Google Scholar
|
|
19
|
Xue Y, Lu F, Chang Z, Li J, Gao Y, Zhou J,
Luo Y, Lai Y, Cao S, Li X, et al: Intermittent dietary methionine
deprivation facilitates tumoral ferroptosis and synergizes with
checkpoint blockade. Nat Commun. 14:47582023. View Article : Google Scholar
|
|
20
|
Zheng J and Conrad M: The metabolic
underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020.
View Article : Google Scholar
|
|
21
|
Zhang W, Li Q, Zhang Y, Wang Z, Yuan S,
Zhang X, Zhao M, Zhuang W and Li B: Multiple myeloma with high
expression of SLC7A11 is sensitive to erastin-induced ferroptosis.
Apoptosis. 29:412–423. 2024. View Article : Google Scholar
|
|
22
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.
View Article : Google Scholar
|
|
23
|
Dixon SJ, Patel DN, Welsch M, Skouta R,
Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS
and Stockwell BR: Pharmacological inhibition of cystine-glutamate
exchange induces endoplasmic reticulum stress and ferroptosis.
Elife. 3:e025232014. View Article : Google Scholar
|
|
24
|
Gounder M, Johnson M, Heist RS, Shapiro
GI, Postel-Vinay S, Wilson FH, Garralda E, Wulf G, Almon C, Nabhan
S, et al: MAT2A inhibitor AG-270/S095033 in patients with advanced
malignancies: A phase I trial. Nat Commun. 16:4232025. View Article : Google Scholar
|
|
25
|
Cacciatore A, Shinde D, Musumeci C,
Sandrini G, Guarrera L, Albino D, Civenni G, Storelli E, Mosole S,
Federici E, et al: Epigenome-wide impact of MAT2A sustains the
androgen-indifferent state and confers synthetic vulnerability in
ERG fusion-positive prostate cancer. Nat Commun. 15:66722024.
View Article : Google Scholar
|
|
26
|
Hou PP, Zheng CM, Wu SH, Liu XX, Xiang GX,
Cai WY, Chen G and Lou YL: Extracellular vesicle-packaged ACSL4
induces hepatocyte senescence to promote hepatocellular carcinoma
progression. Cancer Res. 84:3953–3966. 2024. View Article : Google Scholar
|
|
27
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar
|
|
28
|
Chaneton B, Hillmann P, Zheng L, Martin
ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding
FP, Vousden KH, et al: Serine is a natural ligand and allosteric
activator of pyruvate kinase M2. Nature. 491:458–462. 2012.
View Article : Google Scholar
|
|
29
|
Cunningham A, Erdem A, Alshamleh I,
Geugien M, Pruis M, Pereira-Martins DA, van den Heuvel FAJ,
Wierenga ATJ, Ten Berge H, Dennebos R, et al: Dietary methionine
starvation impairs acute myeloid leukemia progression. Blood.
140:2037–2052. 2022. View Article : Google Scholar
|
|
30
|
Wang QL, Chen Z, Lu X, Lin H, Feng H, Weng
N, Chen L, Liu M, Long L, Huang L, et al: Methionine metabolism
dictates PCSK9 expression and antitumor potency of PD-1 blockade in
MSS colorectal cancer. Adv Sci (Weinh). 12:e25016232025. View Article : Google Scholar
|
|
31
|
Hong XL, Huang CK, Qian H, Ding CH, Liu F,
Hong HY, Liu SQ, Wu SH, Zhang X and Xie WF: Positive feedback
between arginine methylation of YAP and methionine transporter
SLC43A2 drives anticancer drug resistance. Nat Commun. 16:872025.
View Article : Google Scholar
|
|
32
|
Zhang X, Zhao Z, Wang X, Zhang S, Zhao Z,
Feng W, Xu L, Nie J, Li H, Liu J, et al: Deprivation of methionine
inhibits osteosarcoma growth and metastasis via C1orf112-mediated
regulation of mitochondrial functions. Cell Death Dis. 15:3492024.
