Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2025 Volume 30 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 30 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review)

  • Authors:
    • Yatsu Lam
    • Jiaming Gu
    • Peihao Yin
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai 200060, P.R. China
    Copyright: © Lam et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 592
    |
    Published online on: October 14, 2025
       https://doi.org/10.3892/ol.2025.15338
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cellular senescence exerts context‑dependent effects in cancer, functioning as both a tumor suppressor and promoter. Tumor suppression occurs through p53/p16‑mediated cell cycle arrest, whereas tumor promotion is driven by the senescence‑associated secretory phenotype (SASP), which reshapes the tumor microenvironment. SASP, comprising inflammatory cytokines such as IL‑6 and IL‑8 alongside matrix‑remodeling factors, fosters immune evasion, angiogenesis and therapeutic resistance. Individual SASP components exert distinct effects on tumor progression across cancer types, which underscores the importance of context‑specific analyses. For instance, IL‑6 is associated with metastasis in breast cancer, whereas IL‑8 is notably associated with therapy resistance in lung cancer. This heterogeneity highlights the need for personalized strategies targeting specific SASP factors. The primary aim of the present review is to systematically dissect the context‑dependent mechanisms underlying cellular senescence in cancer including the heterogeneity of SASP and its cancer‑type‑specific roles, evaluate emerging senotherapeutic modalities, and discuss key challenges and future directions to guide precision oncology approaches. Recent advances in senotherapy, including senolytics such as dasatinib and quercetin, senomorphics and Traditional Chinese Medicine‑derived agents such as resveratrol, aim to eliminate pathological senescence while preserving its beneficial roles. Nonetheless, key challenges persist, particularly in biomarker identification and optimizing combinations with immunotherapy. Future research can leverage single‑cell technologies to dissect senescence heterogeneity, enabling the potential development of precision oncology approaches. The primary aim of the present review is to systematically dissect the context‑dependent mechanisms underlying cellular senescence in cancer‑including the heterogeneity of the SASP and its cancer‑type‑specific roles and evaluate emerging senotherapeutic modalities, and discuss key challenges and future directions to guide precision oncology approaches. To further advance this aim, future research can leverage single‑cell technologies to dissect senescence heterogeneity at the cellular and molecular levels; this will help distinguish protective senescent populations from pathogenic ones, thereby enabling the potential development of precision oncology approaches tailored to tumor‑specific senescence landscapes.
View Figures

Figure 1

Mechanism of cellular senescence. The
schematic illustrates the principal mechanisms driving cellular
senescence, including DNA damage, Oxidative stress, Telomere
shortening and Activation of cell cycle arrest pathways. The black
arrows in this figure indicate the causal and regulatory
relationships between the drivers of cellular senescence,
downstream signaling pathways and the senescence process: i) They
point from DNA damage, oxidative stress and telomere shortening to
the activation of cell cycle arrest pathways, visually showing how
these stressors trigger downstream signaling to induce cellular
senescence via stable cell cycle arrest. ii) They may also link the
senescence process to SASP, aligning with the document's statement
that SASP is a key phenotypic feature of senescent cells. SASP,
senescence-associated secretory phenotype.

Figure 2

Dual roles of SASP in the TME. The
schematic depicts the dual functions of the SASP within the TME,
demonstrating its capacity to both promote and inhibit tumor
progression. The black arrows in this figure visually distinguish
the two opposing roles of SASP in the TME: i) Arrows for
tumor-inhibiting effects point from the SASP to the recruitment of
cytotoxic immune cells for clearing premalignant cells, consistent
with the finding that SASP-derived IL-24 exerts tumor-suppressive
effects in HCC. ii) Arrows for tumor-promoting effects point from
the SASP to pro-tumor processes, such as recruiting myeloid-derived
suppressor cells or cancer-associated fibroblasts and driving EMT
or invasion, which are key pro-tumor mechanisms of SASP. SASP,
senescence-associated secretory phenotype; EMT,
epithelial-mesenchymal transition; TME, tumor microenvironment.

Figure 3

Interaction between senescent cells
and the TME. The schematic illustrates the complex crosstalk
between senescent cells and multiple components within the TME,
highlighting how senescent cells modulate immune responses, stromal
cells, and inflammatory signaling. The black arrows visualize
bidirectional crosstalk initiated by senescent cells via SASP: i)
Arrows for immune cell recruitment point from senescent cells to
distinct immune populations. ii) Arrows for immune response
suppression point from senescent cells to pathways that impair
anti-tumor immunity, aligning with the review's discussion on
senescence-mediated immunosuppression. Additionally, SASP signals
to fibroblasts, endothelial cells and inflammatory factord with
further driving pro-tumor effects and immunosuppression. SASP,
senescence-associated secretory phenotype; TME, tumor
microenvironment.

