You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J and Leonard EJ: Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med. 169:1449–1459. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimura T: The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine. 98:71–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kurihara T, Warr G, Loy J and Bravo R: Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med. 186:1757–1762. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Mackay CR: Chemokines: Immunology's high impact factors. Nat Immunol. 2:95–101. 2001. View Article : Google Scholar | |
|
Strieter RM: Chemokines: Not just leukocyte chemoattractants in the promotion of cancer. Nat Immunol. 2:285–286. 2001. View Article : Google Scholar | |
|
Lim SY, Yuzhalin AE, Gordon-Weeks AN and Muschel RJ: Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 7:28697–28710. 2016. View Article : Google Scholar | |
|
Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R, Neeley CK and Pienta KJ: CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia. 8:578–586. 2006. View Article : Google Scholar | |
|
Craig MJ and Loberg RD: CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev. 25:611–619. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Koga M, Kai H, Egami K, Murohara T, Ikeda A, Yasuoka S, Egashira K, Matsuishi T, Kai M, Kataoka Y, et al: Mutant MCP-1 therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice. Biochem Biophys Res Commun. 365:279–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Zhang H, Jiang X, Qian C, Liu Z and Luo D: Factors involved in cancer metastasis: A better understanding to ‘seed and soil’ hypothesis. Mol Cancer. 16:1762017. View Article : Google Scholar : PubMed/NCBI | |
|
Deshmane SL, Kremlev S, Amini S and Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Charo IF and Ransohoff RM: The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 354:610–621. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Raman D, Baugher PJ, Thu YM and Richmond A: Role of chemokines in tumor growth. Cancer Lett. 256:137–165. 2007. View Article : Google Scholar | |
|
Balkwill FR: The chemokine system and cancer. J Pathol. 226:148–157. 2012. View Article : Google Scholar | |
|
Frederick MJ and Clayman GL: Chemokines in cancer. Expert Rev Mol Med. 3:1–18. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
|
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar | |
|
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar | |
|
Brown CE, Vishwanath RP, Aguilar B, Starr R, Najbauer J, Aboody KS and Jensen MC: Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J Immunol. 179:3332–3341. 2007. View Article : Google Scholar | |
|
Rollins BJ and Sunday ME: Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol. 11:3125–3131. 1991. View Article : Google Scholar | |
|
Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F, Pasquali C, Calori G, Pessi F, Sperti C, et al: The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res. 63:7451–7461. 2003.PubMed/NCBI | |
|
Gunderson AJ, Yamazaki T, McCarty K, Fox N, Phillips M, Alice A, Blair T, Whiteford M, O'Brien D, Ahmad R, et al: TGFβ suppresses CD8(+) T cell expression of CXCR3 and tumor trafficking. Nat Commun. 11:17492020. View Article : Google Scholar : PubMed/NCBI | |
|
Qin J, Gong Q, Zhou C, Xu J, Cheng Y, Xu W, Zhu D, Liu Y, Zhang Y, Wang Y, et al: Differential expression pattern of CC chemokine receptor 7 guides precision treatment of hepatocellular carcinoma. Signal Transduct Target Ther. 10:2292025. View Article : Google Scholar : PubMed/NCBI | |
|
Wei XL, Zhang Y, Zhao HY, Fang WF, Luo HY, Qiu MZ, He MM, Zou BY, Xie J, Jin CL, et al: Safety and clinical activity of SHR7390 monotherapy or combined with camrelizumab for advanced solid tumor: Results from two phase I trials. Oncologist. 28:e36–e44. 2023. View Article : Google Scholar | |
|
Mestdagt M, Polette M, Buttice G, Noël A, Ueda A, Foidart JM and Gilles C: Transactivation of MCP-1/CCL2 by beta-catenin/TCF-4 in human breast cancer cells. Int J Cancer. 118:35–42. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J and Pollard JW: CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 212:1043–1059. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Granot Z, Henke E, Comen EA, King TA, Norton L and Benezra R: Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 20:300–314. 2011. View Article : Google Scholar | |
