|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Luo G, Zhang Y, Rumgay H, Morgan E,
Langselius O, Vignat J, Colombet M and Bray F: Estimated worldwide
variation and trends in incidence of lung cancer by histological
subtype in 2022 and over time: A population-based study. Lancet
Respir Med. 13:348–363. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Georgakopoulos I, Kouloulias V, Ntoumas G,
Desse D, Koukourakis I, Kougioumtzopoulou A, Charpidou A, Syrigos
KN and Zygogianni A: Combined use of radiotherapy and tyrosine
kinase inhibitors in the management of metastatic non-small cell
lung cancer: A literature review. Crit Rev Oncol Hematol.
204:1045202024. View Article : Google Scholar
|
|
4
|
Mieras A, Pasman HRW, Onwuteaka-Philipsen
BD, Dingemans AMMC, Kok EV, Cornelissen R, Jacobs W, van den Berg
JW, Welling A, Bogaarts BAHA, et al: Is in-hospital mortality
higher in patients with metastatic lung cancer who received
treatment in the last month of life? A retrospective cohort study.
J Pain Symptom Manage. 58:805–811. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
White BD, Chien AJ and Dawson DW:
Dysregulation of Wnt/β-catenin signaling in gastrointestinal
cancers. Gastroenterology. 142:219–232. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yeh Y, Guo Q, Connelly Z, Cheng S, Yang S,
Prieto-Dominguez N and Yu X: Wnt/beta-catenin signaling and
prostate cancer therapy resistance. Adv Exp Med Biol. 1210:351–378.
2019. View Article : Google Scholar
|
|
8
|
Mukherjee N, Bhattacharya N, Alam N, Roy
A, Roychoudhury S and Panda CK: Subtype-specific alterations of the
Wnt signaling pathway in breast cancer: clinical and prognostic
significance. Cancer Sci. 103:210–220. 2012. View Article : Google Scholar
|
|
9
|
Skronska-Wasek W, Gosens R, Königshoff M
and Baarsma HA: WNT receptor signalling in lung physiology and
pathology. Pharmacol Ther. 187:150–166. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J,
Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, et al: Wnt/β-catenin
signaling in the development and therapeutic resistance of
non-small cell lung cancer. J Transl Med. 22:5652024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gao C, Wang Y, Broaddus R, Sun L, Xue F
and Zhang W: Exon 3 mutations of CTNNB1 drive tumorigenesis: A
review. Oncotarget. 9:5492–5508. 2017. View Article : Google Scholar
|
|
12
|
Ma Q, Yu J, Zhang X, Wu X and Deng G:
Wnt/β-catenin signaling pathway-a versatile player in apoptosis and
autophagy. Biochimie. 211:57–67. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar
|
|
14
|
Vallée A, Lecarpentier Y and Vallée JN:
The key role of the WNT/β-catenin pathway in metabolic
reprogramming in cancers under normoxic conditions. Cancers
(Basel). 13:55572021. View Article : Google Scholar
|
|
15
|
Parsons MJ, Tammela T and Dow LE: WNT as a
driver and dependency in cancer. Cancer Discov. 11:2413–2429. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kleeman SO and Leedham SJ: Not all Wnt
activation is equal: ligand-dependent versus ligand-independent Wnt
activation in colorectal cancer. Cancers (Basel). 12:33552020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu F and Millar SE: Wnt/beta-catenin
signaling in oral tissue development and disease. J Dent Res.
89:318–330. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao DM, Yu S, Zhou X, Haring JS, Held W,
Badovinac VP, Harty JT and Xue HH: Constitutive activation of Wnt
signaling favors generation of memory CD8 T cells. J Immunol.
184:1191–1199. 2010. View Article : Google Scholar
|
|
19
|
Hurlstone A and Clevers H: T-cell factors:
Turn-ons and turn-offs. EMBO J. 21:2303–2311. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dale TC: Signal transduction by the Wnt
family of ligands. Biochem J. 329:209–223. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Howell BW and Herz J: The LDL receptor
gene family: Signaling functions during development. Curr Opin
Neurobiol. 11:74–81. 2001. View Article : Google Scholar
|
|
22
|
Moon RT, Bowerman B, Boutros M and
Perrimon N: The promise and perils of Wnt signaling through
beta-catenin. Science. 296:1644–1646. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sharma A, Mir R and Galande S: Epigenetic
regulation of the Wnt/β-catenin signaling pathway in cancer. Front
Genet. 12:6810532021. View Article : Google Scholar
|
|
24
|
Yamamoto S, Nishimura O, Misaki K, Nishita
M, Minami Y, Yonemura S, Tarui H and Sasaki H: Cthrc1 selectively
activates the planar cell polarity pathway of Wnt signaling by
stabilizing the Wnt-receptor complex. Dev Cell. 15:23–36. 2008.