Figure 4

Biomarkers of cellular senescence.
The schematic summarizes the key biomarkers used to identify and
monitor senescent cells, including cell cycle inhibitors (p16INK4a,
p21WAF1), SA-β-gal and SAHF. For consistency with the text, the
‘INK4a’ in p16INK4a and ‘WAF1’ in p21WAF1 in this figure correspond
to the gene subtype (INK4a) or protein alias (WAF1) described in
the main text, with the same functional meaning. The black arrows
in this figure visually connect senescent cells to their key
biomarkers, as detailed in the review: i) Arrows for intracellular
biomarkers point from senescent cells to cell cycle inhibitors,
SA-β-gal and SAHF. These markers reflect cell-autonomous senescence
features and are critical for ‘tracking senescent cell
populations’. ii) An arrow for the secretory biomarker SASP points
from senescent cells to SASP, highlighting its origin from
senescent cells and aligning with the document's definition of SASP
as a ‘dynamic secreted phenotype’ that also mediates TME
interactions. SA-β-gal, senescence-associated β-galactosidase
activity; SAHF, senescence-associated heterochromatin foci; SASP,
senescence-associated secretory phenotype.

Figure 5

Mechanism of senolytic therapy. The
figure illustrates the mechanism of action of senolytic therapies,
demonstrating how these agents selectively target and eliminate
senescent cells to mitigate SASP-driven effects and remodel the
TME. The black arrows visually map the key steps of senolytic
therapy's mechanism, consistent with the review: i) Arrows for
‘selective targeting’ point from senolytic agents to senescent
cells, reflecting the agents' ability to specifically recognize
senescent cells. ii) Arrows for ‘cell elimination’ correspond to
Selective induction of apoptosis in senescent cells, which drives
the reduction of the burden of senescent cells-a core function of
senolytics as identified in the document. iii) Arrows for
‘therapeutic effects’ branch to two outcomes: Reduction of
SASP-driven harm and Improvement of the TME, ultimately leading to
enhancement of treatment efficacy-aligning with the review's view
that senolytics alleviate SASP-mediated tumor promotion. SASP,
senescence-associated secretory phenotype; TME, tumor
microenvironment.
View References

1 

Campisi J and d'Adda di Fagagna F: Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol. 8:729–740. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Schosserer M, Grillari J and Breitenbach M: The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 7:2782017. View Article : Google Scholar : PubMed/NCBI

3 

Nacarelli T, Liu P and Zhang R: Epigenetic basis of cellular senescence and its implications in aging. Genes (Basel). 8:3432017. View Article : Google Scholar : PubMed/NCBI

4 

Lai P, Liu L, Bancaro N, Troiani M, Calì B, Li Y, Chen J, Singh PK, Arzola RA, Attanasio G, et al: Mitochondrial DNA released by senescent tumor cells enhances PMN-MDSC-driven immunosuppression through the cGAS-STING pathway. Immunity. 58:811–825.e7. 2025. View Article : Google Scholar : PubMed/NCBI

5 

Chen D, Wang J, Li Y, Xu C, Fanzheng M, Zhang P and Liu L: LncRNA NEAT1 suppresses cellular senescence in hepatocellular carcinoma via KIF11-dependent repression of CDKN2A. Clin Transl Med. 13:e14182023. View Article : Google Scholar : PubMed/NCBI

6 

Liu N, Wu J, Deng E, Zhong J, Wei B, Cai T, Xie Z, Duan X, Fu S, Osei-Hwedieh DO, et al: Immunotherapy and senolytics in head and neck squamous cell carcinoma: Phase 2 trial results. Nat Med. 31:3047–3061. 2025. View Article : Google Scholar : PubMed/NCBI

7 

Zandi M, Behboudi E, Shojaei MR, Soltani S and Karami H: Letter to the editor regarding ‘An overview on serology and molecular tests for COVID-19: An important challenge of the current century (doi: 10.22034/iji.2021.88660.1894.)’. Iran J Immunol. 19:3372022.PubMed/NCBI

8 

Khosravi M, Behboudi E, Razavi-Nikoo H and Tabarraei A: Hepatitis B virus X protein induces expression changes of miR-21, miR-22, miR-122, miR-132, and miR-222 in Huh-7 cell line. Arch Razi Inst. 79:111–119. 2024.PubMed/NCBI

