|
1
|
Galassi C, Chan TA, Vitale I and Galluzzi
L: The hallmarks of cancer immune evasion. Cancer Cell.
42:1825–1863. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Paul S, Ghosh S and Kumar S: Tumor
glycolysis, an essential sweet tooth of tumor cells. Semin Cancer
Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Guo D, Tong Y, Jiang X, Meng Y, Jiang H,
Du L, Wu Q, Li S, Luo S, Li M, et al: Aerobic glycolysis promotes
tumor immune evasion by hexokinase2-mediated phosphorylation of
IκBα. Cell Metab. 34:1312–1324. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu L, Jin Y, Zhao X, Tang K, Zhao Y, Tong
L, Yu X, Xiong K, Luo C, Zhu J, et al: Tumor aerobic glycolysis
confers immune evasion through modulating sensitivity to T
cell-mediated bystander killing via TNF-α. Cell Metab.
35:1580–1596. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Qing S and Shen Z: High expression of
hexokinase 2 promotes proliferation, migration and invasion of
colorectal cancer cells by activating the JAK/STAT pathway and
regulating tumor immune microenvironment. Nan Fang Yi Ke Da Xue Xue
Bao. 45:542–553. 2025.(In Chinese). PubMed/NCBI
|
|
6
|
Li C, Tang Y, Zhang R, Shi L, Chen J,
Zhang P, Zhang N and Li W: Inhibiting glycolysis facilitated
checkpoint blockade therapy for triple-negative breast cancer.
Discov Oncol. 16:5502025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cheng M, Wang B, Duan L, Jin Y, Zhang W
and Li N: HOTAIR knockdown increases the sensitivity of
hepatocellular carcinoma cells to sorafenib by disrupting
miR-145-5p/HK2 axis-mediated mitochondrial function and glycolysis.
Front Biosci (Landmark Ed). 30:373682025. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cui R, Wang G, Liu F, Wang Y, Zhao Z,
Mutailipu M, Mu H, Jiang X, Le W, Yang L and Chen B:
Neurturin-induced activation of GFRA2-RET axis potentiates
pancreatic cancer glycolysis via phosphorylated hexokinase 2.
Cancer Lett. 621:2175832025. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lyu SI, Simon AG, Jung JO, Fretter C,
SchrÖder W, Bruns CJ, Schmidt T, Quaas A and Knipper K: Hexokinase
2 as an independent risk factor for worse patient survival in
esophageal adenocarcinoma and as a potential therapeutic target
protein: A retrospective, single-center cohort study. Oncol Lett.
28:4952024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Guo W, Kuang Y, Wu J, Wen D, Zhou A, Liao
Y, Song H, Xu D, Wang T, Jing B, et al: Hexokinase 2 depletion
confers sensitization to metformin and inhibits glycolysis in lung
squamous cell carcinoma. Front Oncol. 10:522020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jin Z, Gu J, Xin X, Li Y and Wang H:
Expression of hexokinase 2 in epithelial ovarian tumors and its
clinical significance in serous ovarian cancer. Eur J Gynaecol
Oncol. 35:519–524. 2014.PubMed/NCBI
|
|
12
|
Katagiri M, Karasawa H, Takagi K, Nakayama
S, Yabuuchi S, Fujishima F, Naitoh T, Watanabe M, Suzuki T, Unno M
and Sasano H: Hexokinase 2 in colorectal cancer: A potent
prognostic factor associated with glycolysis, proliferation and
migration. Histol Histopathol. 32:351–360. 2017.PubMed/NCBI
|
|
13
|
Yoshino H, Enokida H, Itesako T, Kojima S,
Kinoshita T, Tatarano S, Chiyomaru T, Nakagawa M and Seki N:
Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in
renal cell carcinoma. Cancer Sci. 104:1567–1574. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Botzer LE, Maman S, Sagi-Assif O, Meshel
T, Nevo I, Yron I and Witz IP: Hexokinase 2 is a determinant of
neuroblastoma metastasis. Br J Cancer. 114:759–766. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gao H, Zhou Y and Chen X: Tregs and
platelets play synergistic roles in tumor immune escape and
inflammatory diseases. Crit Rev Immunol. 42:59–69. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liu Y, Wu K, Shi L, Xiang F, Tao K and
Wang G: Prognostic significance of the metabolic marker
hexokinase-2 in various solid tumors: A meta-analysis. PLoS One.
11:e01662302016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kwee SA, Hernandez B, Chan O and Wong L:
Choline kinase alpha and hexokinase-2 protein expression in
hepatocellular carcinoma: Association with survival. PLoS One.
7:e465912012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Suh DH, Kim MA, Kim H, Kim MK, Kim HS,
Chung HH, Kim YB and Song YS: Association of overexpression of
hexokinase II with chemoresistance in epithelial ovarian cancer.
Clin Exp Med. 14:345–353. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang XT, Xie L, Hu YT, Zhao YY, Wang RY,
Yan Y, Zhu XZ and Liu LL: T. pallidum achieves immune evasion by
blocking autophagic flux in microglia through hexokinase 2. Microb
Pathog. 199:1072162025. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lin J, Fang W, Xiang Z, Wang Q, Cheng H,
Chen S, Fang J, Liu J, Wang Q, Lu Z and Ma L: Glycolytic enzyme HK2
promotes PD-L1 expression and breast cancer cell immune evasion.