|
Pekarek LA, Starr BA, Toledano AY and Schreiber H: Inhibition of tumor growth by elimination of granulocytes. J Exp Med. 181:435–440. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Shojaei F, Singh M, Thompson JD and Ferrara N: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci USA. 105:2640–2645. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar | |
|
Nozawa H, Chiu C and Hanahan D: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA. 103:12493–12498. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
De Larco JE, Wuertz BR and Furcht LT: The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res. 10:4895–4900. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Mo F, Li Q, Han X, Shi H, Chen S, Wei Y and Wei X: Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol Cancer. 20:622021. View Article : Google Scholar : PubMed/NCBI | |
|
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dutta P, Sarkissyan M, Paico K, Wu Y and Vadgama JV: MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res Treat. 170:477–486. 2018. View Article : Google Scholar | |
|
Parween F, Singh SP, Kathuria N, Zhang HH, Ashida S, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, et al: Migration arrest and transendothelial trafficking of human pathogenic-like Th17 cells are mediated by differentially positioned chemokines. Nat Commun. 16:19782025. View Article : Google Scholar : PubMed/NCBI | |
|
Dey D, Pal S, Chakraborty BC, Baidya A, Bhadra S, Ghosh R, Banerjee S, Ahammed SKM, Chowdhury A and Datta S: Multifaceted defects in monocytes in different phases of chronic hepatitis B virus infection: Lack of restoration after antiviral therapy. Microbiol Spectr. 10:e01939222022. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar | |
|
Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM and Raulet DH: NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity. 28:571–580. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V and Lowe SW: Non-cell-autonomous tumor suppression by p53. Cell. 153:449–460. 2013. View Article : Google Scholar | |
|
Iannello A, Thompson TW, Ardolino M, Lowe SW and Raulet DH: p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med. 210:2057–2069. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nagai M and Masuzawa T: Vaccination with MCP-1 cDNA transfectant on human malignant glioma in nude mice induces migration of monocytes and NK cells to the tumor. Int Immunopharmacol. 1:657–664. 2001. View Article : Google Scholar | |
|
Berencsi K, Rani P, Zhang T, Gross L, Mastrangelo M, Meropol NJ, Herlyn D and Somasundaram R: In vitro migration of cytotoxic T lymphocyte derived from a colon carcinoma patient is dependent on CCL2 and CCR2. J Transl Med. 9:332011. View Article : Google Scholar : PubMed/NCBI | |
|
Nakasone Y, Fujimoto M, Matsushita T, Hamaguchi Y, Huu DL, Yanaba M, Sato S, Takehara K and Hasegawa M: Host-derived MCP-1 and MIP-1α regulate protective anti-tumor immunity to localized and metastatic B16 melanoma. Am J Pathol. 180:365–374. 2012. View Article : Google Scholar | |
|
Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Sarkar S, Cua R, Zhou Y, Hader W and Yong VW: A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis. 33:312–319. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bogenrieder T and Herlyn M: Axis of evil: molecular mechanisms of cancer metastasis. Oncogene. 22:6524–6536. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Rafei M, Deng J, Boivin MN, Williams P, Matulis SM, Yuan S, Birman E, Forner K, Yuan L, Castellino C, et al: A MCP1 fusokine with CCR2-specific tumoricidal activity. Mol Cancer. 10:1212011. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson Z, Power CA, Weiss C, Rintelen F, Ji H, Ruckle T, Camps M, Wells TN, Schwarz MK, Proudfoot AE and Rommel C: Chemokine inhibition-why, when, where, which and how? Biochem Soc Trans. 32:366–377. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mellado M, Rodríguez-Frade JM, Aragay A, del Real G, Martín AM, Vila-Coro AJ, Serrano A, Mayor F Jr and Martínez-A C: The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol. 161:805–813. 1998. View Article : Google Scholar | |
|
Jiménez-Sainz MC, Fast B, Mayor F Jr and Aragay AM: Signaling pathways for monocyte chemoattractant protein 1-mediated extracellular signal-regulated kinase activation. Mol Pharmacol. 64:773–782. 2003. View Article : Google Scholar | |