9 

Edalat F, Gholamzad A, Ghoreshi ZA, Dalfardi M, Golkar A, Behboudi E and Arefinia N: Prevalence and genetic diversity of HTLV-1 among blood donors in Jiroft, Iran: A comprehensive study. Virus Genes. 61:424–431. 2025. View Article : Google Scholar : PubMed/NCBI

10 

Hao X, Billings SD, Wu F, Stultz TW, Procop GW, Mirkin G and Vidimos AT: Dermatofibrosarcoma protuberans: Update on the diagnosis and treatment. J Clin Med. 9:17522020. View Article : Google Scholar : PubMed/NCBI

11 

Molina-Peña R, Tudon-Martinez JC and Aquines-Gutiérrez O: A mathematical model of average dynamics in a stem cell hierarchy suggests the combinatorial targeting of cancer stem cells and progenitor cells as a potential strategy against tumor growth. Cancers (Basel). 12:25902020. View Article : Google Scholar : PubMed/NCBI

12 

Xu L, Wang Y, Wang J, Zhai J, Ren L and Zhu G: Radiation-induced osteocyte senescence alters bone marrow mesenchymal stem cell differentiation potential via paracrine signaling. Int J Mol Sci. 22:93232021. View Article : Google Scholar : PubMed/NCBI

13 

Childs BG, Baker DJ, Kirkland JL, Campisi J and van Deursen JM: Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 15:1139–1153. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Rhinn M, Ritschka B and Keyes WM: Cellular senescence in development, regeneration and disease. Development. 146:dev1518372019. View Article : Google Scholar : PubMed/NCBI

15 

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, et al: Cellular senescence: Defining a path forward. Cell. 179:813–827. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Olivieri F, Prattichizzo F, Grillari J and Balistreri CR: Cellular senescence and inflammaging in Age-related diseases. Mediators Inflamm. 2018:90764852018. View Article : Google Scholar : PubMed/NCBI

17 

Di Micco R, Krizhanovsky V, Baker D and d'Adda di Fagagna F: Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 22:75–95. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A and Książek K: Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci. 77:213–229. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Ou HL, Hoffmann R, González-López C, Doherty GJ, Korkola JE and Muñoz-Espín D: Cellular senescence in cancer: From mechanisms to detection. Mol Oncol. 15:2634–2671. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Di Mitri D and Alimonti A: Non-Cell-Autonomous regulation of cellular senescence in cancer. Trends Cell Biol. 26:215–226. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Park SS, Choi YW, Kim JH, Kim HS and Park TJ: Senescent tumor cells: An overlooked adversary in the battle against cancer. Exp Mol Med. 53:1834–1841. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Saleh T, Tyutynuk-Massey L, Cudjoe EK Jr, Idowu MO, Landry JW and Gewirtz DA: Non-cell autonomous effects of the Senescence-associated secretory phenotype in cancer therapy. Front Oncol. 8:1642018. View Article : Google Scholar : PubMed/NCBI

23 

Herranz N and Gil J: Mechanisms and functions of cellular senescence. J Clin Invest. 128:1238–1246. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Rao SG and Jackson JG: SASP: Tumor suppressor or promoter? Yes! Trends Cancer. 2:676–687. 2016. View Article : Google Scholar : PubMed/NCBI

25 

He Y, Long K, Du B, Liao W, Zou R, Su J, Luo J, Shi Z and Wang L: The cellular senescence score (CSS) is a comprehensive biomarker to predict prognosis and assess senescence and immune characteristics in hepatocellular carcinoma (HCC). Biochem Biophys Res Commun. 739:1505762024. View Article : Google Scholar : PubMed/NCBI

26 

Ru K, Cui L, Wu C, Tan XX, An WT, Wu Q, Ma YT, Hao Y, Xiao X, Bai J, et al: Exploring the molecular and immune landscape of cellular senescence in lung adenocarcinoma. Front Immunol. 15:13477702024. View Article : Google Scholar : PubMed/NCBI

27 

Geng H, Huang C, Xu L, Zhou Y, Dong Z, Zhong Y, Li Q, Yang C, Huang S, Liao W, et al: Targeting cellular senescence as a therapeutic vulnerability in gastric cancer. Life Sci. 346:1226320241

