|
1
|
Billich A, Bornancin F, Dévay P,
Mechtcheriakova D, Urtz N and Baumruker T: Phosphorylation of the
immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem.
278:47408–47415. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Paugh SW, Payne SG, Barbour SE, Milstien S
and Spiegel S: The immunosuppressant FTY720 is phosphorylated by
sphingosine kinase type 2. FEBS Lett. 554:189–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Suzuki S, Enosawa S, Kakefuda T, et al: A
novel immunosuppressant, FTY720, with a unique mechanism of action,
induces long-term graft acceptance in rat and dog
allotransplantation. Transplantation. 61:200–205. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Enosawa S, Suzuki S, Kakefuda T, Li XK and
Amemiya H: Induction of selective cell death targeting on mature
T-lymphocytes in rats by a novel immunosuppressant, FTY720.
Immunopharmacology. 34:171–179. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Suzuki S, Li XK, Shinomiya T, et al:
Induction of lymphocyte apoptosis and prolongation of allograft
survival by FTY720. Transplant Proc. 28:2049–2050. 1996.PubMed/NCBI
|
|
6
|
Suzuki S, Enosawa S, Kakefuda T, Amemiya
H, Hoshino Y and Chiba K: Long-term graft acceptance in allografted
rats and dogs by treatment with a novel immunosuppressant, FTY720.
Transplant Proc. 28:1375–1376. 1996.PubMed/NCBI
|
|
7
|
Suzuki S, Enosawa S, Kakefuda T, et al:
Immunosuppressive effect of a new drug, FTY720, on lymphocyte
responses in vitro and cardiac allograft survival in rats.
Transplant Immunol. 4:252–255. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pitman MR, Woodcock JM, Lopez AF and
Pitson SM: Molecular targets of FTY720 (fingolimod). Curr Mol Med.
12:1207–1219. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Azuma H, Takahara S, Ichimaru N, et al:
Marked prevention of tumor growth and metastasis by a novel
immunosuppressive agent, FTY720, in mouse breast cancer models.
Cancer Res. 62:1410–1419. 2002.PubMed/NCBI
|
|
10
|
Sonoda Y, Yamamoto D, Sakurai S, et al:
FTY720, a novel immunosuppressive agent, induces apoptosis in human
glioma cells. Biochem Biophys Res Commun. 281:282–288. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chua CW, Lee DT, Ling MT, et al: FTY720, a
fungus metabolite, inhibits in vivo growth of androgen-independent
prostate cancer. Int J Cancer. 117:1039–1048. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schmid G, Guba M, Papyan A, et al: FTY720
inhibits tumor growth and angiogenesis. Transplant Proc.
37:110–111. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang N, Qi Y, Wadham C, et al: FTY720
induces necrotic cell death and autophagy in ovarian cancer cells:
a protective role of autophagy. Autophagy. 6:1157–1167. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee TK, Man K, Ho JW, et al: FTY720
induces apoptosis of human hepatoma cell lines through
PI3-K-mediated Akt dephosphorylation. Carcinogenesis. 25:2397–2405.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Vadas M, Xia P, McCaughan G and Gamble J:
The role of sphingosine kinase 1 in cancer: oncogene or
non-oncogene addiction? Biochim Biophys Acta. 1781:442–447. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang JD, Takahara S, Nonomura N, et al:
Early induction of apoptosis in androgen-independent prostate
cancer cell line by FTY720 requires caspase-3 activation. Prostate.
40:50–55. 1999. View Article : Google Scholar
|
|
17
|
Hu S, Vincenz C, Buller M and Dixit VM: A
novel family of viral death effector domain-containing molecules
that inhibit both CD-95- and tumor necrosis factor
receptor-1-induced apoptosis. J Biol Chem. 272:9621–9624. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cohen GM: Caspases: the executioners of
apoptosis. Biochem J. 326(Pt 1): 1–16. 1997.
|
|
19
|
Zheng T, Meng X, Wang J, et al: PTEN- and
p53-mediated apoptosis and cell cycle arrest by FTY720 in gastric
cancer cells and nude mice. J Cell Biochem. 111:218–228. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ubai T, Azuma H, Kotake Y, et al: FTY720
induced Bcl-associated and Fas-independent apoptosis in human renal
cancer cells in vitro and significantly reduced in vivo tumor
growth in mouse xenograft. Anticancer Res. 27:75–88.
2007.PubMed/NCBI
|
|
21
|
Yasui H, Hideshima T, Raje N, et al:
FTY720 induces apoptosis in multiple myeloma cells and overcomes
drug resistance. Cancer Res. 65:7478–7484. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Susin SA, Lorenzo HK, Zamzami N, et al:
Molecular characterization of mitochondrial apoptosis-inducing
factor. Nature. 397:441–446. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu Q, Alinari L, Chen CS, et al: FTY720
shows promising in vitro and in vivo preclinical activity by
downmodulating Cyclin D1 and phospho-Akt in mantle cell lymphoma.