|
Tang CH and Tsai CC: CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway. Biochem Pharmacol. 83:335–344. 2012. View Article : Google Scholar | |
|
Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Schröer N, Pahne J, Walch B, Wickenhauser C and Smola S: Molecular pathobiology of human cervical high-grade lesions: Paracrine STAT3 activation in tumor-instructed myeloid cells drives local MMP-9 expression. Cancer Res. 71:87–97. 2011. View Article : Google Scholar | |
|
Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar | |
|
Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 4:71–78. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
van Kempen LC, de Visser KE and Coussens LM: Inflammation, proteases and cancer. Eur J Cancer. 42:728–734. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yumimoto K, Sugiyama S, Mimori K and Nakayama KI: Potentials of C-C motif chemokine 2-C-C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci. 110:2090–2099. 2019. View Article : Google Scholar | |
|
Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P and Cheng N: CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem. 287:36593–36608. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yao M, Fang W, Smart C, Hu Q, Huang S, Alvarez N, Fields P and Cheng N: CCR2 chemokine receptors enhance growth and cell-cycle progression of breast cancer cells through SRC and PKC Activation. Mol Cancer Res. 17:604–617. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Wang A, Zhang M, Li H, Wang K, Han Y, Wang Z, Shi C and Wang W: RNAi targeting of CCR2 gene expression induces apoptosis and inhibits the proliferation, migration, and invasion of PC-3M cells. Oncol Res. 21:73–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu HY, Sun KH, Chen SY, Wang HH, Lee MY, Tsou YC, Jwo SC, Sun GH and Tang SJ: Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine. 59:423–432. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Vande Broek I, Asosingh K, Vanderkerken K, Straetmans N, Van Camp B and Van Riet I: Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, −2 and −3. Br J Cancer. 88:855–862. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Lv X, Chen J, Xie C, Xia W, Jiang C, Zeng T, Ye Y, Ke L, Yu Y, et al: CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget. 7:15632–15647. 2016. View Article : Google Scholar | |
|
Xu M, Wang S, Qi Y, Chen L, Frank JA, Yang XH, Zhang Z, Shi X and Luo J: Role of MCP-1 in alcohol-induced aggressiveness of colorectal cancer cells. Mol Carcinog. 55:1002–1011. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yasui H, Kajiyama H, Tamauchi S, Suzuki S, Peng Y, Yoshikawa N, Sugiyama M, Nakamura K and Kikkawa F: CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway. Clin Exp Metastasis. 37:145–158. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Furukawa S, Soeda S, Kiko Y, Suzuki O, Hashimoto Y, Watanabe T, Nishiyama H, Tasaki K, Hojo H, Abe M and Fujimori K: MCP-1 promotes invasion and adhesion of human ovarian cancer cells. Anticancer Res. 33:4785–4790. 2013.PubMed/NCBI | |
|
Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B and Ramírez PA: The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS One. 12:e01688882017. View Article : Google Scholar : PubMed/NCBI | |
|
Salacz ME, Kast RE, Saki N, Brüning A, Karpel-Massler G and Halatsch ME: Toward a noncytotoxic glioblastoma therapy: Blocking MCP-1 with the MTZ Regimen. Onco Targets Ther. 9:2535–2545. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
An J, Xue Y, Long M, Zhang G, Zhang J and Su H: Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget. 8:39230–39240. 2017. View Article : Google Scholar | |
|
Giannelli G, Koudelkova P, Dituri F and Mikulits W: Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 65:798–808. 2016. View Article : Google Scholar | |
|
van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, Machat G, Grubinger M, Huber H and Mikulits W: Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol. 5:1169–1179. 2009. View Article : Google Scholar | |
|
Li H, Li H, Li XP, Zou H, Liu L, Liu W and Duan T: C-C chemokine receptor type 2 promotes epithelial-to-mesenchymal transition by upregulating matrix metalloproteinase-2 in human liver cancer. Oncol Rep. 40:2734–2741. 2018.PubMed/NCBI | |
