|
1
|
Yu MC and Yuan JM: Environmental factors
and risk for hepatocellular carcinoma. Gastroenterology. 127(Suppl
1): S72–S78. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bosch FX, Ribes J, Cleries R and Diaz M:
Epidemiology of hepatocellular carcinoma. Clin Liver Dis.
9:191–211. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gomaa AI, Khan SA, Toledano MB, Waked I
and Taylor-Robinson SD: Hepatocellular carcinoma: epidemiology,
risk factors and pathogenesis. World J Gastroenterol. 14:4300–4308.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shariff MI, Cox IJ, Gomaa AI, Khan SA,
Gedroyc W and Taylor-Robinson SD: Hepatocellular carcinoma: current
trends in worldwide epidemiology, risk factors, diagnosis and
therapeutics. Expert Rev Gastroenterol Hepatol. 3:353–367. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kumar M, Kumar R, Hissar SS, et al: Risk
factors analysis for hepatocellular carcinoma in patients with and
without cirrhosis: a case-control study of 213 hepatocellular
carcinoma patients from India. J Gastroenterol Hepatol.
22:1104–1111. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Carr BI: Hepatocellular carcinoma: current
management and future trends. Gastroenterology. 127(Suppl 1):
S218–S224. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kassahun WT, Fangmann J, Harms J, Hauss J
and Bartels M: Liver resection and transplantation in the
management of hepatocellular carcinoma: a review. Exp Clin
Transplant. 4:549–558. 2006.PubMed/NCBI
|
|
8
|
Witjes CD, Verhoef C, Verheul HM and
Eskens FA: Systemic treatment in hepatocellular carcinoma; ‘A small
step for man’. Neth J Med. 67:86–90. 2009.
|
|
9
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Collins AT, Berry PA, Hyde C, Stower MJ
and Maitland NJ: Prospective identification of tumorigenic prostate
cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Klarmann GJ, Hurt EM, Mathews LA, et al:
Invasive prostate cancer cells are tumor initiating cells that have
a stem cell-like genomic signature. Clin Exp Metastasis.
26:433–446. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kim CF, Jackson EL, Woolfenden AE, et al:
Identification of bronchioalveolar stem cells in normal lung and
lung cancer. Cell. 121:823–835. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Eramo A, Lotti F, Sette G, et al:
Identification and expansion of the tumorigenic lung cancer stem
cell population. Cell Death Differ. 15:504–514. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
O’Brien CA, Pollett A, Gallinger S and
Dick JE: A human colon cancer cell capable of initiating tumour
growth in immunodeficient mice. Nature. 445:106–110.
2007.PubMed/NCBI
|
|
17
|
Chu P, Clanton DJ, Snipas TS, et al:
Characterization of a subpopulation of colon cancer cells with stem
cell-like properties. Int J Cancer. 124:1312–1321. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li C, Heidt DG, Dalerba P, et al:
Identification of pancreatic cancer stem cells. Cancer Res.
67:1030–1037. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li C, Lee CJ and Simeone DM:
Identification of human pancreatic cancer stem cells. Methods Mol
Biol. 568:161–173. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Singh SK, Clarke ID, Terasaki M, et al:
Identification of a cancer stem cell in human brain tumors. Cancer
Res. 63:5821–5828. 2003.PubMed/NCBI
|
|
21
|
Rahman R, Heath R and Grundy R: Cellular
immortality in brain tumours: an integration of the cancer stem
cell paradigm. Biochim Biophys Acta. 1792:280–288. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sun YL, Yin SY, Xie HY, et al: Stem-like
cells in hepatitis B virus-associated cirrhotic livers and adjacent
tissue to hepatocellular carcinomas possess the capacity of
tumorigenicity. J Gastroenterol Hepatol. 23:1280–1286. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Roskams TA, Theise ND, Balabaud C, et al:
Nomenclature of the finer branches of the biliary tree: canals,
ductules, and ductular reactions in human livers. Hepatology.
39:1739–1745. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Petersen BE, Bowen WC, Patrene KD, et al:
Bone marrow as a potential source of hepatic oval cells. Science.