28 

Liu H, Zhao H and Sun Y: Tumor microenvironment and cellular senescence: Understanding therapeutic resistance and harnessing strategies. Semin Cancer Biol. 86:769–781. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Higashiguchi M, Murakami H, Akita H, Kobayashi S, Takahama S, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Gotoh K, et al: The impact of cellular senescence and senescence-associated secretory phenotype in cancer-associated fibroblasts on the malignancy of pancreatic cancer. Oncol Rep. 49:982023. View Article : Google Scholar : PubMed/NCBI

30 

Liu H, Lv R, Song F, Yang Y, Zhang F, Xin L, Zhang P, Zhang Q and Ding C: A near-IR ratiometric fluorescent probe for the precise tracking of senescence: A multidimensional sensing assay of biomarkers in cell senescence pathways. Chem Sci. 15:5681–5693. 2024. View Article : Google Scholar : PubMed/NCBI

31 

Lin W, Wang X, Wang Z, Shao F, Yang Y, Cao Z, Feng X, Gao Y and He J: Comprehensive analysis uncovers prognostic and immunogenic characteristics of cellular senescence for lung adenocarcinoma. Front Cell Dev Biol. 9:7804612021. View Article : Google Scholar : PubMed/NCBI

32 

Zhang W, Li Y, Lyu J, Shi F, Kong Y, Sheng C, Wang S and Wang Q: An aging-related signature predicts favorable outcome and immunogenicity in lung adenocarcinoma. Cancer Sci. 113:891–903. 2022. View Article : Google Scholar : PubMed/NCBI

33 

Pérez-Mancera PA, Young AR and Narita M: Inside and out: The activities of senescence in cancer. Nat Rev Cancer. 14:547–558. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Yang Y, Cai Q, Zhu M, Rong J, Feng X and Wang K: Exploring the Double-edged role of cellular senescence in chronic liver disease for new treatment approaches. Life Sci. 373:1236782025. View Article : Google Scholar : PubMed/NCBI

35 

Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, George J, Danson S and Kirkland JL: Senescence and cancer: A review of clinical implications of senescence and senotherapies. Cancers (Basel). 12:21342020. View Article : Google Scholar : PubMed/NCBI

36 

Gu Y, Xu T, Fang Y, Shao J, Hu T, Wu X, Shen H, Xu Y, Zhang J, Song Y, et al: CBX4 counteracts cellular senescence to desensitize gastric cancer cells to chemotherapy by inducing YAP1 SUMOylation. Drug Resist Updat. 77:1011362024. View Article : Google Scholar : PubMed/NCBI

37 

Liang X, Lin X, Lin Z, Lin W, Peng Z and Wei S: Genes associated with cellular senescence favor melanoma prognosis by stimulating immune responses in tumor microenvironment. Comput Biol Med. 158:1068502023. View Article : Google Scholar : PubMed/NCBI

38 

Zhao Q, Hu W, Xu J, Zeng S, Xi X, Chen J, Wu X, Hu S and Zhong T: Comprehensive Pan-cancer analysis of senescence with cancer prognosis and immunotherapy. Front Mol Biosci. 9:9192742022. View Article : Google Scholar : PubMed/NCBI

39 

Fan Y, Gao Z, Li X, Wei S and Yuan K: Gene expression and prognosis of x-ray repair cross-complementing family members in non-small cell lung cancer. Bioengineered. 12:6210–6228. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Mavrogonatou E, Pratsinis H and Kletsas D: The role of senescence in cancer development. Semin Cancer Biol. 62:182–191. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Liu H, Xu Q, Wufuer H, Li Z, Sun R, Jiang Z, Dou X, Fu Q, Campisi J and Sun Y: Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy. Aging Cell. 23:e139212024. View Article : Google Scholar : PubMed/NCBI

42 

Sun Y, Coppé JP and Lam EW: Cellular senescence: The sought or the unwanted? Trends Mol Med. 24:871–885. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Chen Y, Zhou T, Zhou R, Sun W, Li Y, Zhou Q, Xu D, Zhao Y, Hu P, Liang J, et al: TRAF7 knockdown induces cellular senescence and synergizes with lomustine to inhibit glioma progression and recurrence. J Exp Clin Cancer Res. 44:1122025. View Article : Google Scholar : PubMed/NCBI

44 

Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M and Alimonti A: Cellular senescence: Aging, cancer, and injury. Physiol Rev. 99:1047–1078. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Kamal M, Shanmuganathan M, Kroezen Z, Joanisse S, Britz-McKibbin P and Parise G: Senescent myoblasts exhibit an altered exometabolome that is linked to senescence-associated secretory phenotype signaling. Am J Physiol Cell Physiol. 328:C440–C451. 2025. View Article : Google Scholar : PubMed/NCBI