|
Izumi K, Fang LY, Mizokami A, Namiki M, Li L, Lin WJ and Chang C: Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med. 5:1383–1401. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rao Q, Chen Y, Yeh CR, Ding J, Li L, Chang C and Yeh S: Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals. Oncotarget. 7:7842–7855. 2016. View Article : Google Scholar | |
|
Zhuang H, Cao G, Kou C and Liu T: CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep. 39:21–30. 2018.PubMed/NCBI | |
|
Koide N, Nishio A, Sato T, Sugiyama A and Miyagawa S: Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol. 99:1667–1674. 2004. View Article : Google Scholar | |
|
Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ and Murphy WJ: Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 96:34–40. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hong KH, Ryu J and Han KH: Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 105:1405–1407. 2025. View Article : Google Scholar | |
|
Wyler L, Napoli CU, Ingold B, Sulser T, Heikenwälder M, Schraml P and Moch H: Brain metastasis in renal cancer patients: Metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. Br J Cancer. 110:686–694. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Valković T, Babarović E, Lučin K, Štifter S, Aralica M, Seili-Bekafigo I, Duletić-Načinović A and Jonjić N: Plasma levels of monocyte chemotactic protein-1 are associated with clinical features and angiogenesis in patients with multiple myeloma. Biomed Res Int. 2016:78705902016. | |
|
Li F, Kitajima S, Kohno S, Yoshida A, Tange S, Sasaki S, Okada N, Nishimoto Y, Muranaka H, Nagatani N, et al: Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Res. 79:3903–3915. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ and McCauley LK: A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 69:1685–1692. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Balkwill F: Cancer and the chemokine network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Niu J, Azfer A, Zhelyabovska O, Fatma S and Kolattukudy PE: Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem. 283:14542–14551. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K and Chayama K: Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer. 102:220–224. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kuroda T, Kitadai Y, Tanaka S, Yang X, Mukaida N, Yoshihara M and Chayama K: Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res. 11:7629–7636. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Goede V, Brogelli L, Ziche M and Augustin HG: Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer. 82:765–770. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP and Yang J: Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73:662–671. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Varney ML, Olsen KJ, Mosley RL and Singh RK: Paracrine regulation of vascular endothelial growth factor-a expression during macrophage-melanoma cell interaction: Role of monocyte chemotactic protein-1 and macrophage colony-stimulating factor. J Interferon Cytokine Res. 25:674–683. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP and Donners MM: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 17:109–118. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Li Y and Li B: Interactions between cancer cells and tumor-associated macrophages in tumor microenvironment. Biochim Biophys Acta Rev Cancer. 1880:1893442025. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar | |
|
Allavena P, Germano G, Marchesi F and Mantovani A: Chemokines in cancer related inflammation. Exp Cell Res. 317:664–673. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fridlender ZG, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, Crisanti MC, Wang LC, Heitjan D, Snyder LA and Albelda SM: CCL2 blockade augments cancer immunotherapy. Cancer Res. 70:109–118. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z, Liu Y, Li D, Yuan Y, Zhang GM and Feng ZH: CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 252:86–92. 2007. View Article : Google Scholar | |
|
Samaniego R, Estecha A, Relloso M, Longo N, Escat JL, Longo-Imedio I, Avilés JA, del Pozo MA, Puig-Kröger A and Sánchez-Mateos P: Mesenchymal contribution to recruitment, infiltration, and positioning of leukocytes in human melanoma tissues. J Invest Dermatol. 133:2255–2264. 2013. View Article : Google Scholar | |