View Article : Google Scholar
|
|
25
|
Feng D, Wang J, Yang W, Li J, Lin X, Zha
F, Wang X, Ma L, Choi NT, Mii Y, et al: Regulation of Wnt/PCP
signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and
endoplasmic reticulum-associated degradation. Sci Adv.
7:eabg20992021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cai Y, Cai T and Chen Y: Wnt pathway in
osteosarcoma, from oncogenic to therapeutic. J Cell Biochem.
115:625–631. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Martineau X, Abed É, Martel-Pelletier J,
Pelletier JP and Lajeunesse D: Alteration of Wnt5a expression and
of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human
osteoarthritis osteoblasts. PLoS One. 12:e01807112017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
De A: Wnt/Ca2+ signaling pathway: A brief
overview. Acta Biochim Biophys Sin (Shanghai). 43:745–756. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Anastas JN and Moon RT: WNT signalling
pathways as therapeutic targets in cancer. Nat Rev Cancer.
13:11–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang X, Lou Y, Zheng X, Wang H, Sun J,
Dong Q and Han B: Wnt blockers inhibit the proliferation of lung
cancer stem cells. Drug Des Devel Ther. 9:2399–2407.
2015.PubMed/NCBI
|
|
31
|
Kren L, Hermanová M, Goncharuk VN, Kaur P,
Ross JS, Pavlovský Z and Dvorák K: Downregulation of plasma
membrane expression/cytoplasmic accumulation of beta-catenin
predicts shortened survival in non-small cell lung cancer. A
clinicopathologic study of 100 cases. Cesk Patol. 39:17–20.
2003.
|
|
32
|
Daniels DL, Eklof Spink K and Weis WI:
beta-catenin: Molecular plasticity and drug design. Trends Biochem
Sci. 26:672–678. 2001. View Article : Google Scholar
|
|
33
|
Städeli R, Hoffmans R and Basler K:
Transcription under the control of nuclear Arm/beta-catenin. Curr
Biol. 16:R378–R385. 2006. View Article : Google Scholar
|
|
34
|
Kishida S, Yamamoto H, Ikeda S, Kishida M,
Sakamoto I, Koyama S and Kikuchi A: Axin, a negative regulator of
the wnt signaling pathway, directly interacts with adenomatous
polyposis coli and regulates the stabilization of beta-catenin. J
Biol Chem. 273:10823–10826. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Aberle H, Bauer A, Stappert J, Kispert A
and Kemler R: beta-catenin is a target for the ubiquitin-proteasome
pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Conacci-Sorrell M, Zhurinsky J and
Ben-Ze'ev A: The cadherin-catenin adhesion system in signaling and
cancer. J Clin Invest. 109:987–991. 2002. View Article : Google Scholar
|
|
37
|
Xing Y, Takemaru KI, Liu J, Berndt JD,
Zheng JJ, Moon RT and Xu W: Crystal structure of a full-length
beta-catenin. Structure. 16:478–487. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kase S, Sugio K, Yamazaki K, Okamoto T,
Yano T and Sugimachi K: Expression of E-cadherin and beta-catenin
in human non-small cell lung cancer and the clinical significance.
Clin Cancer Res. 6:4789–4796. 2000.PubMed/NCBI
|
|
39
|
Baum B and Georgiou M: Dynamics of
adherens junctions in epithelial establishment, maintenance, and
remodeling. J Cell Biol. 192:907–917. 2011. View Article : Google Scholar
|
|
40
|
Li LF, Wei ZJ, Sun H and Jiang B: Abnormal
β-catenin immunohistochemical expression as a prognostic factor in
gastric cancer: A meta-analysis. World J Gastroenterol.