284:1168–1170. 1999.PubMed/NCBI
|
|
25
|
Shi XL, Gu JY, Han B, Xu HY, Fang L and
Ding YT: Magnetically labeled mesenchymal stem cells after
autologous transplantation into acutely injured liver. World J
Gastroenterol. 16:3674–3679. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Theise ND, Nimmakayalu M, Gardner R, et
al: Liver from bone marrow in humans. Hepatology. 32:11–16. 2000.
View Article : Google Scholar
|
|
27
|
Rowe PM: Chronic Lyme disease: the debate
goes on. Lancet. 355:14362000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bae SH, Choi JY, Yoon SK, et al:
Thy1-positive bone marrow stem cells express liver-specific genes
in vitro and can mature into hepatocytes in vivo. Hepatol Int.
2:63–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gournay J, Auvigne I, Pichard V, Ligeza C,
Bralet MP and Ferry N: In vivo cell lineage analysis during
chemical hepatocarcinogenesis in rats using retroviral-mediated
gene transfer: evidence for dedifferentiation of mature
hepatocytes. Lab Invest. 82:781–788. 2002. View Article : Google Scholar
|
|
30
|
Bralet MP, Pichard V and Ferry N:
Demonstration of direct lineage between hepatocytes and
hepatocellular carcinoma in diethylnitrosamine-treated rats.
Hepatology. 36:623–630. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Dumble ML, Croager EJ, Yeoh GC and Quail
EA: Generation and characterization of p53 null transformed hepatic
progenitor cells: oval cells give rise to hepatocellular carcinoma.
Carcinogenesis. 23:435–445. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fujii T, Zen Y, Harada K, et al:
Participation of liver cancer stem/progenitor cells in
tumorigenesis of scirrhous hepatocellular carcinoma - human and
cell culture study. Hum Pathol. 39:1185–1196. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nomoto K, Tsuneyama K, Cheng C, et al:
Intrahepatic cholangiocarcinoma arising in cirrhotic liver
frequently expressed p63-positive basal/stem-cell phenotype. Pathol
Res Pract. 202:71–76. 2006. View Article : Google Scholar
|
|
34
|
Tanaka S, Yamamoto T, Tanaka H, et al:
Potentiality of combined hepatocellular and intrahepatic
cholangiocellular carcinoma originating from a hepatic precursor
cell: immunohistochemical evidence. Hepatol Res. 32:52–57. 2005.
View Article : Google Scholar
|
|
35
|
Zhang F, Chen XP, Zhang W, et al: Combined
hepatocellular cholangiocarcinoma originating from hepatic
progenitor cells: immunohistochemical and double-fluorescence
immunostaining evidence. Histopathology. 52:224–232. 2008.
View Article : Google Scholar
|
|
36
|
Komuta M, Spee B, Vander Borght S, et al:
Clinicopathological study on cholangiolocellular carcinoma
suggesting hepatic progenitor cell origin. Hepatology.
47:1544–1556. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
de Lima VM, Oliveira CP, Alves VA, et al:
A rodent model of NASH with cirrhosis, oval cell proliferation and
hepatocellular carcinoma. J Hepatol. 49:1055–1061. 2008.PubMed/NCBI
|
|
38
|
Grozdanov PN, Yovchev MI and Dabeva MD:
The oncofetal protein glypican-3 is a novel marker of hepatic
progenitor/oval cells. Lab Invest. 86:1272–1284. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Caja L, Ortiz C, Bertran E, et al:
Differential intracellular signalling induced by TGF-beta in rat
adult hepatocytes and hepatoma cells: implications in liver
carcinogenesis. Cell Signal. 19:683–694. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Herzer K, Grosse-Wilde A, Krammer PH,
Galle PR and Kanzler S: Transforming growth factor-beta-mediated
tumor necrosis factor-related apoptosis-inducing ligand expression
and apoptosis in hepatoma cells requires functional cooperation
between Smad proteins and activator protein-1. Mol Cancer Res.