Front Immunol. 14:11899532023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang L, Jiang C, Zhong Y, Sun K, Jing H,
Song J, Xie J, Zhou Y, Tian M, Zhang C, et al: STING is a
cell-intrinsic metabolic checkpoint restricting aerobic glycolysis
by targeting HK2. Nat Cell Biol. 25:1208–1222. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li J, Xu S, Zhan Y, Lv X, Sun Z, Man L,
Yang D, Sun Y and Ding S: CircRUNX1 enhances the Warburg effect and
immune evasion in non-small cell lung cancer through the
miR-145/HK2 pathway. Cancer Lett. 28:2176392025. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li R, Mei S, Ding Q, Wang Q, Yu L and Zi
F: A pan-cancer analysis of the role of hexokinase II (HK2) in
human tumors. Sci Rep. 12:188072022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ho PC, Bihuniak JD, Macintyre AN, Staron
M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, et
al: Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T
cell responses. Cell. 162:1217–1228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chang CH, Qiu J, O'Sullivan D, Buck MD,
Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ,
et al: Metabolic competition in the tumor microenvironment is a
driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shi ZY, Yang C, Lu LY, Lin CX, Liang S, Li
G, Zhou HM and Zheng JM: Inhibition of hexokinase 2 with 3-BrPA
promotes MDSCs differentiation and immunosuppressive function. Cell
Immunol. 385:1046882023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
İpek ӦS, Sucu BO, Selvi S, Alkan FK,
Tiryaki B, Alkan HK, Sayyah E, Tolu İ, Güzel M, Durdağı S, et al:
Anti-cancer efficacy of novel lonidamine derivatives: Design,
synthesis, in vitro, in vivo, and computational studies targeting
hexokinase-2. Eur J Med Chem. 296:1178902025. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gu QL, Zhang Y, Fu XM, Lu ZL, Yu Y, Chen
G, Ma R, Kou W and Lan YM: Toxicity and metabolism of
3-bromopyruvate in Caenorhabditis elegans. J Zhejiang Univ Sci B.
21:77–86. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pajak B, Siwiak E, Sołtyka M, Priebe A,
Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R,
Domoradzki T and Priebe W: 2-Deoxy-d-glucose and its analogs: From
diagnostic to therapeutic agents. Int J Mol Sci. 21:2342019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rho H, Terry AR, Chronis C and Hay N:
Hexokinase 2-mediated gene expression via histone lactylation is
required for hepatic stellate cell activation and liver fibrosis.
Cell Metab. 35:1406–1423. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Patra KC, Wang Q, Bhaskar PT, Miller L,
Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al:
Hexokinase 2 is required for tumor initiation and maintenance and
its systemic deletion is therapeutic in mouse models of cancer.
Cancer Cell. 24:213–228. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu Y, Li M, Zhang Y, Wu C, Yang K, Gao S,
Zheng M, Li X, Li H and Chen L: Structure based discovery of novel
hexokinase 2 inhibitors. Bioorg Chem. 96:1036092020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bustamante E and Pedersen PL:
Mitochondrial hexokinase of rat hepatoma cells in culture:
Solubilization and kinetic properties. Biochemistry. 19:4972–4977.
1980. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Deberardinis RJ, Sayed N, Ditsworth D and
Thompson CB: Brick by brick: Metabolism and tumor cell growth. Curr
Opin Genet Dev. 18:54–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ganapathy-Kanniappan S and Geschwind JF:
Tumor glycolysis as a target for cancer therapy: Progress and
prospects. Mol Cancer. 12:1522013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nawaz MH, Ferreira JC, Nedyalkova L, Zhu
H, Carrasco-López C, Kirmizialtin S and Rabeh WM: The catalytic
inactivation of the N-half of human hexokinase 2 and structural and
biochemical characterization of its mitochondrial conformation.
Biosci Rep. 38:BSR201716662018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lee HJ, Li CF, Ruan D, He J, Montal ED,
Lorenz S, Girnun GD and Chan CH: Non-proteolytic ubiquitination of
Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem
cell expansion. Nat Commun. 10:26252019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Panpan SI, Wei GE, Kaiming WU and Zhang R:
O-GlcNAcylation of hexokinase 2 modulates mitochondrial dynamics
and enhances the progression of lung cancer. Mol Cell Biochem.
480:2633–2643. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang C, Chen B, Wang X, Xu J, Sun L, Wang
D, Zhao Y, Zhou C, Gao Q, Wang Q, et al: Gastric cancer mesenchymal
stem cells via the CXCR2/HK2/PD-L1 pathway mediate
immunosuppression. Gastric Cancer. 26:691–707. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ranjbar A, Soltanshahi M, Taghiloo S and
Asgarian-Omran H: Glucose metabolism in acute myeloid leukemia cell
line is regulated via combinational PI3K/AKT/mTOR pathway
inhibitors. Iran J Pharm Res. 22:e1405072023.PubMed/NCBI
|
|
41
|
Collins NB, Al Abosy R, Milsler BC, Bi K,
Zhao Q, Quigley M, Ishizuka JJ, Yates KB, Pope HW, Manguso R, et
al: PI3K activation allows immune evasion by promoting an
inhibitory myeloid tumor microenvironment. J Immunother Cancer.