20:12313–12321. 2014. View Article : Google Scholar
|
|
41
|
Klaus A and Birchmeier W: Wnt signalling
and its impact on development and cancer. Nat Rev Cancer.
8:387–398. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rim EY, Clevers H and Nusse R: The Wnt
pathway: From signaling mechanisms to synthetic modulators. Annu
Rev Biochem. 91:571–598. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yoo SB, Kim YJ, Kim H, Jin Y, Sun PL,
Jheon S, Lee JS and Chung JH: Alteration of the
E-cadherin/β-catenin complex predicts poor response to epidermal
growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)
treatment. Ann Surg Oncol. 20 (Suppl 3):S545–S552. 2013. View Article : Google Scholar
|
|
44
|
Li XQ, Yang XL, Zhang G, Wu SP, Deng XB,
Xiao SJ, Liu QZ, Yao KT and Xiao GH: Nuclear β-catenin accumulation
is associated with increased expression of Nanog protein and
predicts poor prognosis of non-small cell lung cancer. J Transl
Med. 11:1142013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Polakis P: Wnt signaling and cancer. Genes
Dev. 14:1837–1851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kikuchi A: Tumor formation by genetic
mutations in the components of the Wnt signaling pathway. Cancer
Sci. 94:225–229. 2003. View Article : Google Scholar
|
|
47
|
Amit S, Hatzubai A, Birman Y, Andersen JS,
Ben-Shushan E, Mann M, Ben-Neriah Y and Alkalay I: Axin-mediated
CKI phosphorylation of beta-catenin at Ser 45: A molecular switch
for the Wnt pathway. Genes Dev. 16:1066–1076. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhou C, Jin H, Li W, Zhao R and Chen C:
CTNNB1 S37C mutation causing cells proliferation and migration
coupled with molecular mechanisms in lung adenocarcinoma. Ann
Transl Med. 9:6812021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao
F, Ma X, Sun X, Liang Q, Xu H, et al: Cantharidin inhibits
osteosarcoma proliferation and metastasis by directly targeting
miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation
and LEF1 translation. Int J Biol Sci. 17:2504–2522. 2021.
View Article : Google Scholar
|
|
50
|
Anthony CC, Robbins DJ, Ahmed Y and Lee E:
Nuclear regulation of Wnt/β-catenin signaling: It's a complex
situation. Genes (Basel). 11:8862020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim W, Kim M and Jho E: Wnt/β-catenin
signalling: From plasma membrane to nucleus. Biochem J. 450:9–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang Y, Liu H, Zhang Q and Zhang Z: Long
noncoding RNA LINC01006 facilitates cell proliferation, migration,
and epithelial-mesenchymal transition in lung adenocarcinoma via
targeting the MicroRNA 129-2-3p/CTNNB1 axis and activating
Wnt/β-catenin signaling pathway. Mol Cell Biol. 41:e00380202021.
View Article : Google Scholar
|
|
53
|
Zheng JY, Zhu T, Zhuo W, Mao XY, Yin JY,
Li X, He YJ, Zhang W, Liu C and Liu ZQ: eIF3a sustains non-small
cell lung cancer stem cell-like properties by promoting
YY1-mediated transcriptional activation of β-catenin. Biochem
Pharmacol. 213:1156162023. View Article : Google Scholar
|
|
54
|
Liu S, Yang N, Wang L, Wei B, Chen J and
Gao Y: lncRNA SNHG11 promotes lung cancer cell proliferation and
migration via activation of Wnt/β-catenin signaling pathway. J Cell
Physiol. 235:7541–7553. 2020. View Article : Google Scholar
|
|
55
|
Wei X, Liao J, Lei Y, Li M, Zhao G, Zhou
Y, Ye L and Huang Y: Retraction: WSB2 as a target of Hedgehog
signaling promoted the malignantbiological behavior of Xuanwei lung
cancer through regulating Wnt/β-catenin signaling. Transl Cancer
Res. 13:51612024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liao Y, Feng J, Sun W, Wu C, Li J, Jing T,
Liang Y, Qian Y, Liu W and Wang H: CIRP promotes the progression of
non-small cell lung cancer through activation of Wnt/β-catenin
signaling via CTNNB1. J Exp Clin Cancer Res. 40:2752021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu C, Liu L, Zhang Y and Jing H:
Molecular mechanism of AQP3 in regulating differentiation and
apoptosis of lung cancer stem cells through Wnt/GSK-3β/β-catenin
pathway. J BUON. 25:1714–1720. 2020.PubMed/NCBI
|
|
58
|
Yang F, Xiong H, Duan L, Li Q, Li X and
Zhou Y: MiR-1246 promotes metastasis and invasion of A549 cells by
targeting GSK-3β-mediated Wnt/β-catenin pathway. Cancer Res Treat.