6:1169–1177. 2008. View Article : Google Scholar
|
|
41
|
Wang CL, Wan YL, Liu YC and Huang ZQ:
TGF-beta1/SMAD signaling pathway mediates p53-dependent apoptosis
in hepatoma cell lines. Chin Med Sci J. 21:33–35. 2006.PubMed/NCBI
|
|
42
|
Yang YA, Zhang GM, Feigenbaum L and Zhang
YE: Smad3 reduces susceptibility to hepatocarcinoma by sensitizing
hepatocytes to apoptosis through downregulation of Bcl-2. Cancer
Cell. 9:445–457. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kiyono K, Suzuki HI, Matsuyama H, et al:
Autophagy is activated by TGF-beta and potentiates
TGF-beta-mediated growth inhibition in human hepatocellular
carcinoma cells. Cancer Res. 69:8844–8852. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mazzocca A, Fransvea E, Lavezzari G,
Antonaci S and Giannelli G: Inhibition of transforming growth
factor beta receptor I kinase blocks hepatocellular carcinoma
growth through neo-angiogenesis regulation. Hepatology.
50:1140–1151. 2009. View Article : Google Scholar
|
|
45
|
Mikula M, Proell V, Fischer AN and
Mikulits W: Activated hepatic stellate cells induce tumor
progression of neoplastic hepatocytes in a TGF-beta dependent
fashion. J Cell Physiol. 209:560–567. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bae HJ, Eun JW, Noh JH, et al:
Down-regulation of transforming growth factor beta receptor type
III in hepatocellular carcinoma is not directly associated with
genetic alterations or loss of heterozygosity. Oncol Rep.
22:475–480. 2009.PubMed/NCBI
|
|
47
|
Ji GZ, Wang XH, Miao L, et al: Role of
transforming growth factor-beta1-smad signal transduction pathway
in patients with hepatocellular carcinoma. World J Gastroenterol.
12:644–648. 2006.PubMed/NCBI
|
|
48
|
Lin SJ, Chang C, Ng AK, Wang SH, Li JJ and
Hu CP: Prevention of TGF-beta-induced apoptosis by interleukin-4
through Akt activation and p70S6K survival signaling pathways.
Apoptosis. 12:1659–1670. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Millet C and Zhang YE: Roles of Smad3 in
TGF-beta signaling during carcinogenesis. Crit Rev Eukaryot Gene
Expr. 17:281–293. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang S, Fei T, Zhang L, et al: Smad7
antagonizes transforming growth factor beta signaling in the
nucleus by interfering with functional Smad-DNA complex formation.
Mol Cell Biol. 27:4488–4499. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kitisin K, Ganesan N, Tang Y, et al:
Disruption of transforming growth factor-beta signaling through
beta-spectrin ELF leads to hepatocellular cancer through cyclin D1
activation. Oncogene. 26:7103–7110. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Baek HJ, Lim SC, Kitisin K, et al:
Hepatocellular cancer arises from loss of transforming growth
factor beta signaling adaptor protein embryonic liver fodrin
through abnormal angiogenesis. Hepatology. 48:1128–1137. 2008.
View Article : Google Scholar
|
|
53
|
Carmona-Cuenca I, Roncero C, Sancho P, et
al: Upregulation of the NADPH oxidase NOX4 by TGF-beta in
hepatocytes is required for its pro-apoptotic activity. J Hepatol.
49:965–976. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Caja L, Sancho P, Bertran E,
Iglesias-Serret D, Gil J and Fabregat I: Overactivation of the
MEK/ERK pathway in liver tumor cells confers resistance to
TGF-{beta}-induced cell death through impairing up-regulation of
the NADPH oxidase NOX4. Cancer Res. 69:7595–7602. 2009.PubMed/NCBI
|
|
55
|
Sheahan S, Bellamy CO, Dunbar DR, Harrison
DJ and Prost S: Deficiency of G1 regulators P53, P21Cip1 and/or pRb
decreases hepatocyte sensitivity to TGFbeta cell cycle arrest. BMC
Cancer. 7:2152007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zulehner G, Mikula M, Schneller D, et al:
Nuclear beta-catenin induces an early liver progenitor phenotype in
hepatocellular carcinoma and promotes tumor recurrence. Am J
Pathol. 176:472–481. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tang Y, Kitisin K, Jogunoori W, et al:
Progenitor/stem cells give rise to liver cancer due to aberrant
TGF-beta and IL-6 signaling. Proc Natl Acad Sci USA. 105:2445–2450.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lin L, Amin R, Gallicano GI, et al: The
STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers
with disrupted TGF-beta signaling. Oncogene. 28:961–972. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bagnyukova TV, Tryndyak VP, Muskhelishvili
L, Ross SA, Beland FA and Pogribny IP: Epigenetic downregulation of
the suppressor of cytokine signaling 1 (Socs1) gene is associated
with the STAT3 activation and development of hepatocellular
carcinoma induced by methyl-deficiency in rats. Cell Cycle.