10:e0034022022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen
Y, Liu H, Jiang J, Yang Y, Zheng F and Wu B: Aerobic glycolysis
enhances HBx-initiated hepatocellular carcinogenesis via
NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 41:3292022.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kawasaki Y, Sato K, Mashima K, Nakano H,
Ikeda T, Umino K, Morita K, Izawa J, Takayama N, Hayakawa H, et al:
Mesenchymal stromal cells inhibit aerobic glycolysis in activated t
cells by negatively regulating hexokinase II activity through
PD-1/PD-L1 interaction. Transplant Cell Ther. 27:231.e231–231.e238.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lynch JT, Polanska UM, Delpuech O, Hancox
U, Trinidad AG, Michopoulos F, Lenaghan C, McEwen R, Bradford J,
Polanski R, et al: Inhibiting PI3Kβ with AZD8186 regulates key
metabolic pathways in PTEN-null tumors. Clin Cancer Res.
23:7584–7595. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ji P, Bäumer N, Yin T, Diederichs S, Zhang
F, Beger C, Welte K, Fulda S, Berdel WE, Serve H, et al: DNA damage
response involves modulation of Ku70 and Rb functions by cyclin A1
in leukemia cells. Int J Cancer. 121:706–713. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cui N, Li L, Feng Q, Ma HM, Lei D and
Zheng PS: Hexokinase 2 promotes cell growth and tumor formation
through the raf/mek/erk signaling pathway in cervical cancer. Front
Oncol. 10:5812082020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Courteau L, Crasto J, Hassanzadeh G, Baird
SD, Hodgins J, Liwak-Muir U, Fung G, Luo H, Stojdl DF, Screaton RA
and Holcik M: Hexokinase 2 controls cellular stress response
through localization of an RNA-binding protein. Cell Death Dis.
6:e18372015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lian C, Zhang C, Tian P, Tan Q, Wei Y,
Wang Z, Zhang Q, Zhang Q, Zhong M, Zhou L, et al: Epigenetic reader
ZMYND11 noncanonical function restricts HNRNPA1-mediated stress
granule formation and oncogenic activity. Signal Transduct Target
Ther. 9:2582024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yan H, Wang Z, Teng D, Chen X, Zhu Z, Chen
H, Wang W, Wei Z, Wu Z, Chai Q, et al: Hexokinase 2 senses fructose
in tumor-associated macrophages to promote colorectal cancer
growth. Cell Metab. 36:2449–2467. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dunnett L, Das S, Venditti V and Prischi
F: Enhanced identification of small molecules binding to hnRNPA1
via cryptic pockets mapping coupled with X-ray fragment screening.
J Biol Chem. 301:1083352025. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yang S, Tang W, Azizian A, Gaedcke J,
Ohara Y, Cawley H, Hanna N, Ghadimi M, Lal T, Sen S, et al:
MIF/NR3C2 axis regulates glucose metabolism reprogramming in
pancreatic cancer through MAPK-ERK and AP-1 pathways.
Carcinogenesis. 45:582–594. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang T, Ma C, Zhang Z, Zhang H and Hu H:
NF-κB signaling in inflammation and cancer. MedComm (2020).
2:618–653. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jiang Q, Xu J and Wang H:
Intestine-derived exosomes regulates inflammatory response of HK-2
cells through miR-146a-regulated NF-κB pathway. Drug Eval Res.
47:2326–2333. 2024.
|
|
55
|
Tong Y, Liu X, Wu L, Xiang Y, Wang J,
Cheng Y, Zhang C, Han B, Wang L and Yan D: Hexokinase 2
nonmetabolic function-mediated phosphorylation of IκBα enhances
pancreatic ductal adenocarcinoma progression. Cancer Sci.
115:2673–2685. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Londhe P, Yu PY, Ijiri Y, Ladner KJ,
Fenger JM, London C, Houghton PJ and Guttridge DC: Classical NF-κB
metabolically reprograms sarcoma cells through regulation of
hexokinase 2. Front Oncol. 8:1042018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Brand A, Singer K, Koehl GE, Kolitzus M,
Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et
al: LDHA-associated lactic acid production blunts tumor
immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sharan L, Pal A, Babu SS, Kumar A and
Banerjee S: Bay 11-7082 mitigates oxidative stress and
mitochondrial dysfunction via NLRP3 inhibition in experimental
diabetic neuropathy. Life Sci. 359:1232032024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dent AT and Wilks A: Contributions of the
heme coordinating ligands of the Pseudomonas aeruginosa outer
membrane receptor HasR to extracellular heme sensing and transport.