Clin Cancer Res. 16:3182–3192. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu Q, Zhao X, Frissora F, et al: FTY720
demonstrates promising preclinical activity for chronic lymphocytic
leukemia and lymphoblastic leukemia/lymphoma. Blood. 111:275–284.
2008. View Article : Google Scholar
|
|
25
|
Wallington-Beddoe CT, Hewson J, Bradstock
KF and Bendall LJ: FTY720 produces caspase-independent cell death
of acute lymphoblastic leukemia cells. Autophagy. 7:707–715. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liao A, Hu R, Zhao Q, et al: Autophagy
induced by FTY720 promotes apoptosis in U266 cells. Eur J Pharm
Sci. 45:600–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Alinari L, Baiocchi RA and Praetorius-Ibba
M: FTY720-induced blockage of autophagy enhances anticancer
efficacy of milatuzumab in mantle cell lymphoma: is FTY720 the next
autophagy-blocking agent in lymphoma treatment? Autophagy.
8:416–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Alinari L, Mahoney E, Patton J, et al:
FTY720 increases CD74 expression and sensitizes mantle cell
lymphoma cells to milatuzumab-mediated cell death. Blood.
118:6893–6903. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Levine B and Yuan J: Autophagy in cell
death: an innocent convict? J Clin Invest. 115:2679–2688. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ogata M, Hino S, Saito A, et al: Autophagy
is activated for cell survival after endoplasmic reticulum stress.
Mol Cell Biol. 26:9220–9231. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wirawan E, Vanden Berghe T, Lippens S,
Agostinis P and Vandenabeele P: Autophagy: for better or for worse.
Cell Res. 22:43–61. 2012. View Article : Google Scholar
|
|
33
|
Estrada-Bernal A, Palanichamy K, Ray
Chaudhury A and Van Brocklyn JR: Induction of brain tumor stem cell
apoptosis by FTY720: a potential therapeutic agent for
glioblastoma. Neuro Oncol. 14:405–415. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ng KT, Man K, Ho JW, et al: Marked
suppression of tumor growth by FTY720 in a rat liver tumor model:
The significance of downregulation of cell survival Akt pathway.
Int J Oncol. 30:375–380. 2007.PubMed/NCBI
|
|
35
|
Zhou C, Ling MT, Kin-Wah Lee T, Man K,
Wang X and Wong YC: FTY720, a fungus metabolite, inhibits invasion
ability of androgen-independent prostate cancer cells through
inactivation of RhoA-GTPase. Cancer Lett. 233:36–47. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kappos L, Radue EW, O’Connor P, et al: A
placebo-controlled trial of oral fingolimod in relapsing multiple
sclerosis. N Engl J Med. 362:387–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Azuma H, Takahara S, Horie S, Muto S,
Otsuki Y and Katsuoka Y: Induction of apoptosis in human bladder
cancer cells in vitro and in vivo caused by FTY720 treatment. J
Urol. 169:2372–2377. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Devasagayam TP, Tilak JC, Boloor KK, Sane
KS, Ghaskadbi SS and Lele RD: Free radicals and antioxidants in
human health: current status and future prospects. J Assoc
Physicians India. 52:794–804. 2004.PubMed/NCBI
|
|
39
|
Hung JH, Lu YS, Wang YC, et al: FTY720
induces apoptosis in hepatocellular carcinoma cells through
activation of protein kinase C delta signaling. Cancer Res.
68:1204–1212. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Omar HA, Chou CC, Berman-Booty LD, et al:
Antitumor effects of OSU-2S, a nonimmunosuppressive analogue of
FTY720, in hepatocellular carcinoma. Hepatology. 53:1943–1958.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Perrotti D and Neviani P: Protein
phosphatase 2A: a target for anticancer therapy. Lancet Oncol.
14:e229–e238. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yin X, Zhang N and Di W: Regulation of
LC3-dependent protective autophagy in ovarian cancer cells by
protein phosphatase 2A. Int J Gynecol Cancer. 23:630–641. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang Y, Huang Q, Lu Y, Li X and Huang S:
Reactivating PP2A by FTY720 as a novel therapy for AML with C-KIT
tyrosine kinase domain mutation. J Cell Biochem. 113:1314–1322.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Saddoughi SA, Gencer S, Peterson YK, et
al: Sphingosine analogue drug FTY720 targets I2PP2A/SET and
mediates lung tumour suppression via activation of
PP2A-RIPK1-dependent necroptosis. EMBO Mol Med. 5:105–121. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Neviani P, Santhanam R, Trotta R, et al:
The tumor suppressor PP2A is functionally inactivated in blast
crisis CML through the inhibitory activity of the BCR/ABL-regulated
SET protein. Cancer Cell. 8:355–368. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Neviani P, Santhanam R, Oaks JJ, et al:
FTY720, a new alternative for treating blast crisis chronic
myelogenous leukemia and Philadelphia chromosome-positive acute
lymphocytic leukemia. J Clin Invest. 117:2408–2421. 2007.