7:3202–3210. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dajani R, Fraser E, Roe SM, et al:
Structural basis for recruitment of glycogen synthase kinase 3beta
to the axin-APC scaffold complex. EMBO J. 22:494–501. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ha NC, Tonozuka T, Stamos JL, Choi HJ and
Weis WI: Mechanism of phosphorylation-dependent binding of APC to
beta-catenin and its role in beta-catenin degradation. Mol Cell.
15:511–521. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tauriello DV, Jordens I, Kirchner K, et
al: Wnt/β-catenin signaling requires interaction of the Dishevelled
DEP domain and C terminus with a discontinuous motif in Frizzled.
Proc Natl Acad Sci USA. 109:E812–E820. 2012.
|
|
63
|
Tetsu O and McCormick F: Beta-catenin
regulates expression of cyclin D1 in colon carcinoma cells. Nature.
398:422–426. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yochum GS, Sherrick CM, Macpartlin M and
Goodman RH: A beta-catenin/TCF-coordinated chromatin loop at MYC
integrates 5′ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci
USA. 107:145–150. 2010.PubMed/NCBI
|
|
65
|
Staal FJ, Meeldijk J, Moerer P, et al: Wnt
signaling is required for thymocyte development and activates Tcf-1
mediated transcription. Eur J Immunol. 31:285–293. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Taniguchi H and Chiba T: Stem cells and
cancer in the liver. Dis Markers. 24:223–229. 2008. View Article : Google Scholar
|
|
67
|
Takigawa Y and Brown AM: Wnt signaling in
liver cancer. Curr Drug Targets. 9:1013–1024. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang M, Xue L, Cao Q, et al: Expression of
Notch1, Jagged1 and beta-catenin and their clinicopathological
significance in hepatocellular carcinoma. Neoplasma. 56:533–541.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wei W, Chua MS, Grepper S and So SK:
Blockade of Wnt-1 signaling leads to anti-tumor effects in
hepatocellular carcinoma cells. Mol Cancer. 8:762009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yuzugullu H, Benhaj K, Ozturk N, et al:
Canonical Wnt signaling is antagonized by noncanonical Wnt5a in
hepatocellular carcinoma cells. Mol Cancer. 8:902009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Toyama T, Lee HC, Koga H, Wands JR and Kim
M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell
proliferation and migration. Mol Cancer Res. 8:254–265. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yonemitsu Y, Imazeki F, Chiba T, et al:
Distinct expression of polycomb group proteins EZH2 and BMI1 in
hepatocellular carcinoma. Hum Pathol. 40:1304–1311. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chiba T, Miyagi S, Saraya A, et al: The
polycomb gene product BMI1 contributes to the maintenance of
tumor-initiating side population cells in hepatocellular carcinoma.
Cancer Res. 68:7742–7749. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chiba T, Suzuki E, Negishi M, et al:
3-Deazaneplanocin A is a promising therapeutic agent for the
eradication of tumor-initiating hepatocellular carcinoma cells. Int
J Cancer. 130:2557–2567. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cheng AS, Lau SS, Chen Y, et al:
EZH2-mediated concordant repression of Wnt antagonists promotes
β-catenin-dependent hepatocarcinogenesis. Cancer Res. 71:4028–4039.
2011.PubMed/NCBI
|
|
76
|
Zaret KS: Genetic programming of liver and
pancreas progenitors: lessons for stem-cell differentiation. Nat
Rev Genet. 9:329–340. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yamashita T, Budhu A, Forgues M and Wang
XW: Activation of hepatic stem cell marker EpCAM by
Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res.
67:10831–10839. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yamashita T, Ji J, Budhu A, et al:
EpCAM-positive hepatocellular carcinoma cells are tumor-initiating
cells with stem/progenitor cell features. Gastroenterology.