J Biol Chem. 295:10456–10467. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Derynck R, Turley SJ and Akhurst RJ: TGFβ
biology in cancer progression and immunotherapy. Nat Rev Clin
Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhong C, Wang W, Yao Y, Lian S, Xie X, Xu
J, He S, Luo L, Ye Z, Zhang J, et al: TGF-β secreted by cancer
cells-platelets interaction activates cancer metastasis potential
by inducing metabolic reprogramming and bioenergetic adaptation. J
Cancer. 16:1310–1323. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Roh JI, Kim Y, Oh J, Kim Y, Lee J, Lee J,
Chun KH and Lee HW: Hexokinase 2 is a molecular bridge linking
telomerase and autophagy. PLoS One. 13:e01931822018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lu J, Liu Q, Wang L, Tu W, Chu H, Ding W,
Jiang S, Ma Y, Shi X, Pu W, et al: Increased expression of latent
TGF-β-binding protein 4 affects the fibrotic process in scleroderma
by TGF-β/SMAD signaling. Lab Invest. 97:591–601. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jiang YL, Li X, Tan YW, Fang YJ, Liu KY,
Wang YF, Ma T, Ou QJ and Zhang CX: Docosahexaenoic acid inhibits
the invasion and migration of colorectal cancer by reversing EMT
through the TGF-β1/Smad signaling pathway. Food Funct.
15:9420–9433. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mariathasan S, Turley SJ, Nickles D,
Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita
JL, Cubas R, et al: TGFβ attenuates tumour response to PD-L1
blockade by contributing to exclusion of T cells. Nature.
554:544–548. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jeon HS and Jen J: TGF-beta signaling and
the role of inhibitory Smads in non-small cell lung cancer. J
Thorac Oncol. 5:417–419. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Santarpia M, González-Cao M, Viteri S,
Karachaliou N, Altavilla G and Rosell R: Programmed cell death
protein-1/programmed cell death ligand-1 pathway inhibition and
predictive biomarkers: Understanding transforming growth
factor-beta role. Transl Lung Cancer Res. 4:728–742.
2015.PubMed/NCBI
|
|
69
|
Ayele TM, Muche ZT, Teklemariam AB, Kassie
AB and Abebe EC: Role of JAK2/STAT3 signaling pathway in the
tumorigenesis, chemotherapy resistance, and treatment of solid
tumors: A systemic review. J Inflamm Res. 15:1349–1364. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang
J, Mo Y, Wei X, Chen Y, et al: Predictive biomarkers and mechanisms
underlying resistance to PD1/PD-L1 blockade cancer immunotherapy.
Mol Cancer. 19:192020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shangguan X, He J, Ma Z, Zhang W, Ji Y,
Shen K, Yue Z, Li W, Xin Z, Zheng Q, et al: SUMOylation controls
the binding of hexokinase 2 to mitochondria and protects against
prostate cancer tumorigenesis. Nat Commun. 12:18122021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xue YN, Yu BB, Li JL, Guo R, Zhang LC, Sun
LK, Liu YN and Li Y: Zinc and p53 disrupt mitochondrial binding of
HK2 by phosphorylating VDAC1. Exp Cell Res. 374:249–258. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang Q, Guo X, Li L, Gao Z, Su X, Ji M and
Liu J: N6-methyladenosine METTL3 promotes cervical
cancer tumorigenesis and Warburg effect through YTHDF1/HK2
modification. Cell Death Dis. 11:9112020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Klinke DJ II, Cheng N and Chambers E:
Quantifying crosstalk among interferon-γ, interleukin-12, and tumor
necrosis factor signaling pathways within a TH1 cell model. Sci
Signal. 5:ra322012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu
W, Yang H, Wang H, Yang M and Chen P: Metabolic reprogramming and
immune evasion: The interplay in the tumor microenvironment.
Biomark Res. 12:962024. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ferreira JC, Khrbtli AR, Shetler CL,
Mansoor S, Ali L, Sensoy O and Rabeh WM: Linker residues regulate
the activity and stability of hexokinase 2, a promising anticancer
target. J Biol Chem. 296:1000712021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Peláez R, Fernández-García P, Herrero P
and Moreno F: Nuclear import of the yeast hexokinase 2 protein
requires α/β-importin-dependent pathway. J Biol Chem.
287:3518–3529. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li S, Zhang M, Gao Y, Zhao C, Liao S, Zhao
X, Ning Q and Tang S: Mechanisms of tumor-associated macrophages
promoting tumor immune escape. Carcinogenesis. 46:bgaf0232025.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gou Q, Che S, Chen M, Chen H, Shi J and
Hou Y: PPARγ inhibited tumor immune escape by inducing PD-L1
autophagic degradation. Cancer Sci. 114:2871–2881. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rabinowitz JD and Enerbäck S: Lactate: The
ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Brooks GA: The science and translation of
lactate shuttle theory. Cell Metab. 27:757–785. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang W, Wang G, Xu ZG, Tu H, Hu F, Dai J,
Chang Y, Chen Y, Lu Y, Zeng H, et al: Lactate is a natural
suppressor of rlr signaling by targeting MAVS. Cell. 178:176–189.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chang CH, Curtis JD, Maggi LB Jr, Faubert
B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih
J, Qiu J, et al: Posttranscriptional control of T cell effector
function by aerobic glycolysis. Cell. 153:1239–1251. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xia H, Wang W, Crespo J, Kryczek I, Li W,
Wei S, Bian Z, Maj T, He M, Liu RJ, et al: Suppression of FIP200
and autophagy by tumor-derived lactate promotes naïve T cell
apoptosis and affects tumor immunity. Sci Immunol. 2:eaan46312017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Arruga F, Gyau BB, Iannello A, Vitale N,
Vaisitti T and Deaglio S: Immune response dysfunction in chronic
lymphocytic leukemia: Dissecting molecular mechanisms and
microenvironmental conditions. Int J Mol Sci. 21:18252020.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Corbet C and Feron O: Tumour acidosis:
From the passenger to the driver's seat. Nat Rev Cancer.