|
Roblek M, Strutzmann E, Zankl C, Adage T, Heikenwalder M, Atlic A, Weis R, Kungl A and Borsig L: Targeting of CCL2-CCR2-glycosaminoglycan axis using a CCL2 decoy protein attenuates metastasis through inhibition of tumor cell seeding. Neoplasia. 18:49–59. 2016. View Article : Google Scholar | |
|
Zhu Y, Yan P, Wang R, Lai J, Tang H, Xiao X, Yu R, Bao X, Zhu F, Wang K, et al: Opioid-induced fragile-like regulatory T cells contribute to withdrawal. Cell. 186:591–606.e23. 2023. View Article : Google Scholar | |
|
Kong X, Wu S, Dai X, Yu W, Wang J, Sun Y, Ji Z, Ma L, Dai X, Chen H, et al: A comprehensive profile of chemokines in the peripheral blood and vascular tissue of patients with Takayasu arteritis. Arthritis Res Ther. 24:492022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang KF, Tan SY, Chan SH, Chong SM, Loh KS, Tan LK and Hu H: A distinct expression of CC chemokines by macrophages in nasopharyngeal carcinoma: implication for the intense tumor infiltration by T lymphocytes and macrophages. Hum Pathol. 32:42–49. 2001. View Article : Google Scholar | |
|
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F and Guc D: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1(+) TAMs. Sci Rep. 9:31722019. View Article : Google Scholar : PubMed/NCBI | |
|
LeBleu VS and Kalluri R: A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech. 11:dmm0294472018. View Article : Google Scholar : PubMed/NCBI | |
|
Loeffler M, Krüger JA, Niethammer AG and Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 116:1955–1962. 2006. View Article : Google Scholar | |
|
Valkenburg KC, de Groot AE and Pienta KJ: Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 15:366–381. 2018. View Article : Google Scholar | |
|
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479.e10. 2018. View Article : Google Scholar | |
|
Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, et al: Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 73:3007–3018. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jung DW, Che ZM and Kim J, Kim K, Kim KY, Williams D and Kim J: Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: A pivotal role of CCL7. Int J Cancer. 127:332–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Barbai T, Fejős Z, Puskas LG, Tímár J and Rásó E: The importance of microenvironment: the role of CCL8 in metastasis formation of melanoma. Oncotarget. 6:29111–29128. 2015. View Article : Google Scholar | |
|
Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, Luu T, Li AX, Wu X, Ye W, et al: CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 72:2768–2779. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H, Nishio M, Shigeoka M, Kakeji Y and Yokozaki H: Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Invest. 99:777–792. 2019. View Article : Google Scholar | |
|
Pausch TM, Aue E, Wirsik NM, Freire Valls A, Shen Y, Radhakrishnan P, Hackert T, Schneider M and Schmidt T: Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep. 10:54202020. View Article : Google Scholar : PubMed/NCBI | |
|
Vickman RE, Broman MM, Lanman NA, Franco OE, Sudyanti PAG, Ni Y, Ji Y, Helfand BT, Petkewicz J, Paterakos MC, et al: Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. 80:173–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, Fan J and He R: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76:4124–4135. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Brummer G, Acevedo DS, Hu Q, Portsche M, Fang WB, Yao M, Zinda B, Myers M, Alvarez N, Fields P, et al: Chemokine signaling facilitates early-stage breast cancer survival and invasion through fibroblast-dependent mechanisms. Mol Cancer Res. 16:296–308. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Majo S and Auguste P: The Yin and Yang of discoidin domain receptors (DDRs): Implications in tumor growth and metastasis development. Cancers (Basel). 13:17252021. View Article : Google Scholar : PubMed/NCBI | |
|
Scordamaglia D, Talia M, Cirillo F, Zicarelli A, Mondino AA, De Rosis S, Di Dio M, Silvestri F, Meliti C, Miglietta AM, et al: Interleukin-1β mediates a tumor-supporting environment prompted by IGF1 in triple-negative breast cancer (TNBC). J Transl Med. 23:6602025. View Article : Google Scholar : PubMed/NCBI | |
|
Vakilian A, Khorramdelazad H, Heidari P, Sheikh Rezaei Z and Hassanshahi G: CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int. 103:1–7. 2017. View Article : Google Scholar | |