136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yin L, Velazquez OC and Liu ZJ: Notch
signaling: emerging molecular targets for cancer therapy. Biochem
Pharmacol. 80:690–701. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sharma VM, Draheim KM and Kelliher MA: The
Notch1/c-Myc pathway in T cell leukemia. Cell Cycle. 6:927–930.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Moserle L, Ghisi M, Amadori A and
Indraccolo S: Side population and cancer stem cells: therapeutic
implications. Cancer Lett. 288:1–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu WK, Cho CH, Lee CW, et al:
Dysregulation of cellular signaling in gastric cancer. Cancer Lett.
295:144–153. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Moellering RE, Cornejo M, Davis TN, et al:
Direct inhibition of the NOTCH transcription factor complex.
Nature. 462:182–188. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Arora PS and Ansari AZ: Chemical biology:
A Notch above other inhibitors. Nature. 462:171–173. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Farnie G and Clarke RB: Mammary stem cells
and breast cancer - role of Notch signalling. Stem Cell Rev.
3:169–175. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Stylianou S, Clarke RB and Brennan K:
Aberrant activation of notch signaling in human breast cancer.
Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zardawi SJ, Zardawi I, McNeil CM, et al:
High Notch1 protein expression is an early event in breast cancer
development and is associated with the HER-2 molecular subtype.
Histopathology. 56:286–296. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mittal S, Subramanyam D, Dey D, Kumar RV
and Rangarajan A: Cooperation of Notch and Ras/MAPK signaling
pathways in human breast carcinogenesis. Mol Cancer. 8:1282009.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hirose H, Ishii H, Mimori K, et al: Notch
pathway as candidate therapeutic target in Her2/Neu/ErbB2
receptor-negative breast tumors. Oncol Rep. 23:35–43.
2010.PubMed/NCBI
|
|
90
|
Korkaya H and Wicha MS: HER-2, notch, and
breast cancer stem cells: targeting an axis of evil. Clin Cancer
Res. 15:1845–1847. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang C, Qi R, Li N, et al: Notch1
signaling sensitizes tumor necrosis factor-related
apoptosis-inducing ligand-induced apoptosis in human hepatocellular
carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and
up-regulating p53-dependent DR5 expression. J Biol Chem.
284:16183–16190. 2009. View Article : Google Scholar
|
|
92
|
Gramantieri L, Giovannini C, Lanzi A, et
al: Aberrant Notch3 and Notch4 expression in human hepatocellular
carcinoma. Liver Int. 27:997–1007. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sikandar SS, Pate KT, Anderson S, et al:
NOTCH signaling is required for formation and self-renewal of
tumor-initiating cells and for repression of secretory cell
differentiation in colon cancer. Cancer Res. 70:1469–1478. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Harrison H, Farnie G, Howell SJ, et al:
Regulation of breast cancer stem cell activity by signaling through
the Notch4 receptor. Cancer Res. 70:709–718. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhen Y, Zhao S, Li Q, Li Y and Kawamoto K:
Arsenic trioxide-mediated Notch pathway inhibition depletes the
cancer stem-like cell population in gliomas. Cancer Lett.
292:64–72. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hambardzumyan D, Becher OJ and Holland EC:
Cancer stem cells and survival pathways. Cell Cycle. 7:1371–1378.
2008. View Article : Google Scholar
|
|
97
|
Huang S, He J, Zhang X, et al: Activation
of the hedgehog pathway in human hepatocellular carcinomas.
Carcinogenesis. 27:1334–1340. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cheng WT, Xu K, Tian DY, Zhang ZG, Liu LJ
and Chen Y: Role of Hedgehog signaling pathway in proliferation and
invasiveness of hepatocellular carcinoma cells. Int J Oncol.
34:829–836. 2009.PubMed/NCBI
|
|
99
|
Patil MA, Zhang J, Ho C, Cheung ST, Fan ST
and Chen X: Hedgehog signaling in human hepatocellular carcinoma.