17:577–593. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sukumar M, Liu J, Ji Y, Subramanian M,
Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly
ED, et al: Inhibiting glycolytic metabolism enhances CD8+ T cell
memory and antitumor function. J Clin Invest. 123:4479–4488. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nasi A, Fekete T, Krishnamurthy A, Snowden
S, Rajnavölgyi E, Catrina AI, Wheelock CE, Vivar N and Rethi B:
Dendritic cell reprogramming by endogenously produced lactic acid.
J Immunol. 191:3090–3099. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Fischer K, Hoffmann P, Voelkl S,
Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G,
Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid
on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li
H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced
aerobic glycolysis and epithelial-mesenchymal transition in breast
cancer by regulation of CCL5-CCR5 axis: A positive metabolic
feedback loop. Oncotarget. 8:110426–110443. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zappasodi R, Serganova I, Cohen IJ, Maeda
M, Shindo M, Senbabaoglu Y, Watson MJ, Leftin A, Maniyar R, Verma
S, et al: CTLA-4 blockade drives loss of T(reg) stability in
glycolysis-low tumours. Nature. 591:652–658. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia
Y, Wei Z, Xie X, Yin B, Chen F, et al: Lactate inhibits ATP6V0d2
expression in tumor-associated macrophages to promote
HIF-2α-mediated tumor progression. J Clin Invest. 129:631–646.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gao Y, Zhou H, Liu G, Wu J, Yuan Y and
Shang A: Tumor microenvironment: Lactic acid promotes tumor
development. J Immunol Res. 2022:31193752022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Langin D: Adipose tissue lipolysis
revisited (again!): Lactate involvement in insulin antilipolytic
action. Cell Metab. 11:242–243. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Pan Y, Yu Y, Wang X and Zhang T:
Corrigendum: Tumor-associated macrophages in tumor immunity. Front
Immunol. 12:7757582021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
El-Kenawi A, Gatenbee C, Robertson-Tessi
M, Bravo R, Dhillon J, Balagurunathan Y, Berglund A, Vishvakarma N,
Ibrahim-Hashim A, Choi J, et al: Acidity promotes tumour
progression by altering macrophage phenotype in prostate cancer. Br
J Cancer. 121:556–566. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu Q, Du F, Huang W, Ding X, Wang Z, Yan
F and Wu Z: Epigenetic control of Foxp3 in intratumoral T-cells
regulates growth of hepatocellular carcinoma. Aging (Albany NY).
11:2343–2351. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X
and Jia R: Histone lactylation drives oncogenesis by facilitating
m6A reader protein YTHDF2 expression in ocular melanoma.
Genome Biol. 22:852021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Jiang J, Huang D, Jiang Y, Hou J, Tian M,
Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates
cellular metabolism through histone lactylation-mediated gene
expression in non-small cell lung cancer. Front Oncol.
11:6475592021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Certo M, Tsai CH, Pucino V, Ho PC and
Mauro C: Lactate modulation of immune responses in inflammatory
versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang N, Wang W, Wang X, Mang G, Chen J,
Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation
boosts reparative gene activation post-myocardial infarction. Circ
Res. 131:893–908. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mathupala SP, Ko YH and Pedersen PL:
Hexokinase II: Cancer's double-edged sword acting as both
facilitator and gatekeeper of malignancy when bound to
mitochondria. Oncogene. 25:4777–4786. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Majmundar AJ, Wong WJ and Simon MC:
Hypoxia-inducible factors and the response to hypoxic stress. Mol
Cell. 40:294–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang LF, Lou JT, Lu MH, Gao C, Zhao S, Li
B, Liang S, Li Y, Li D and Liu MF: Suppression of miR-199a
maturation by HuR is crucial for hypoxia-induced glycolytic switch
in hepatocellular carcinoma. EMBO J. 34:2671–2685. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bao MH and Wong CC: Hypoxia, metabolic
reprogramming, and drug resistance in liver cancer. Cells.
10:17152021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Reyes A, Duarte LF, Farías MA, Tognarelli
E, Kalergis AM, Bueno SM and González PA: Impact of hypoxia over
human viral infections and key cellular processes. Int J Mol Sci.
22:79542021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zheng H, Ning Y, Zhan Y, Liu S, Yang Y,
Wen Q and Fan S: Co-expression of PD-L1 and HIF-1α predicts poor
prognosis in patients with non-small cell lung cancer after
surgery. J Cancer. 12:2065–2072. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bandopadhyay S and Patranabis S:
Mechanisms of HIF-driven immunosuppression in tumour
microenvironment. J Egypt Natl Canc Inst. 35:272023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
You L, Wang X, Wu W, Nepovimova E, Wu Q
and Kuca K: HIF-1α inhibits T-2 toxin-mediated ‘immune evasion’
process by negatively regulating PD-1/PD-L1. Toxicology.