51:1420–1429. 2019. View Article : Google Scholar
|
|
59
|
Lei L, Wang Y, Li ZH, Fei LR, Huang WJ,
Zheng YW, Liu CC, Yang MQ, Wang Z, Zou ZF and Xu HT: PHLDA3
promotes lung adenocarcinoma cell proliferation and invasion via
activation of the Wnt signaling pathway. Lab Invest. 101:1130–1141.
2021. View Article : Google Scholar
|
|
60
|
Shi X, Zhao Y and Fan C: Zbed3 promotes
proliferation and invasion of lung cancer partly through regulating
the function of Axin-Gsk3β complex. J Cell Mol Med. 23:1014–1021.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xu X, Zhang Y, Wang M, Zhang X, Jiang W,
Wu S and Ti X: A peptide encoded by a long non-coding RNA DLX6-AS1
facilitates cell proliferation, migration, and invasion by
activating the wnt/β-catenin signaling pathway in non-small-cell
lung cancer cell. Crit Rev Eukaryot Gene Expr. 32:43–53. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xu G, Zhang Z, Zhang L, Chen Y, Li N, Lv
Y, Li Y and Xu X: miR-4326 promotes lung cancer cell proliferation
through targeting tumor suppressor APC2. Mol Cell Biochem.
443:151–157. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cen W, Yan Q, Zhou W, Mao M, Huang Q, Lin
Y and Jiang N: miR-4739 promotes epithelial-mesenchymal transition
and angiogenesis in ‘driver gene-negative’ non-small cell lung
cancer via activating the Wnt/β-catenin signaling. Cell Oncol
(Dordr). 46:1821–1835. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yokoya F, Imamoto N, Tachibana T and
Yoneda Y: beta-catenin can be transported into the nucleus in a
Ran-unassisted manner. Mol Biol Cell. 10:1119–1131. 1999.
View Article : Google Scholar
|
|
65
|
Andrade MA, Petosa C, O'Donoghue SI,
Müller CW and Bork P: Comparison of ARM and HEAT protein repeats. J
Mol Biol. 309:1–18. 2001. View Article : Google Scholar
|
|
66
|
Altan B, Yokobori T, Mochiki E, Ohno T,
Ogata K, Ogawa A, Yanai M, Kobayashi T, Luvsandagva B, Asao T and
Kuwano H: Nuclear karyopherin-α2 expression in primary lesions and
metastatic lymph nodes was associated with poor prognosis and
progression in gastric cancer. Carcinogenesis. 34:2314–2321. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mis M, O'Brien S, Steinhart Z, Lin S, Hart
T, Moffat J and Angers S: IPO11 mediates βcatenin nuclear import in
a subset of colorectal cancers. J Cell Biol. 219:e2019030172020.
View Article : Google Scholar
|
|
68
|
Krieghoff E, Behrens J and Mayr B:
Nucleo-cytoplasmic distribution of beta-catenin is regulated by
retention. J Cell Sci. 119:1453–1463. 2006. View Article : Google Scholar
|
|
69
|
Fang D, Hawke D, Zheng Y, Xia Y,
Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T and Lu Z:
Phosphorylation of beta-catenin by AKT promotes beta-catenin
transcriptional activity. J Biol Chem. 282:11221–11229. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lee GA, Hwang KA and Choi KC: Roles of
dietary phytoestrogens on the regulation of epithelial-mesenchymal
transition in diverse cancer metastasis. Toxins (Basel). 8:1622016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dongre A and Weinberg RA: New insights
into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019.
View Article : Google Scholar
|
|
73
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar
|
|
74
|
Guo F, Parker Kerrigan BC, Yang D, Hu L,
Shmulevich I, Sood AK, Xue F and Zhang W: Post-transcriptional
regulatory network of epithelial-to-mesenchymal and
mesenchymal-to-epithelial transitions. J Hematol Oncol. 7:192014.