View Article : Google Scholar
|
|
33
|
Huang Z, Chen P and Liu Y: RBM15-mediated
the m6A modification of MAT2A promotes osteosarcoma cell
proliferation, metastasis and suppresses ferroptosis. Mol Cell
Biochem. 480:2923–2933. 2025. View Article : Google Scholar
|
|
34
|
Xia S, Liang Y, Shen Y, Zhong W and Ma Y:
MAT2A inhibits the ferroptosis in osteosarcoma progression
regulated by miR-26b-5p. J Bone Oncol. 41:1004902023. View Article : Google Scholar
|
|
35
|
Yang S, Gu X, Chen L and Zhu W: Discovery
of novel spirocyclic MAT2A inhibitors demonstrating high in vivo
efficacy in MTAP-Null xenograft models. J Med Chem. 68:3480–3494.
2025. View Article : Google Scholar
|
|
36
|
Zhou Y, Wang L, Ren R, Zhang J, Huan X,
Yang P, Miao ZH, Xiong B, Wang Y and Liu T: Structure-based
discovery of a series of novel MAT2a inhibitors. ACS Med Chem Lett.
16:646–650. 2025. View Article : Google Scholar
|
|
37
|
Wang Y, Hu M, Cao J, Wang F, Han JR, Wu
TW, Li L, Yu J, Fan Y, Xie G, et al: ACSL4 and polyunsaturated
lipids support metastatic extravasation and colonization. Cell.
188:412–429.e27. 2025. View Article : Google Scholar
|
|
38
|
Shafqat N, Muniz JR, Pilka ES,
Papagrigoriou E, von Delft F, Oppermann U and Yue WW: Insight into
S-adenosylmethionine biosynthesis from the crystal structures of
the human methionine adenosyltransferase catalytic and regulatory
subunits. Biochem J. 452:27–36. 2013. View Article : Google Scholar
|
|
39
|
LeGros HL Jr, Halim AB, Geller AM and Kotb
M: Cloning, expression, and functional characterization of the beta
regulatory subunit of human methionine adenosyltransferase (MAT
II). J Biol Chem. 275:2359–2366. 2000. View Article : Google Scholar
|
|
40
|
LeGros L, Halim AB, Chamberlin ME, Geller
A and Kotb M: Regulation of the human MAT2B gene encoding the
regulatory beta subunit of methionine adenosyltransferase, MAT II.
J Biol Chem. 276:24918–24924. 2001. View Article : Google Scholar
|
|
41
|
Li Z, Wang F, Liang B, Su Y, Sun S, Xia S,
Shao J, Zhang Z, Hong M, Zhang F and Zheng S: Methionine metabolism
in chronic liver diseases: An update on molecular mechanism and
therapeutic implication. Signal Transduct Target Ther. 5:2802020.
View Article : Google Scholar
|
|
42
|
Villa E, Sahu U, O'Hara BP, Ali ES, Helmin
KA, Asara JM, Gao P, Singer BD and Ben-Sahra I: mTORC1 stimulates
cell growth through SAM synthesis and m6A mRNA-dependent
control of protein synthesis. Mol Cell. 81:2076–2093.e9. 2021.
View Article : Google Scholar
|
|
43
|
Gu X, Orozco JM, Saxton RA, Condon KJ, Liu
GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP and Sabatini DM:
SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway.
Science. 358:813–818. 2017. View Article : Google Scholar
|
|
44
|
Ibrahim A, Yucel N, Kim B and Arany Z:
Local mitochondrial ATP production regulates endothelial fatty acid
uptake and transport. Cell Metab. 32:309–319.e7. 2020. View Article : Google Scholar
|
|
45
|
Milger K, Herrmann T, Becker C, Gotthardt
D, Zickwolf J, Ehehalt R, Watkins PA, Stremmel W and Füllekrug J:
Cellular uptake of fatty acids driven by the ER-localized acyl-CoA
synthetase FATP4. J Cell Sci. 119:4678–4688. 2006. View Article : Google Scholar
|
|
46
|
Huang B, Nie G, Dai X, Cui T, Pu W and
Zhang C: Environmentally relevant levels of Cd and Mo coexposure
induces ferroptosis and excess ferritinophagy through AMPK/mTOR
axis in duck myocardium. Environ Toxicol. 39:4196–4206. 2024.
View Article : Google Scholar
|
|
47
|
Ouyang Y, Wu Q, Li J and Sun S and Sun S:
S-adenosylmethionine: A metabolite critical to the regulation of
autophagy. Cell Prolif. 53:e128912020. View Article : Google Scholar
|
|
48
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC
and Mato JM: S-adenosylmethionine: A multifaceted regulator in
cancer pathogenesis and therapy. Cancers (Basel). 17:5352025.
View Article : Google Scholar
|