Cancer Biol Ther. 5:111–117. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fu X, Wang Q, Chen X, et al: Expression
patterns and polymorphisms of PTCH in Chinese hepatocellular
carcinoma patients. Exp Mol Pathol. 84:195–199. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sicklick JK, Li YX, Jayaraman A, et al:
Dysregulation of the Hedgehog pathway in human
hepatocarcinogenesis. Carcinogenesis. 27:748–757. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Katoh Y and Katoh M: Integrative genomic
analyses on GLI2: mechanism of Hedgehog priming through basal GLI2
expression, and interaction map of stem cell signaling network with
P53. Int J Oncol. 33:881–886. 2008.PubMed/NCBI
|
|
103
|
He J, Sheng T, Stelter AA, et al:
Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J
Biol Chem. 281:35598–35602. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu YJ, Wang Q, Li W, et al: Rab23 is a
potential biological target for treating hepatocellular carcinoma.
World J Gastroenterol. 13:1010–1017. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Omenetti A and Diehl AM: The adventures of
sonic hedgehog in development and repair. II Sonic hedgehog and
liver development, inflammation, and cancer. Am J Physiol
Gastrointest Liver Physiol. 294:G595–G598. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
de Pereira TA, Witek RP, Syn WK, et al:
Viral factors induce Hedgehog pathway activation in humans with
viral hepatitis, cirrhosis, and hepatocellular carcinoma. Lab
Invest. 90:1690–1703. 2010.PubMed/NCBI
|
|
107
|
Eichenmuller M, Gruner I, Hagl B, et al:
Blocking the hedgehog pathway inhibits hepatoblastoma growth.
Hepatology. 49:482–490. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Suzuki A, Sekiya S, Onishi M, et al: Flow
cytometric isolation and clonal identification of self-renewing
bipotent hepatic progenitor cells in adult mouse liver. Hepatology.
48:1964–1978. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Rountree CB, Ding W, He L and Stiles B:
Expansion of CD133-expressing liver cancer stem cells in
liver-specific phosphatase and tensin homolog deleted on chromosome
10-deleted mice. Stem Cells. 27:290–299. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yin S, Li J, Hu C, et al: CD133 positive
hepatocellular carcinoma cells possess high capacity for
tumorigenicity. Int J Cancer. 120:1444–1450. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ma S, Chan KW, Hu L, et al: Identification
and characterization of tumorigenic liver cancer stem/progenitor
cells. Gastroenterology. 132:2542–2556. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Suetsugu A, Nagaki M, Aoki H, Motohashi T,
Kunisada T and Moriwaki H: Characterization of CD133+
hepatocellular carcinoma cells as cancer stem/progenitor cells.
Biochem Biophys Res Commun. 351:820–824. 2006.
|
|
113
|
Kohga K, Tatsumi T, Takehara T, et al:
Expression of CD133 confers malignant potential by regulating
metalloproteinases in human hepatocellular carcinoma. J Hepatol.
52:872–879. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yao J, Zhang T, Ren J, Yu M and Wu G:
Effect of CD133/prominin-1 antisense oligodeoxynucleotide on in
vitro growth characteristics of Huh-7 human hepatocarcinoma
cells and U251 human glioma cells. Oncol Rep. 22:781–787.
2009.PubMed/NCBI
|
|
115
|
Song W, Li H, Tao K, et al: Expression and
clinical significance of the stem cell marker CD133 in
hepatocellular carcinoma. Int J Clin Pract. 62:1212–1218. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ma S, Chan KW, Lee TK, et al: Aldehyde
dehydrogenase discriminates the CD133 liver cancer stem cell
populations. Mol Cancer Res. 6:1146–1153. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhu Z, Hao X, Yan M, et al: Cancer
stem/progenitor cells are highly enriched in
CD133+CD44+ population in hepatocellular
carcinoma. Int J Cancer. 126:2067–2078. 2010.PubMed/NCBI
|
|
118
|
You H, Ding W and Rountree CB: Epigenetic
regulation of cancer stem cell marker CD133 by transforming growth
factor-beta. Hepatology. 51:1635–1644. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ma S, Lee TK, Zheng BJ, Chan KW and Guan
XY: CD133+ HCC cancer stem cells confer chemoresistance
by preferential expression of the Akt/PKB survival pathway.