View Article : Google Scholar
|
|
75
|
Pertz O, Bozic D, Koch AW, Fauser C,
Brancaccio A and Engel J: A new crystal structure, Ca2+ dependence
and mutational analysis reveal molecular details of E-cadherin
homoassociation. EMBO J. 18:1738–1747. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kim YS, Yi BR, Kim NH and Choi KC: Role of
the epithelial-mesenchymal transition and its effects on embryonic
stem cells. Exp Mol Med. 46:e1082014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Heuberger J and Birchmeier W: Interplay of
cadherin-mediated cell adhesion and canonical Wnt signaling. Cold
Spring Harb Perspect Biol. 2:a0029152010. View Article : Google Scholar
|
|
78
|
Eijkelenboom A and Burgering BMT: FOXOs:
Signalling integrators for homeostasis maintenance. Nat Rev Mol
Cell Biol. 14:83–97. 2013. View Article : Google Scholar
|
|
79
|
Bustamante A, Baritaki S, Zaravinos A and
Bonavida B: Relationship of signaling pathways between RKIP
expression and the inhibition of EMT-inducing transcription factors
SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel). 16:31802024.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Schmalhofer O, Brabletz S and Brabletz T:
E-cadherin, beta-catenin, and ZEB1 in malignant progression of
cancer. Cancer Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ghahhari NM and Babashah S: Interplay
between microRNAs and WNT/β-catenin signalling pathway regulates
epithelial-mesenchymal transition in cancer. Eur J Cancer.
51:1638–1649. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Stewart DJ: Wnt signaling pathway in
non-small cell lung cancer. J Natl Cancer Inst. 106:djt3562014.
View Article : Google Scholar
|
|
83
|
Mármol-Sánchez E, Luigi-Sierra MG,
Castelló A, Guan D, Quintanilla R, Tonda R and Amills M:
Variability in porcine microRNA genes and its association with mRNA
expression and lipid phenotypes. Genet Sel Evol. 53:432021.
View Article : Google Scholar
|
|
84
|
Zhao H, Wang Z, Wu G, Lu Y, Zheng J, Zhao
Y, Han Y, Wang J, Yang L, Du J and Wang E: Role of MicroRNA-214 in
dishevelled1-modulated β-catenin signalling in non-small cell lung
cancer progression. J Cancer. 14:239–249. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tian Y, Pan Q, Shang Y, Zhu R, Ye J, Liu
Y, Zhong X, Li S, He Y, Chen L, et al: MicroRNA-200 (miR-200)
cluster regulation by achaete scute-like 2 (Ascl2): Impact on the
epithelial-mesenchymal transition in colon cancer cells. J Biol
Chem. 289:36101–36115. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Saydam O, Shen Y, Würdinger T, Senol O,
Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens
RM, et al: Downregulated microRNA-200a in meningiomas promotes
tumor growth by reducing E-cadherin and activating the
Wnt/beta-catenin signaling pathway. Mol Cell Biol. 29:5923–5940.
2009. View Article : Google Scholar
|
|
87
|
Cha YH, Kim NH, Park C, Lee I, Kim HS and
Yook JI: MiRNA-34 intrinsically links p53 tumor suppressor and Wnt
signaling. Cell Cycle. 11:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yi B, Wang S, Wang X, Liu Z, Zhang C, Li
M, Gao S, Wei S, Bae S, Stringer-Reasor E, et al: CRISPR
interference and activation of the microRNA-3662-HBP1 axis control
progression of triple-negative breast cancer. Oncogene. 41:268–279.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Friedlaender A, Naidoo J, Banna GL, Metro
G, Forde P and Addeo A: Role and impact of immune checkpoint
inhibitors in neoadjuvant treatment for NSCLC. Cancer Treat Rev.