480:1533242022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yang Z, Su W, Wei X, Pan Y, Xing M, Niu L,
Feng B, Kong W, Ren X, Huang F, et al: Hypoxia inducible factor-1α
drives cancer resistance to cuproptosis. Cancer Cell. 43:937–954.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chen CH, Li SX, Xiang LX, Mu HQ, Wang SB
and Yu KY: HIF-1α induces immune escape of prostate cancer by
regulating NCR1/NKp46 signaling through miR-224. Biochem Biophys
Res Commun. 503:228–234. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Facciabene A, Peng X, Hagemann IS, Balint
K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L and
Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via
CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Peng J, Wang X, Ran L, Song J, Luo R and
Wang Y: Hypoxia-inducible factor 1α regulates the transforming
growth factor β1/SMAD family member 3 pathway to promote breast
cancer progression. J Breast Cancer. 21:259–266. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Clambey ET, McNamee EN, Westrich JA,
Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC,
Stenmark KR, Colgan SP and Eltzschig HK: Hypoxia-inducible factor-1
alpha-dependent induction of FoxP3 drives regulatory T-cell
abundance and function during inflammatory hypoxia of the mucosa.
Proc Natl Acad Sci USA. 109:E2784–E2793. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sormendi S and Wielockx B: Hypoxia pathway
proteins as central mediators of metabolism in the tumor cells and
their microenvironment. Front Immunol. 9:402018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Balamurugan K: HIF-1 at the crossroads of
hypoxia, inflammation, and cancer. Int J Cancer. 138:1058–1066.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Murthy A, Gerber SA, Koch CJ and Lord EM:
Intratumoral hypoxia reduces IFN-γ-mediated immunity and mhc class
I induction in a preclinical tumor model. Immunohorizons.
3:149–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Bhandari T, Olson J, Johnson RS and Nizet
V: HIF-1α influences myeloid cell antigen presentation and response
to subcutaneous OVA vaccination. J Mol Med (Berl). 91:1199–1205.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ruiz-Iglesias A and Mañes S: The
importance of mitochondrial pyruvate carrier in cancer cell
metabolism and tumorigenesis. Cancers (Basel). 13:14882021.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang T, Yu-Jing L and Ma T: The
immunomodulatory function of adenosine in sepsis. Front Immunol.
13:9365472022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Haskó G, Linden J, Cronstein B and Pacher
P: Adenosine receptors: Therapeutic aspects for inflammatory and
immune diseases. Nat Rev Drug Discov. 7:759–770. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chambers AM and Matosevic S:
Immunometabolic dysfunction of natural killer cells mediated by the
hypoxia-CD73 axis in solid tumors. Front Mol Biosci. 6:602019.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhao F, Xiao C, Evans KS, Theivanthiran T,
DeVito N, Holtzhausen A, Liu J, Liu X, Boczkowski D, Nair S, et al:
Paracrine Wnt5a-β-catenin signaling triggers a metabolic program
that drives dendritic cell tolerization. Immunity. 48:147–160.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Godin-Ethier J, Hanafi LA, Piccirillo CA
and Lapointe R: Indoleamine 2,3-dioxygenase expression in human
cancers: Clinical and immunologic perspectives. Clin Cancer Res.
17:6985–6991. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Irshad Z, Xue M, Ashour A, Larkin JR,
Thornalley PJ and Rabbani N: Activation of the unfolded protein
response in high glucose treated endothelial cells is mediated by
methylglyoxal. Sci Rep. 9:78892019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Siska PJ, Beckermann KE, Mason FM,
Andrejeva G, Greenplate AR, Sendor AB, Chiang YJ, Corona AL, Gemta
LF, Vincent BG, et al: Mitochondrial dysregulation and glycolytic
insufficiency functionally impair CD8 T cells infiltrating human
renal cell carcinoma. JCI Insight. 2:e934112017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Blagih J, Coulombe F, Vincent EE, Dupuy F,
Galicia-Vázquez G, Yurchenko E, Raissi TC, van der Windt GJ,
Viollet B, Pearce EL, et al: The energy sensor AMPK regulates T
cell metabolic adaptation and effector responses in vivo. Immunity.
42:41–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Liu X, Zhao Y, Wu X, Liu Z and Liu X: A
novel strategy to fuel cancer immunotherapy: Targeting glucose
metabolism to remodel the tumor microenvironment. Front Oncol.