|
Zijlmans HJ, Fleuren GJ, Baelde HJ, Eilers PH, Kenter GG and Gorter A: The absence of CCL2 expression in cervical carcinoma is associated with increased survival and loss of heterozygosity at 17q11.2. J Pathol. 208:507–517. 2006. View Article : Google Scholar | |
|
Yoshidome H, Kohno H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Nakatani Y and Miyazaki M: Significance of monocyte chemoattractant protein-1 in angiogenesis and survival in colorectal liver metastases. Int J Oncol. 34:923–930. 2009. | |
|
Zhang J, Patel L and Pienta KJ: CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 21:41–48. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M and Ben-Baruch A: Inflammatory mediators in breast cancer: coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer. 11:1302011. View Article : Google Scholar : PubMed/NCBI | |
|
Jin G, Kawsar HI, Hirsch SA, Zeng C, Jia X, Feng Z, Ghosh SK, Zheng QY, Zhou A, McIntyre TM and Weinberg A: An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One. 5:e109932010. View Article : Google Scholar : PubMed/NCBI | |
|
Vasco C, Canazza A, Rizzo A, Mossa A, Corsini E, Silvani A, Fariselli L, Salmaggi A and Ciusani E: Circulating T regulatory cells migration and phenotype in glioblastoma patients: An in vitro study. J Neurooncol. 115:353–363. 2013. View Article : Google Scholar | |
|
del Pozo MA, Cabañas C, Montoya MC, Ager A, Sánchez-Mateos P and Sánchez-Madrid F: ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J Cell Biol. 137:493–508. 1997. View Article : Google Scholar | |
|
Schmall A, Al-Tamari HM, Herold S, Kampschulte M, Weigert A, Wietelmann A, Vipotnik N, Grimminger F, Seeger W, Pullamsetti SS and Savai R: Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 191:437–447. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Maolake A, Izumi K, Shigehara K, Natsagdorj A, Iwamoto H, Kadomoto S, Takezawa Y, Machioka K, Narimoto K, Namiki M, et al: Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget. 8:9739–9751. 2017. View Article : Google Scholar | |
|
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar | |
|
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar | |
|
Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, Wagner U, Müller-Brüsselbach S and Müller R: Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 134:32–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
van Attekum MHA, van Bruggen JAC, Slinger E, Lebre MC, Reinen E, Kersting S, Eldering E and Kater AP: CD40 signaling instructs chronic lymphocytic leukemia cells to attract monocytes via the CCR2 axis. Haematologica. 102:2069–2076. 2017. View Article : Google Scholar | |
|
Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H, Akira S, Kotol PF, Glass CK, Rosenfeld MG and Rose DW: Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell. 124:615–629. 2006. View Article : Google Scholar | |
|
Loberg RD, Ying C, Craig M, Yan L, Snyder LA and Pienta KJ: CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 9:556–562. 2007. View Article : Google Scholar | |
|
Ye J, Yang Y, Jin J, Ji M, Gao Y, Feng Y, Wang H, Chen X and Liu Y: Targeted delivery of chlorogenic acid by mannosylated liposomes to effectively promote the polarization of TAMs for the treatment of glioblastoma. Bioact Mater. 5:694–708. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Li X, Zhang Y, Ge S, Shi Z, Liu Q and Jiang S: Targeting tumor-associated macrophages to overcome immune checkpoint inhibitor resistance in hepatocellular carcinoma. J Exp Clin Cancer Res. 44:2272025. View Article : Google Scholar : PubMed/NCBI | |
|
Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, et al: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17:651–662. 2016. View Article : Google Scholar | |
|
Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M and Ochiai A: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 125:1276–1284. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bianconi V, Sahebkar A, Atkin SL and Pirro M: The regulation and importance of monocyte chemoattractant protein-1. Curr Opin Hematol. 25:44–51. 2018. View Article : Google Scholar | |
|