104:1023502022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Rodríguez-Abreu D, Powell SF, Hochmair MJ,
Gadgeel S, Esteban E, Felip E, Speranza G, De Angelis F, Dómine M,
Cheng SY, et al: Pemetrexed plus platinum with or without
pembrolizumab in patients with previously untreated metastatic
nonsquamous NSCLC: Protocol-specified final analysis from
KEYNOTE-189. Ann Oncol. 32:881–895. 2021. View Article : Google Scholar
|
|
91
|
Montesion M, Murugesan K, Jin DX, Sharaf
R, Sanchez N, Guria A, Minker M, Li G, Fisher V, Sokol ES, et al:
Somatic HLA class I loss is a widespread mechanism of immune
evasion which refines the use of tumor mutational burden as a
biomarker of checkpoint inhibitor response. Cancer Discov.
11:282–292. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zaretsky JM, Garcia-Diaz A, Shin DS,
Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY,
Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations
associated with acquired resistance to PD-1 blockade in melanoma. N
Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Han P, Dai Q, Fan L, Lin H, Zhang X, Li F
and Yang X: Genome-wide CRISPR screening identifies JAK1 deficiency
as a mechanism of T-cell resistance. Front Immunol. 10:2512019.
View Article : Google Scholar
|
|
94
|
Takeuchi Y, Tanegashima T, Sato E, Irie T,
Sai A, Itahashi K, Kumagai S, Tada Y, Togashi Y, Koyama S, et al:
Highly immunogenic cancer cells require activation of the WNT
pathway for immunological escape. Sci Immunol. 6:eabc64242021.
View Article : Google Scholar
|
|
95
|
Muto S, Ozaki Y, Yamaguchi H, Watanabe M,
Okabe N, Matsumura Y, Hamada K and Suzuki H: Tumor β-catenin
expression associated with poor prognosis to anti-PD-1 antibody
monotherapy in non-small cell lung cancer. Cancer Diagn Progn.
5:32–41. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Galluzzi L, Spranger S, Fuchs E and
López-Soto A: WNT signaling in cancer immunosurveillance. Trends
Cell Biol. 29:44–65. 2019. View Article : Google Scholar
|
|
97
|
Spranger S, Bao R and Gajewski TF:
Melanoma-intrinsic β-catenin signalling prevents anti-tumour
immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Muto S, Inomata S, Yamaguchi H, Mine H,
Takagi H, Watanabe M, Ozaki Y, Inoue T, Yamaura T, Fukuhara M, et
al: β-catenin expression in non-small cell lung cancer and
therapeutic effect of immune checkpoint inhibitors. Gan To Kagaku
Ryoho. 49:947–949. 2022.PubMed/NCBI
|
|
99
|
DeNardo DG and Ruffell B: Macrophages as
regulators of tumour immunity and immunotherapy. Nat Rev Immunol.
19:369–382. 2019. View Article : Google Scholar
|
|
100
|
Kaler P, Augenlicht L and Klampfer L:
Activating mutations in β-catenin in colon cancer cells alter their
interaction with macrophages; the role of snail. PLoS One.
7:e454622012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yaguchi T, Goto Y, Kido K, Mochimaru H,
Sakurai T, Tsukamoto N, Kudo-Saito C, Fujita T, Sumimoto H and
Kawakami Y: Immune suppression and resistance mediated by
constitutive activation of Wnt/β-catenin signaling in human
melanoma cells. J Immunol. 189:2110–2117. 2012. View Article : Google Scholar
|
|
102
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang
K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell
MA, et al: Wnt signaling directs a metabolic program of glycolysis
and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lim AR, Rathmell WK and Rathmell JC: The
tumor microenvironment as a metabolic barrier to effector T cells
and immunotherapy. Elife. 9:e551852020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Nakayama S, Sng N, Carretero J, Welner R,
Hayashi Y, Yamamoto M, Tan AJ, Yamaguchi N, Yasuda H, Li D, et al:
β-catenin contributes to lung tumor development induced by EGFR
mutations. Cancer Res. 74:5891–5902. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lilien J and Balsamo J: The regulation of
cadherin-mediated adhesion by tyrosine
phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell
Biol. 17:459–465. 2005. View Article : Google Scholar
|
|
107
|
Yang W, Xia Y, Ji H, Zheng Y, Liang J,
Huang W, Gao X, Aldape K and Lu Z: Nuclear PKM2 regulates β-catenin
transactivation upon EGFR activation. Nature. 480:118–122. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hu T and Li C: Convergence between
Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer. 9:2362010.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Arasada RR, Shilo K, Yamada T, Zhang J,
Yano S, Ghanem R, Wang W, Takeuchi S, Fukuda K, Katakami N, et al:
Notch3-dependent β-catenin signaling mediates EGFR TKI drug
persistence in EGFR mutant NSCLC. Nat Commun. 9:31982018.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yi Y, Li P, Huang Y, Chen D, Fan S, Wang
J, Yang M, Zeng S, Deng J, Lv X, et al: P21-activated kinase
2-mediated β-catenin signaling promotes cancer stemness and
osimertinib resistance in EGFR-mutant non-small-cell lung cancer.