46 

Lecot P, Alimirah F, Desprez PY, Campisi J and Wiley C: Context-dependent effects of cellular senescence in cancer development. Br J Cancer. 114:1180–1184. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Lian J, Yue Y, Yu W and Zhang Y: Immunosenescence: A key player in cancer development. J Hematol Oncol. 13:1512020. View Article : Google Scholar : PubMed/NCBI

48 

Ruhland MK and Alspach E: Senescence and immunoregulation in the tumor microenvironment. Front Cell Dev Biol. 9:7540692021. View Article : Google Scholar : PubMed/NCBI

49 

Lau L and David G: Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opin Ther Targets. 23:1041–1051. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Gonzalez-Meljem JM, Apps JR, Fraser HC and Martinez-Barbera JP: Paracrine roles of cellular senescence in promoting tumourigenesis. Br J Cancer. 118:1283–1288. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Wang G, Cheng X, Zhang J, Liao Y, Jia Y and Qing C: Possibility of inducing tumor cell senescence during therapy. Oncol Lett. 22:4962021. View Article : Google Scholar : PubMed/NCBI

52 

Maggiorani D, Le O, Lisi V, Landais S, Moquin-Beaudry G, Lavallée VP, Decaluwe H and Beauséjour C: Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat Commun. 15:24352024. View Article : Google Scholar : PubMed/NCBI

53 

Lasry A and Ben-Neriah Y: Senescence-associated inflammatory responses: Aging and cancer perspectives. Trends Immunol. 36:217–228. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Murray KO, Mahoney SA, Ludwig KR, Miyamoto-Ditmon JH, VanDongen NS, Banskota N, Herman AB, Seals DR, Mankowski RT, Rossman MJ and Clayton ZS: Intermittent supplementation with fisetin improves physical function and decreases cellular senescence in skeletal muscle with aging: A comparison to genetic clearance of senescent cells and synthetic senolytic approaches. Aging Cell. 24:e701142025. View Article : Google Scholar : PubMed/NCBI

55 

Ayoub M, Abou Jaoude C, Ayoub M, Hamade A and Rima M: The immune system and cellular senescence: A complex interplay in aging and disease. Immunology. Sep 12–2025.doi: 10.1111/imm.70036 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

56 

Zhang W, Zhang K, Shi J, Qiu H, Kan C, Ma Y, Hou N, Han F and Sun X: The impact of the senescent microenvironment on tumorigenesis: Insights for cancer therapy. Aging Cell. 23:e141822024. View Article : Google Scholar : PubMed/NCBI

57 

Kirkland JL: Tumor dormancy and disease recurrence. Cancer Metastasis Rev. 42:9–12. 2023. View Article : Google Scholar : PubMed/NCBI

58 

de Paula B, Kieran R, Koh SSY, Crocamo S, Abdelhay E and Muñoz-Espín D: Targeting senescence as a therapeutic opportunity for Triple-negative breast cancer. Mol Cancer Ther. 22:583–598. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Lee S and Lee JS: Cellular senescence: A promising strategy for cancer therapy. BMB Rep. 52:35–41. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Wang C, Hao X and Zhang R: Targeting cellular senescence to combat cancer and ageing. Mol Oncol. 16:3319–3332. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Battram AM, Bachiller M and Martín-Antonio B: Senescence in the development and response to cancer with immunotherapy: A Double-edged sword. Int J Mol Sci. 21:43462020. View Article : Google Scholar : PubMed/NCBI

62 

Fan DN and Schmitt CA: Detecting markers of Therapy-induced senescence in cancer cells. Methods Mol Biol. 1534:41–52. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Ruhland MK, Coussens LM and Stewart SA: Senescence and cancer: An evolving inflammatory paradox. Biochim Biophys Acta. 1865:14–22. 2016.PubMed/NCBI

64 

Song S, Lam EW, Tchkonia T, Kirkland JL and Sun Y: Senescent cells: Emerging targets for human aging and Age-related diseases. Trends Biochem Sci. 45:578–592. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Paleari L: Personalized assessment for cancer prevention, detection, and treatment. Int J Mol Sci. 25:81402024. View Article : Google Scholar : PubMed/NCBI

66 

Ohtani N: The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm Regen. 42:112022. View Article : Google Scholar : PubMed/NCBI