Ding M, He SJ and Yang J: MCP-1/CCL2 mediated by autocrine loop of PDGF-BB promotes invasion of lung cancer cell by recruitment of macrophages via CCL2-CCR2 Axis. J Interferon Cytokine Res. 39:224–232. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Avila MA and Berasain C: Targeting CCL2/CCR2 in tumor-infiltrating macrophages: A tool emerging out of the box against hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 7:293–294. 2019. View Article : Google Scholar | |
|
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar | |
|
Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, Mitchem JB, Plambeck-Suess SM, Worley LA, Goetz BD, et al: Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin Cancer Res. 19:3404–3415. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yin S, Wang N, Riabov V, Mossel DM, Larionova I, Schledzewski K, Trofimova O, Sevastyanova T, Zajakina A, Schmuttermaier C, et al: SI-CLP inhibits the growth of mouse mammary adenocarcinoma by preventing recruitment of tumor-associated macrophages. Int J Cancer. 146:1396–1408. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, Zheng P and Zhao S: Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 10:9182019. View Article : Google Scholar : PubMed/NCBI | |
|
Crane CA, Ahn BJ, Han SJ and Parsa AT: Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: Implications for immunotherapy. Neuro Oncol. 14:584–595. 2012. View Article : Google Scholar | |
|
Marangoni F, Zhakyp A, Corsini M, Geels SN, Carrizosa E, Thelen M, Mani V, Prüßmann JN, Warner RD, Ozga AJ, et al: Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell. 184:3998–4015.e19. 2021. View Article : Google Scholar | |
|
Rodrigues PF, Wu S, Trsan T, Panda SK, Fachi JL, Liu Y, Du S, de Oliveira S, Antonova AU, Khantakova D, et al: Rorγt-positive dendritic cells are required for the induction of peripheral regulatory T cells in response to oral antigens. Cell. 188:2720–2737.e22. 2025. View Article : Google Scholar | |
|
Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, Villaggio B, Ferrera A, Kunkl A, Rizzi M, et al: CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol,. 179:4323–4334. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Serafini P, Borrello I and Bronte V: Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 16:53–65. 2006. View Article : Google Scholar | |
|
Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P and Bronte V: Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 53:64–72. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O'Neill A, et al: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res. 65:3044–3048. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ugel S, De Sanctis F, Mandruzzato S and Bronte V: Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest. 125:3365–3376. 2015. View Article : Google Scholar | |
|
Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, Hockstein N, Guarino M, Masters G, Penman E, et al: CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 44:303–315. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Flavell RA, Sanjabi S, Wrzesinski SH and Licona-Limón P: The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 10:554–567. 2010. View Article : Google Scholar | |
|
Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, Mukherjee P, Wang-Gillam A, Link DC, Denardo DG, et al: Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother. 63:513–528. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Feigin A, vans EE, Fisher TL, Leonard JE, Smith ES, Reader A, Mishra V, Manber R, Walters KA, Kowarski L, et al: Pepinemab antibody blockade of SEMA4D in early Huntington's disease: A randomized, placebo-controlled, phase 2 trial. Nat Med. 28:2183–2193. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin BB, Lei HQ, Xiong HY, Fu X, Shi F, Yang XW, Yang YF, Liao GL, Feng YP, Jiang DG and Pang J: MicroRNA-regulated transcriptome analysis identifies four major subtypes with prognostic and therapeutic implications in prostate cancer. Comput Struct Biotechnol J. 19:4941–4953. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Korbecki J, Kojder K, Simińska D, Bohatyrewicz R, Gutowska I, Chlubek D and Baranowska-Bosiacka I: CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci. 21:84122020. View Article : Google Scholar | |
|