12:9311042022. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh
EC, Hoft DF and Peng G: Regulatory T cells trigger effector T cell
DNA damage and senescence caused by metabolic competition. Nat
Commun. 9:2492018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Scharping NE and Delgoffe GM: Tumor
microenvironment metabolism: A new checkpoint for anti-tumor
immunity. Vaccines (Basel). 4:462016. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Jiang Y, Li Y and Zhu B: T-cell exhaustion
in the tumor microenvironment. Cell Death Dis. 6:e17922015.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Bader JE, Voss K and Rathmell JC:
Targeting metabolism to improve the tumor microenvironment for
cancer immunotherapy. Mol Cell. 78:1019–1033. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Geraghty KM, Chen S, Harthill JE, Ibrahim
AF, Toth R, Morrice NA, Vandermoere F, Moorhead GB, Hardie DG and
MacKintosh C: Regulation of multisite phosphorylation and 14-3-3
binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem
J. 407:231–241. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhang Q, Yang Z, Hao X, Dandreo LJ, He L,
Zhang Y, Wang F, Wu X and Xu L: Niclosamide improves cancer
immunotherapy by modulating RNA-binding protein HuR-mediated PD-L1
signaling. Cell Biosci. 13:1922023. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Li W, Zheng M, Wu S, Gao S, Yang M, Li Z,
Min Q, Sun W, Chen L, Xiang G and Li H: Benserazide, a
dopadecarboxylase inhibitor, suppresses tumor growth by targeting
hexokinase 2. J Exp Clin Cancer Res. 36:582017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zheng M, Wu C, Yang K, Yang Y, Liu Y, Gao
S, Wang Q, Li C, Chen L and Li H: Novel selective hexokinase 2
inhibitor Benitrobenrazide blocks cancer cells growth by targeting
glycolysis. Pharmacol Res. 164:1053672021. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
VDA-1102, a first-in-class VDAC/HK
modulator entering phase 1/2 drug development for treatment of
actinic keratosis, cutaneous squamous cell carcinoma. J AM ACAD
DERMATOL. 74:2016.
|
|
138
|
Lozzi F, Lanna C, Mazzeo M, Garofalo V,
Palumbo V, Mazzilli S, Diluvio L, Terrinoni A, Bianchi L and
Campione E: Investigational drugs currently in phase II clinical
trials for actinic keratosis. Expert Opin Investig Drugs.
28:629–642. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zheng Y, Zhan Y, Zhang Y, Zhang Y, Liu Y,
Xie Y, Sun Y, Qian J, Ding Y, Ding Y and Fang Y: Hexokinase 2
confers radio-resistance in hepatocellular carcinoma by promoting
autophagy-dependent degradation of AIMP2. Cell Death Dis.
14:4882023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Lin H, Zeng J, Xie R, Schulz MJ, Tedesco
R, Qu J, Erhard KF, Mack JF, Raha K, Rendina AR, et al: Discovery
of a novel 2,6-disubstituted glucosamine series of potent and
selective hexokinase 2 inhibitors. ACS Med Chem Lett. 7:217–222.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Jiang SH, Dong FY, Da LT, Yang XM, Wang
XX, Weng JY, Feng L, Zhu LL, Zhang YL, Zhang ZG, et al:
Ikarugamycin inhibits pancreatic cancer cell glycolysis by
targeting hexokinase 2. FASEB J. 34:3943–3955. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Bao F, Yang K, Wu C, Gao S, Wang P, Chen L
and Li H: New natural inhibitors of hexokinase 2 (HK2): Steroids
from Ganoderma sinense. Fitoterapia. 125:123–129. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wang S, Zhuang Y, Xu J, Tong Y, Li X and
Dong C: Advances in the study of hexokinase 2 (HK2) inhibitors.
Anticancer Agents Med Chem. 23:736–746. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Xu Z, Zhang D, Zhang Z, Luo W, Shi R, Yao
J, Li D, Wang L and Liao B: MicroRNA-505, suppressed by oncogenic
long non-coding RNA LINC01448, acts as a novel suppressor of
glycolysis and tumor progression through inhibiting HK2 expression
in pancreatic cancer. Front Cell Dev Biol. 8:6250562020. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Ye J, Xiao X, Han Y, Fan D, Zhu Y and Yang
L: MiR-3662 suppresses cell growth, invasion and glucose metabolism
by targeting HK2 in hepatocellular carcinoma cells. Neoplasma.
67:773–781. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Zheng C, Li R, Zheng S, Fang H, Xu M and
Zhong L: The knockdown of lncRNA DLGAP1-AS2 suppresses osteosarcoma
progression by inhibiting aerobic glycolysis via the miR-451a/HK2
axis. Cancer Sci. 114:4747–4762. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Zhu W, Huang Y, Pan Q, Xiang P, Xie N and
Yu H: MicroRNA-98 suppress warburg effect by targeting HK2 in colon
cancer cells. Dig Dis Sci. 62:660–668. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Guo Y, Liang F, Zhao F and Zhao J:
Resibufogenin suppresses tumor growth and Warburg effect through
regulating miR-143-3p/HK2 axis in breast cancer. Mol Cell Biochem.
466:103–115. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Zhong J, Lu S, Jia X, Li Q, Liu L, Xie P,
Wang G, Lu M, Gao W, Zhao T, et al: Role of endoplasmic reticulum
stress in apoptosis induced by HK2 inhibitor and its potential as a
new drug combination strategy. Cell Stress Chaperones. 27:273–283.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Agnihotri S, Mansouri S, Burrell K, Li M,
Mamatjan Y, Liu J, Nejad R, Kumar S, Jalali S, Singh SK, et al:
Ketoconazole and posaconazole selectively target HK2-expressing
glioblastoma cells. Clin Cancer Res. 25:844–855. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Afonso J, Gonçalves C, Costa M, Ferreira
D, Santos L, Longatto-Filho A and Baltazar F: Glucose metabolism
reprogramming in bladder cancer: Hexokinase 2 (HK2) as prognostic
biomarker and target for bladder cancer therapy. Cancers (Basel).