67 

Kaur J and Farr JN: Cellular senescence in Age-related disorders. Transl Res. 226:96–104. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Hughes BK, Davis A, Milligan D, Wallis R, Mossa F, Philpott MP, Wainwright LJ, Gunn DA and Bishop CL: SenPred: A single-cell RNA sequencing-based machine learning pipeline to classify deeply senescent dermal fibroblast cells for the detection of an in vivo senescent cell burden. Genome Med. 17:22025. View Article : Google Scholar : PubMed/NCBI

69 

Uyar B, Palmer D, Kowald A, Murua Escobar H, Barrantes I, Möller S, Akalin A and Fuellen G: Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev. 64:1011562020. View Article : Google Scholar : PubMed/NCBI

70 

Sprenger HG, MacVicar T, Bahat A, Fiedler KU, Hermans S, Ehrentraut D, Ried K, Milenkovic D, Bonekamp N, Larsson NG, et al: Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity. Nat Metab. 3:636–650. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Liang A, Kong Y, Chen Z, Qiu Y, Wu Y, Zhu X and Li Z: Advancements and applications of single-cell multi-omics techniques in cancer research: Unveiling heterogeneity and paving the way for precision therapeutics. Biochem Biophys Rep. 37:1015892023.PubMed/NCBI

72 

Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A, et al: A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 21:912020. View Article : Google Scholar : PubMed/NCBI

73 

Wu L, Xie X, Liang T, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, et al: Integrated Multi-omics for novel aging biomarkers and antiaging targets. Biomolecules. 12:392021. View Article : Google Scholar : PubMed/NCBI

74 

Aird KM and Zhang R: Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Lett. 356:204–210. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Yang K, Li X and Xie K: Senescence program and its reprogramming in pancreatic premalignancy. Cell Death Dis. 14:5282023. View Article : Google Scholar : PubMed/NCBI

76 

Hwang HJ, Jung SH, Lee HC, Han NK, Bae IH, Lee M, Han YH, Kang YS, Lee SJ, Park HJ, et al: Identification of novel therapeutic targets in the secretome of ionizing radiation-induced senescent tumor cells. Oncol Rep. 35:841–850. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Matjusaitis M, Chin G, Sarnoski EA and Stolzing A: Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 29:1–12. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Ziglari T, Calistri NL, Finan JM, Derrick DS, Nakayasu ES, Burnet MC, Kyle JE, Hoare M, Heiser LM and Pucci F: Senescent Cell-derived extracellular vesicles inhibit cancer recurrence by coordinating immune surveillance. Cancer Res. 85:859–874. 2025. View Article : Google Scholar : PubMed/NCBI

79 

Davalli P, Mitic T, Caporali A, Lauriola A and D'Arca D: ROS, cell senescence, and novel molecular mechanisms in aging and Age-related diseases. Oxid Med Cell Longev. 2016:35651272016. View Article : Google Scholar : PubMed/NCBI

80 

Amor C, Fernández-Maestre I, Chowdhury S, Ho YJ, Nadella S, Graham C, Carrasco SE, Nnuji-John E, Feucht J, Hinterleitner C, et al: Prophylactic and Long-lasting efficacy of senolytic CAR T cells against Age-related metabolic dysfunction. Nat Aging. 4:336–349. 2024. View Article : Google Scholar : PubMed/NCBI

81 

Alqahtani S, Alqahtani T, Venkatesan K, Sivadasan D, Ahmed R, Sirag N, Elfadil H, Abdullah Mohamed H, T A H, Elsayed Ahmed R, et al: SASP modulation for cellular rejuvenation and tissue homeostasis: Therapeutic strategies and molecular insights. Cells. 14:6082025. View Article : Google Scholar : PubMed/NCBI

82 

Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW: A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Wang S, Xing Y, Wang R and Jin Z: Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation. J Ethnopharmacol. 319:1173472024. View Article : Google Scholar : PubMed/NCBI

84 

Wu M, Wu B, Huang X, Wang Z, Zhu M, Zhu Y, Yu L and Liu J: Inhibition of the FEN1-PBX1 axis elicits cellular senescence in breast cancer via the increased intracellular reactive oxygen species levels. J Transl Med. 23:2482025. View Article : Google Scholar : PubMed/NCBI

85 

Wang K, Jiang X, Jiang Y, Liu J, Du Y, Zhang Z, Li Y, Zhao X, Li J and Zhang R: EZH2-H3K27me3-mediated silencing of mir-139-5p inhibits cellular senescence in hepatocellular carcinoma by activating TOP2A. J Exp Clin Cancer Res. 42:3202023. View Article : Google Scholar : PubMed/NCBI