Steinberg SM, Zhang P, Malik BT, Boni A, Shabaneh TB, Byrne KT, Mullins DW, Brinckerhoff CE, Ernstoff MS, Bosenberg MW and Turk MJ: BRAF inhibition alleviates immune suppression in murine autochthonous melanoma. Cancer Immunol Res. 2:1044–1050. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ho PC, Meeth KM, Tsui YC, Srivastava B, Bosenberg MW and Kaech SM: Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res. 74:3205–3217. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cooper ZA, Reuben A, Spencer CN, Prieto PA, Austin-Breneman JL, Jiang H, Haymaker C, Gopalakrishnan V, Tetzlaff MT, Frederick DT, et al: Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncoimmunology. 5:e11360442016. View Article : Google Scholar : PubMed/NCBI | |
|
Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, Moriceau G, Hong A, Dahlman KB, Johnson DB, et al: Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 162:1271–1285. 2015. View Article : Google Scholar | |
|
Steinberg SM, Shabaneh TB, Zhang P, Martyanov V, Li Z, Malik BT, Wood TA, Boni A, Molodtsov A, Angeles CV, et al: Myeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitors. Cancer Res. 77:1599–1610. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pavon LF, Sibov TT, de Souza AV, da Cruz EF, Malheiros SMF, Cabral FR, de Souza JG, Boufleur P, de Oliveira DM, de Toledo SRC, et al: Tropism of mesenchymal stem cell toward CD133(+) stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Res Ther. 9:3102018. View Article : Google Scholar : PubMed/NCBI | |
|
Tu MM, Abdel-Hafiz HA, Jones RT, Jean A, Hoff KJ, Duex JE, Chauca-Diaz A, Costello JC, Dancik GM, Tamburini BAJ, et al: Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol. 3:7202020. View Article : Google Scholar | |
|
Vesely MD and Chen L: Normalization cancer immunotherapy for melanoma. J Invest Dermatol. 140:1134–1142. 2020. View Article : Google Scholar | |
|
Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar | |
|
Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, et al: Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 104:155–162. 1999. View Article : Google Scholar | |
|
Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X and Liu C: The role of necroptosis in cancer biology and therapy. Mol Cancer. 18:1002019. View Article : Google Scholar : PubMed/NCBI | |
|
Lemke J, von Karstedt S, Zinngrebe J and Walczak H: Getting TRAIL back on track for cancer therapy. Cell Death Differ. 21:1350–1364. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Knight DA, Ngiow SF, Li M, Parmenter T, Mok S, Cass A, Haynes NM, Kinross K, Yagita H, Koya RC, et al: Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest. 123:1371–1381. 2013. View Article : Google Scholar | |
|
Grierson PM, Wolf C, Suresh R, Wang-Gillam A, Tan BR, Ratner L, Oppelt P, Aranha O, Frith A, Pedersen KS, et al: Neoadjuvant BMS-813160, nivolumab, gemcitabine, and nab-paclitaxel for patients with pancreatic cancer. Clin Cancer Res. 31:3644–3651. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
La Cruz TE, González-Bobes F, Eastgate MD, Sfouggatakis C, Zheng B, Kopp N, Xiao Y, Fan Y, Galindo KA, Pathirana C, et al: Scalable asymmetric synthesis of the all cis triamino cyclohexane core of BMS-813160. J Org Chem. 87:1996–2011. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, Lambein L, Poissonnier A, Ferraro GB, Baer C, et al: Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 21:190–202. 2019. View Article : Google Scholar | |
|
Lima LG, Ham S, Shin H, Chai EPZ, Lek ESH, Lobb RJ, Müller AF, Mathivanan S, Yeo B, Choi Y, et al: Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat Commun. 12:35432021. View Article : Google Scholar : PubMed/NCBI | |
|
Tarale P, Chaudhary S, Mukherjee S and Sarkar DK: Ethanol-activated microglial exosomes induce MCP1 signaling mediated death of stress-regulatory proopiomelanocortin neurons in the developing hypothalamus. J Neuroinflammation. 21:2792024. View Article : Google Scholar : PubMed/NCBI | |
|
Luan S, Zhao Y, Yu Y, Xu J, Xu J, Ren T, Tang X and Xie L: The relevance of B7-H3 and tumor-associated macrophages in the tumor immune microenvironment of solid tumors: Recent advances. Am J Transl Res. 17:2835–2849. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, et al: Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature. 540:458–461. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
José R, Williams A, Sulikowski M, Brealey D, Brown J and Chambers R: Regulation of neutrophilic inflammation in lung injury induced by community-acquired pneumonia. Lancet. 385 (Suppl 1):S522015. |