Oncogene. 41:4318–4329. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang J, Zhou P, Wang X, Yu Y, Zhu G, Zheng
L, Xu Z, Li F, You Q, Yang Q, et al: Rab25 promotes erlotinib
resistance by activating the β1 integrin/AKT/β-catenin pathway in
NSCLC. Cell Prolif. 52:e125922019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Huang JQ, Duan LX, Liu QY, Li HF, Hu AP,
Song JW, Lin C, Huang B, Yao D, Peng B, et al: Serine-arginine
protein kinase 1 (SRPK1) promotes EGFR-TKI resistance by enhancing
GSK3β Ser9 autophosphorylation independent of its kinase activity
in non-small-cell lung cancer. Oncogene. 42:1233–1246. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Tripathi SK and Biswal BK: SOX9 promotes
epidermal growth factor receptor-tyrosine kinase inhibitor
resistance via targeting β-catenin and epithelial to mesenchymal
transition in lung cancer. Life Sci. 277:1196082021. View Article : Google Scholar
|
|
114
|
Liu B, Chen D, Chen S, Saber A and Haisma
H: Transcriptional activation of cyclin D1 via HER2/HER3
contributes to EGFR-TKI resistance in lung cancer. Biochem
Pharmacol. 178:1140952020. View Article : Google Scholar
|
|
115
|
Wang G, Li T, Wan Y and Li Q: MYC
expression and fatty acid oxidation in EGFR-TKI acquired
resistance. Drug Resist Updat. 72:1010192024. View Article : Google Scholar
|
|
116
|
Yochum ZA, Cades J, Wang H, Chatterjee S,
Simons BW, O'Brien JP, Khetarpal SK, Lemtiri-Chlieh G, Myers KV,
Huang EHB, et al: Targeting the EMT transcription factor TWIST1
overcomes resistance to EGFR inhibitors in EGFR-mutant
non-small-cell lung cancer. Oncogene. 38:656–670. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ding W, Yang P, Zhao X and Wang X, Liu H,
Su Q and Wang X, Li J, Gong Z, Zhang D and Wang X: Unraveling
EGFR-TKI resistance in lung cancer with high PD-L1 or TMB in
EGFR-sensitive mutations. Respir Res. 25:402024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li
K, Nishiyama A, Arai S, Yano S and Wang W: EGFR-TKI resistance
promotes immune escape in lung cancer via increased PD-L1
expression. Mol Cancer. 18:1652019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Huang Z, Wang J, Xia Z, Lv Q, Ruan Z and
Dai Y: Wnt/β-catenin pathway-mediated PD-L1 overexpression
facilitates the resistance of non-small cell lung cancer cells to
epidermal growth factor receptor tyrosine kinase inhibitors. Discov
Med. 36:2300–2308. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Du L, Lee JH, Jiang H, Wang C, Wang S,
Zheng Z, Shao F, Xu D, Xia Y, Li J, et al: β-Catenin induces
transcriptional expression of PD-L1 to promote glioblastoma immune
evasion. J Exp Med. 217:e201911152020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Hu J, He Q, Tian T, Chang N and Qian L:
Transmission of exosomal TPX2 promotes metastasis and resistance of
NSCLC cells to docetaxel. Onco Targets Ther. 16:197–210. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Jiang Y, Hu X, Pang M, Huang Y, Ren B, He
L and Jiang L: RRM2-mediated Wnt/β-catenin signaling pathway
activation in lung adenocarcinoma: A potential prognostic
biomarker. Oncol Lett. 26:4172023. View Article : Google Scholar
|
|
123
|
Yin H, Wang X, Zhang X, Zeng Y, Xu Q, Wang
W, Zhou F and Zhou Y: UBE2T promotes radiation resistance in
non-small cell lung cancer via inducing epithelial-mesenchymal
transition and the ubiquitination-mediated FOXO1 degradation.