86 

Yuan W, Xu Y, Wu Z, Huang Y, Meng L, Dai S, Ying S, Chen Z and Xu A: Cellular senescence-related genes: Predicting prognosis in hepatocellular carcinoma. BMC Cancer. 23:10012023. View Article : Google Scholar : PubMed/NCBI

87 

Zhang C, Wang X and Zhang C: Icaritin inhibits CDK2 expression and activity to interfere with tumor progression. iScience. 25:1049912022. View Article : Google Scholar : PubMed/NCBI

88 

Sieben CJ, Sturmlechner I, van de Sluis B and van Deursen JM: Two-Step senescence-focused cancer therapies. Trends Cell Biol. 28:723–737. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Sikora E, Bielak-Zmijewska A and Mosieniak G: Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Res Rev. 55:1009412019. View Article : Google Scholar : PubMed/NCBI

90 

Short S, Fielder E, Miwa S and von Zglinicki T: Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine. 41:683–692. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Yang N and Sen P: The senescent cell epigenome. Aging (Albany NY). 10:3590–3609. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Choi YW, Kim YH, Oh SY, Suh KW, Kim YS, Lee GY, Yoon JE, Park SS, Lee YK, Park YJ, et al: Senescent tumor cells build a cytokine shield in colorectal cancer. Adv Sci (Weinh). 8:20024972021. View Article : Google Scholar : PubMed/NCBI

93 

Vilgelm AE, Johnson CA, Prasad N, Yang J, Chen SC, Ayers GD, Pawlikowski JS, Raman D, Sosman JA, Kelley M, et al: Connecting the dots: Therapy-induced senescence and a Tumor-suppressive immune microenvironment. J Natl Cancer Inst. 108:djv4062015.PubMed/NCBI

94 

Aimono Y, Endo K and Sekiya I: Cellular senescence contributes to spontaneous repair of the rat meniscus. Aging Cell. 24:e143852025. View Article : Google Scholar : PubMed/NCBI

95 

Ohtani N: The role of SASP in tumor microenvironment. Clin Calcium. 27:835–843. 2017.(In Japanese). PubMed/NCBI

96 

Hatzikirou H, Alfonso JC, Mühle S, Stern C, Weiss S and Meyer-Hermann M: Cancer therapeutic potential of combinatorial immuno- and vasomodulatory interventions. J R Soc Interface. 12:201504392015. View Article : Google Scholar : PubMed/NCBI

97 

Rebbaa A: Targeting senescence pathways to reverse drug resistance in cancer. Cancer Lett. 219:1–13. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Cuollo L, Antonangeli F, Santoni A and Soriani A: The Senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and Age-related diseases. Biology (Basel). 9:4852020.PubMed/NCBI

99 

Chen J, Wang J, Lucas M, Liu H, Wheeler C, Johnson K, Woodard K, Chang C, Frey G, Boyle WJ and Short JM: Abstract B022: Targeting senescence cells in cancer and aging by conditionally active biologic therapeutics In: Proceedings of the AACR Special Conference: Aging and Cancer; 2022 Nov 17–20, San Diego, CA, AACR, Philadelphia, PA. Cancer Res. 83 (2 Suppl_1):Abstract nr B022. 2022.

100 

Butt AQ and Mills KH: Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene. 33:4623–4631. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Ivey JW, Bonakdar M, Kanitkar A, Davalos RV and Verbridge SS: Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett. 380:330–339. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Papismadov N, Gal H and Krizhanovsky V: The anti-aging promise of p21. Cell Cycle. 16:1997–1998. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Gonzalez-Meljem JM and Martinez-Barbera JP: Adamantinomatous craniopharyngioma as a model to understand paracrine and Senescence-induced tumourigenesis. Cell Mol Life Sci. 78:4521–4544. 2021. View Article : Google Scholar : PubMed/NCBI

104 

He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Janelle V, Neault M, Lebel MÈ, De Sousa DM, Boulet S, Durrieu L, Carli C, Muzac C, Lemieux S, Labrecque N, et al: p16INK4a regulates cellular senescence in PD-1-expressing human T cells. Front Immunol. 12:6985652021. View Article : Google Scholar : PubMed/NCBI