15:9822023. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Yang L, Yan X, Chen J, Zhan Q, Hua Y, Xu
S, Li Z, Wang Z, Dong Y, Zuo D, et al: Hexokinase 2 discerns a
novel circulating tumor cell population associated with poor
prognosis in lung cancer patients. Proc Natl Acad Sci USA.
118:e20122281182021. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Xu S, Catapang A, Doh HM, Bayley NA, Lee
JT, Braas D, Graeber TG and Herschman HR: Hexokinase 2 is
targetable for HK1 negative, HK2 positive tumors from a wide
variety of tissues of origin. J Nucl Med. 60:212–217. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Shurin MR and Umansky V: Cross-talk
between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy.
J Clin Invest. 132:e1594732022. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Qiu J, Zhong F, Zhang Z, Pan B, Ye D,
Zhang X, Yao Y, Luo Y, Wang X and Tang N: Hypoxia-responsive lncRNA
MIR155HG promotes PD-L1 expression in hepatocellular carcinoma
cells by enhancing HIF-1α mRNA stability. Int Immunopharmacol.
136:1124152024. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Xu H, Chen Y, Li Z, Zhang H, Liu J and Han
J: The hypoxia-inducible factor 1 inhibitor LW6 mediates the
HIF-1α/PD-L1 axis and suppresses tumor growth of hepatocellular
carcinoma in vitro and in vivo. Eur J Pharmacol. 930:1751542022.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Dai X, Pi G, Yang SL, Chen GG, Liu LP and
Dong HH: Association of PD-L1 and HIF-1α coexpression with poor
prognosis in hepatocellular carcinoma. Transl Oncol. 11:559–566.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Desta GM and Birhanu AG: Advancements in
single-cell RNA sequencing and spatial transcriptomics:
Transforming biomedical research. Acta Biochim Pol. 72:139222025.
View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Shen X, Zhao Y, Wang Z and Shi Q: Recent
advances in high-throughput single-cell transcriptomics and spatial
transcriptomics. Lab Chip. 22:4774–4791. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Elosua-Bayes M, Nieto P, Mereu E, Gut I
and Heyn H: SPOTlight: Seeded NMF regression to deconvolute spatial
transcriptomics spots with single-cell transcriptomes. Nucleic
Acids Res. 49:e502021. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Kleshchevnikov V, Shmatko A, Dann E,
Aivazidis A, King HW, Li T, Elmentaite R, Lomakin A, Kedlian V,
Gayoso A, et al: Cell2location maps fine-grained cell types in
spatial transcriptomics. Nat Biotechnol. 40:661–671. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Biran H, Hashimshony T, Lahav T, Efrat O,
Mandel-Gutfreund Y and Yakhini Z: Detecting significant expression
patterns in single-cell and spatial transcriptomics with a flexible
computational approach. Sci Rep. 14:261212024. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Wang Z, Dai R, Wang M, Lei L, Zhang Z, Han
K, Wang Z and Guo Q: KanCell: Dissecting cellular heterogeneity in
biological tissues through integrated single-cell and spatial
transcriptomics. J Genet Genomics. 52:689–705. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Ravindran U and Gunavathi C: Deep learning
assisted cancer disease prediction from gene expression data using
WT-GAN. BMC Med Inform Decis Mak. 24:3112024. View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Hu B, Wang Z, Zeng H, Qi Y, Chen Y, Wang
T, Wang J, Chang Y, Bai Q, Xia Y, et al: Blockade of DC-SIGN(+)
tumor-associated macrophages reactivates antitumor immunity and
improves immunotherapy in muscle-invasive bladder cancer. Cancer
Res. 80:1707–1719. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Yang H, Zhang Q, Xu M, Wang L, Chen X,
Feng Y, Li Y, Zhang X, Cui W and Jia X: CCL2-CCR2 axis recruits
tumor associated macrophages to induce immune evasion through PD-1
signaling in esophageal carcinogenesis. Mol Cancer. 19:412020.
View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Wolf-Dennen K, Gordon N and Kleinerman ES:
Exosomal communication by metastatic osteosarcoma cells modulates
alveolar macrophages to an M2 tumor-promoting phenotype and
inhibits tumoricidal functions. Oncoimmunology. 9:17476772020.
View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Rodriguez-Perdigon M, Haeni L,
Rothen-Rutishauser B and Rüegg C: Dual CSF1R inhibition and CD40
activation demonstrates anti-tumor activity in a 3D macrophage-
HER2(+) breast cancer spheroid model. Front Bioeng Biotechnol.
11:11598192023. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Kinouchi M, Miura K, Mizoi T, Ishida K,
Fujibuchi W, Sasaki H, Ohnuma S, Saito K, Katayose Y, Naitoh T, et
al: Infiltration of CD40-positive tumor-associated macrophages
indicates a favorable prognosis in colorectal cancer patients.
Hepatogastroenterology. 60:83–88. 2013.PubMed/NCBI
|
|
170
|
Shvefel SC, Pai JA, Cao Y, Pal LR, Bartok
O, Levy R, Zemanek MJ, Weller C, Herzog E, Yao W, et al: Temporal
genomic analysis of homogeneous tumor models reveals key regulators
of immune evasion in melanoma. Cancer Discov. 28:OF1–OF25.
2024.
|