Oncogene. 27:1749–1758. 2008.
|
|
120
|
Ma S, Tang KH, Chan YP, et al: miR-130b
promotes CD133(+) liver tumor-initiating cell growth and
self-renewal via tumor protein 53-induced nuclear protein 1. Cell
Stem Cell. 7:694–707. 2010.PubMed/NCBI
|
|
121
|
Salnikov AV, Kusumawidjaja G, Rausch V, et
al: Cancer stem cell marker expression in hepatocellular carcinoma
and liver metastases is not sufficient as single prognostic
parameter. Cancer Lett. 275:185–193. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Schmelzer E and Reid LM: EpCAM expression
in normal, non-pathological tissues. Front Biosci. 13:3096–3100.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kimura O, Takahashi T, Ishii N, et al:
Characterization of the epithelial cell adhesion molecule
(EpCAM)+ cell population in hepatocellular carcinoma
cell lines. Cancer Sci. 101:2145–2155. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ji J, Yamashita T, Budhu A, et al:
Identification of microRNA-181 by genome-wide screening as a
critical player in EpCAM-positive hepatic cancer stem cells.
Hepatology. 50:472–480. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Arzumanyan A, Friedman T, Ng IO, Clayton
MM, Lian Z and Feitelson MA: Does the hepatitis B antigen HBx
promote the appearance of liver cancer stem cells? Cancer Res.
71:3701–3708. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lu TY, Lu RM, Liao MY, et al: Epithelial
cell adhesion molecule regulation is associated with the
maintenance of the undifferentiated phenotype of human embryonic
stem cells. J Biol Chem. 285:8719–8732. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Goodell MA, Brose K, Paradis G, Conner AS
and Mulligan RC: Isolation and functional properties of murine
hematopoietic stem cells that are replicating in vivo. J Exp Med.
183:1797–1806. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ding XW, Wu JH and Jiang CP: ABCG2: a
potential marker of stem cells and novel target in stem cell and
cancer therapy. Life Sci. 86:631–637. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chiba T, Kita K, Zheng YW, et al: Side
population purified from hepatocellular carcinoma cells harbors
cancer stem cell-like properties. Hepatology. 44:240–251. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Shi GM, Xu Y, Fan J, et al: Identification
of side population cells in human hepatocellular carcinoma cell
lines with stepwise metastatic potentials. J Cancer Res Clin Oncol.
134:1155–1163. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang N, Li R, Tao KS, et al:
Characterization of a stem-like population in hepatocellular
carcinoma MHCC97 cells. Oncol Rep. 23:827–831. 2010.PubMed/NCBI
|
|
132
|
Kamohara Y, Haraguchi N, Mimori K, et al:
The search for cancer stem cells in hepatocellular carcinoma.
Surgery. 144:119–124. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Qiang GH, Yu DC and Jiang CP: Side
population cells and liver cancer stem cells. World Chin J
Digestol. 18:971–974. 2010.(In Chinese).
|
|
134
|
Polgar O, Robey RW and Bates SE: ABCG2:
structure, function and role in drug response. Expert Opin Drug
Metab Toxicol. 4:1–15. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Sarkadi B, Ozvegy-Laczka C, Nemet K and
Varadi A: ABCG2 - a transporter for all seasons. FEBS Lett.
567:116–120. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Han B and Zhang JT: Multidrug resistance
in cancer chemotherapy and xenobiotic protection mediated by the
half ATP-binding cassette transporter ABCG2. Curr Med Chem
Anticancer Agents. 4:31–42. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zen Y, Fujii T, Yoshikawa S, et al:
Histological and culture studies with respect to ABCG2 expression
support the existence of a cancer cell hierarchy in human
hepatocellular carcinoma. Am J Pathol. 170:1750–1762. 2007.
View Article : Google Scholar
|
|
138
|
Xi Z, Jiang CP and Ding YT: Expression of
stem cell marker ABCG2 and its significance in hepatocellular
carcinoma tissue and cell lines. World Chin J Digestol. 17:247–252.
2009.
|
|
139
|
Hu C, Li H, Li J, et al: Analysis of ABCG2
expression and side population identifies intrinsic drug efflux in
the HCC cell line MHCC-97L and its modulation by Akt signaling.