Cancer Lett. 494:121–131. 2020. View Article : Google Scholar
|
|
124
|
Katoh M and Katoh M: WNT signaling and
cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Katoh M: Canonical and non-canonical WNT
signaling in cancer stem cells and their niches: Cellular
heterogeneity, omics reprogramming, targeted therapy and tumor
plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar
|
|
126
|
Katoh M and Katoh M: WNT signaling pathway
and stem cell signaling network. Clin Cancer Res. 13:4042–4045.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Katoh M and Katoh M: Molecular genetics
and targeted therapy of WNT-related human diseases (Review). Int J
Mol Med. 40:587–606. 2017.PubMed/NCBI
|
|
128
|
Jin J, Zhan P, Katoh M, Kobayashi SS, Phan
K, Qian H, Li H, Wang X, Wang X and Song Y; written on behalf of
the AME Lung Cancer Collaborative Group, : Prognostic significance
of β-catenin expression in patients with non-small cell lung
cancer: A meta-analysis. Transl Lung Cancer Res. 6:97–108. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kim Y, Ahn B, Yoon S, Lee G, Kim D, Chun
SM, Kim HR, Jang SJ and Hwang HS: An oncogenic CTNNB1 mutation is
predictive of post-operative recurrence-free survival in an
EGFR-mutant lung adenocarcinoma. PLoS One. 18:e02872562023.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Taniguchi Y, Tamiya A, Osuga M, Harada D,
Isa SI, Nakamura K, Mizumori Y, Shinohara T, Yanai H, Nakatomi K,
et al: Baseline genetic abnormalities and effectiveness of
osimertinib treatment in patients with chemotherapy-naïve
EGFR-mutated NSCLC based on performance status. BMC Pulm Med.
24:4072024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Malyla V, De Rubis G, Paudel KR,
Chellappan DK, Hansbro NG, Hansbro PM and Dua K: Berberine
nanostructures attenuate ß-catenin, a key component of epithelial
mesenchymal transition in lung adenocarcinoma. Naunyn Schmiedebergs
Arch Pharmacol. 396:3595–3603. 2023. View Article : Google Scholar
|
|
132
|
Ganesh S, Shui X, Craig KP, Park J, Wang
W, Brown BD and Abrams MT: RNAi-mediated β-catenin inhibition
promotes T cell infiltration and antitumor activity in combination
with immune checkpoint blockade. Mol Ther. 26:2567–2579. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Katagiri H, Yonezawa H, Shitamura S,
Sugawara A, Kawano T, Maemondo M and Nishiya N: A Wnt/β-catenin
signaling inhibitor, IMU1003, suppresses the emergence of
osimertinib-resistant colonies from gefitinib-resistant non-small
cell lung cancer cells. Biochem Biophys Res Commun. 645:24–29.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang
N, Peng C, Wu L, Tian H, Popper H, et al: Triptolide inhibits
epithelial-mesenchymal transition phenotype through the
p70S6k/GSK3/β-catenin signaling pathway in taxol-resistant human
lung adenocarcinoma. Transl Lung Cancer Res. 10:1007–1019. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tung CH, Wu JE, Huang MF, Wang WL, Wu YY,
Tsai YT, Hsu XR, Lin SH, Chen YL and Hong TM: Ubiquitin-specific
peptidase 5 facilitates cancer stem cell-like properties in lung
cancer by deubiquitinating β-catenin. Cancer Cell Int. 23:2072023.
View Article : Google Scholar
|
|
136
|
Luan H, Yan L, Zhao Y, Ding X and Cao L:
Fucoxanthin induces apoptosis and reverses epithelial-mesenchymal
transition via inhibiting Wnt/β-catenin pathway in lung
adenocarcinoma. Discov Oncol. 13:982022. View Article : Google Scholar
|
|
137
|
Zhang Y, Liu J, Yang G, Zou J, Tan Y, Xi
E, Geng Q and Wang Z: Asiaticoside inhibits growth and metastasis
in non-small cell lung cancer by disrupting EMT via Wnt/β-catenin
pathway. Environ Toxicol. 39:4859–4870. 2024. View Article : Google Scholar
|