106 

Park SS, Lee YK, Kim YH, Park SH, Kang HY, Kim JC, Kim DJ, Lim SB, Yoon G, Kim JH, et al: Distribution and impact of p16INK4A+ senescent cells in elderly tissues: A focus on senescent immune cell and epithelial dysfunction. Exp Mol Med. 56:2631–2641. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, et al: Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 530:184–189. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Courtois-Cox S, Jones SL and Cichowski K: Many roads lead to Oncogene-induced senescence. Oncogene. 27:2801–2809. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Angelini PD, Zacarias Fluck MF, Pedersen K, Parra-Palau JL, Guiu M, Bernadó Morales C, Vicario R, Luque-García A, Navalpotro NP, Giralt J, et al: Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence. Cancer Res. 73:450–458. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Zhang B, Lam EW and Sun Y: Senescent cells: A new Achilles' heel to exploit for cancer medicine? Aging Cell. 18:e128752019. View Article : Google Scholar : PubMed/NCBI

111 

Du PY, Gandhi A, Bawa M and Gromala J: The ageing immune system as a potential target of senolytics. Oxf Open Immunol. 4:iqad0042023. View Article : Google Scholar : PubMed/NCBI

112 

Saleh T, Tyutyunyk-Massey L and Gewirtz DA: Tumor cell escape from Therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res. 79:1044–1046. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Salam R, Saliou A, Bielle F, Bertrand M, Antoniewski C, Carpentier C, Alentorn A, Capelle L, Sanson M, Huillard E, et al: Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat Commun. 14:4412023. View Article : Google Scholar : PubMed/NCBI

114 

Zheng J, Liu Y, Lau YL and Tu W: γδ-T cells: An unpolished sword in human Anti-infection immunity. Cell Mol Immunol. 10:50–57. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Wang W, Luo HS and Yu BP: Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancer and precancerous lesions. World J Gastroenterol. 10:177–181. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, et al: hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 90:785–795. 1997. View Article : Google Scholar : PubMed/NCBI

117 

Saleh S, Lam AK and Ho YH: Real-time PCR quantification of human telomerase reverse transcriptase (hTERT) in colorectal cancer. Pathology. 40:25–30. 2008. View Article : Google Scholar : PubMed/NCBI

118 

Eastley N, Ottolini B, Garrido C, Shaw JA, McCulloch TA, Ashford RU and Royle NJ: Telomere maintenance in soft tissue sarcomas. J Clin Pathol. 70:371–377. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Bojko A, Czarnecka-Herok J, Charzynska A, Dabrowski M and Sikora E: Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells. 8:15012019. View Article : Google Scholar : PubMed/NCBI

120 

Ganesan K and Xu B: Telomerase inhibitors from natural products and their anticancer potential. Int J Mol Sci. 19:132017. View Article : Google Scholar : PubMed/NCBI

121 

Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A and Kunnumakkara AB: Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res. 36:1854–1883. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Shay JW and Wright WE: Telomeres and telomerase: Three decades of progress. Nat Rev Genet. 20:299–309. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Saretzki G: Role of telomeres and telomerase in cancer and aging. Int J Mol Sci. 24:99322023. View Article : Google Scholar : PubMed/NCBI

124 

Bollmann FM: Targeting ALT: The role of alternative lengthening of telomeres in pathogenesis and prevention of cancer. Cancer Treat Rev. 33:704–709. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lam Y, Gu J and Yin P: Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review). Oncol Lett 30: 592, 2025.
APA
Lam, Y., Gu, J., & Yin, P. (2025). Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review). Oncology Letters, 30, 592. https://doi.org/10.3892/ol.2025.15338
MLA
Lam, Y., Gu, J., Yin, P."Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review)". Oncology Letters 30.6 (2025): 592.
Chicago
Lam, Y., Gu, J., Yin, P."Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review)". Oncology Letters 30, no. 6 (2025): 592. https://doi.org/10.3892/ol.2025.15338
Copy and paste a formatted citation
x
Spandidos Publications style
Lam Y, Gu J and Yin P: Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review). Oncol Lett 30: 592, 2025.
APA
Lam, Y., Gu, J., & Yin, P. (2025). Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review). Oncology Letters, 30, 592. https://doi.org/10.3892/ol.2025.15338
MLA
Lam, Y., Gu, J., Yin, P."Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review)". Oncology Letters 30.6 (2025): 592.
Chicago
Lam, Y., Gu, J., Yin, P."Cellular senescence in cancer: Unveiling dual roles, tumor microenvironment dynamics and therapeutic innovations (Review)". Oncology Letters 30, no. 6 (2025): 592. https://doi.org/10.3892/ol.2025.15338
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team