Carcinogenesis. 29:2289–2297. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Yang ZF, Ngai P, Ho DW, et al:
Identification of local and circulating cancer stem cells in human
liver cancer. Hepatology. 47:919–928. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Yang ZF, Ho DW, Ng MN, et al: Significance
of CD90+ cancer stem cells in human liver cancer. Cancer
Cell. 13:153–166. 2008.
|
|
142
|
Haraguchi N, Ishii H, Mimori K, et al:
CD13 is a therapeutic target in human liver cancer stem cells. J
Clin Invest. 120:3326–3339. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Oliva J, French BA, Qing X and French SW:
The identification of stem cells in human liver diseases and
hepatocellular carcinoma. Exp Mol Pathol. 88:331–340. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Martinez-Chantar ML, Lu SC, Mato JM, et
al: The role of stem cells/progenitor cells in liver carcinogenesis
in glycine N-methyltransferase deficient mice. Exp Mol Pathol.
88:234–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Andersen JB, Loi R, Perra A, et al:
Progenitor-derived hepatocellular carcinoma model in the rat.
Hepatology. 51:1401–1409. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Kim H, Choi GH, Na DC, et al: Human
hepatocellular carcinomas with ‘stemness’-related marker
expression: keratin 19 expression and a poor prognosis. Hepatology.
54:1707–1717. 2011.
|
|
147
|
Yang W, Yan HX, Chen L, et al:
Wnt/beta-catenin signaling contributes to activation of normal and
tumorigenic liver progenitor cells. Cancer Res. 68:4287–4295. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Xie Z, Choong PF, Poon LF, et al:
Inhibition of CD44 expression in hepatocellular carcinoma cells
enhances apoptosis, chemosensitivity, and reduces tumorigenesis and
invasion. Cancer Chemother Pharmacol. 62:949–957. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Yu F, Hao X, Zhao H, et al: Delta-like 1
contributes to cell growth by increasing the interferon-inducible
protein 16 expression in hepatocellular carcinoma. Liver Int.
30:703–714. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Machida K, Tsukamoto H, Mkrtchyan H, et
al: Toll-like receptor 4 mediates synergism between alcohol and HCV
in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl
Acad Sci USA. 106:1548–1553. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Knight B, Tirnitz-Parker JE and Olynyk JK:
C-kit inhibition by imatinib mesylate attenuates progenitor cell
expansion and inhibits liver tumor formation in mice.
Gastroenterology. 135:969–979. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Okamura D, Ohtsuka M, Kimura F, et al:
Ezrin expression is associated with hepatocellular carcinoma
possibly derived from progenitor cells and early recurrence after
surgical resection. Mod Pathol. 21:847–855. 2008. View Article : Google Scholar
|
|
153
|
Jabari S, Meissnitzer M, Quint K, et al:
Cellular plasticity of trans- and dedifferentiation markers in
human hepatoma cells in vitro and in vivo. Int J
Oncol. 35:69–80. 2009.PubMed/NCBI
|
|
154
|
Yu J, Vodyanik MA, Smuga-Otto K, et al:
Induced pluripotent stem cell lines derived from human somatic
cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Zhong X, Li N, Liang S, Huang Q, Coukos G
and Zhang L: Identification of microRNAs regulating reprogramming
factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem.
285:41961–41971. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Viswanathan SR, Powers JT, Einhorn W, et
al: Lin28 promotes transformation and is associated with advanced
human malignancies. Nat Genet. 41:843–848. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Yang X, Lin X, Zhong X, et al:
Double-negative feedback loop between reprogramming factor LIN28
and microRNA let-7 regulates aldehyde dehydrogenase 1-positive
cancer stem cells. Cancer Res. 70:9463–9472. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Smith LM, Nesterova A, Ryan MC, et al:
CD133/prominin-1 is a potential therapeutic target for
antibody-drug conjugates in hepatocellular and gastric cancers. Br
J Cancer. 99:100–109. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Wang L, Su W, Liu Z, et al: CD44
antibody-targeted liposomal nanoparticles for molecular imaging and
therapy of hepatocellular carcinoma. Biomaterials. 33:5107–5114.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Fan ST, Yang ZF, Ho DW, Ng MN, Yu WC and
Wong J: Prediction of posthepatectomy recurrence of hepatocellular
carcinoma by circulating cancer stem cells: a prospective study.
Ann Surg. 254:569–576. 2011. View Article : Google Scholar : PubMed/NCBI
|