View Article : Google Scholar
|
|
47
|
Cristobal I, Garcia-Orti L, Cirauqui C,
Alonso MM, Calasanz MJ and Odero MD: PP2A impaired activity is a
common event in acute myeloid leukemia and its activation by
forskolin has a potent anti-leukemic effect. Leukemia. 25:606–614.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Roberts KG, Smith AM, McDougall F, et al:
Essential requirement for PP2A inhibition by the oncogenic receptor
c-KIT suggests PP2A reactivation as a strategy to treat
c-KIT+ cancers. Cancer Res. 70:5438–5447. 2010.
View Article : Google Scholar
|
|
49
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nagaoka Y, Otsuki K, Fujita T and Uesato
S: Effects of phosphorylation of immunomodulatory agent FTY720
(fingolimod) on antiproliferative activity against breast and colon
cancer cells. Biol Pharm Bull. 31:1177–1181. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lee YJ, Kim NY, Suh YA and Lee C:
Involvement of ROS in curcumin-induced autophagic cell death.
Korean J Physiol Pharmacol. 15:1–7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu JM, Pan F, Li L, et al: Piperlongumine
selectively kills glioblastoma multiforme cells via reactive oxygen
species accumulation dependent JNK and p38 activation. Biochem
Biophys Res Commun. 437:87–93. 2013. View Article : Google Scholar
|
|
53
|
Borders EB, Bivona C and Medina PJ:
Mammalian target of rapamycin: biological function and target for
novel anticancer agents. Am J Health Syst Pharm. 67:2095–2106.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yap TA, Garrett MD, Walton MI, Raynaud F,
de Bono JS and Workman P: Targeting the PI3K-AKT-mTOR pathway:
progress, pitfalls, and promises. Curr Opin Pharmacol. 8:393–412.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
LoPiccolo J, Blumenthal GM, Bernstein WB
and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: effective
combinations and clinical considerations. Drug Resist Updat.
11:32–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Alvarez M, Roman E, Santos ES and Raez LE:
New targets for non-small-cell lung cancer therapy. Expert Rev
Anticancer Ther. 7:1423–1437. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rosell R, Felip E, Garcia-Campelo R and
Balana C: The biology of non-small-cell lung cancer: identifying
new targets for rational therapy. Lung Cancer. 46:135–148. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zheng J, Zou X and Yao J: The antitumor
effect of GDC-0941 alone and in combination with rapamycin in
breast cancer cells. Chemotherapy. 58:273–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liao WT, Li TT, Wang ZG, et al:
MicroRNA-224 promotes cell proliferation and tumor growth in human
colorectal cancer by repressing PHLPP1 and PHLPP2. Clin Cancer Res.
19:4662–4672. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yothaisong S, Dokduang H, Techasen A, et
al: Increased activation of PI3K/AKT signaling pathway is
associated with cholangiocarcinoma metastasis and PI3K/mTOR
inhibition presents a possible therapeutic strategy. Tumour Biol.
Jul 6–2013.(Epub ahead of print).
|
|
61
|
Wu P and Hu YZ: PI3K/Akt/mTOR pathway
inhibitors in cancer: a perspective on clinical progress. Curr Med
Chem. 17:4326–4341. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ghayad SE and Cohen PA: Inhibitors of the
PI3K/Akt/mTOR pathway: new hope for breast cancer patients. Recent
Pat Anticancer Drug Discov. 5:29–57. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cortot A, Armand JP and Soria JC:
PI3K-AKT-mTOR pathway inhibitors. Bull Cancer. 93:19–26. 2006.(In
French).
|
|
64
|
Chua CW, Chiu YT, Yuen HF, et al:
Suppression of androgen-independent prostate cancer cell
aggressiveness by FTY720: validating Runx2 as a potential
antimetastatic drug screening platform. Clin Cancer Res.
15:4322–4335. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li MH, Hla T and Ferrer F: FTY720 inhibits
tumor growth and enhances the tumor-suppressive effect of topotecan
in neuroblastoma by interfering with the sphingolipid signaling
pathway. Pediatr Blood Cancer. 60:1418–1423. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chang CY, Ma KH, Wang JK, Tung YL and
Chueh SH: Inhibition of protein kinase C promotes differentiation
of neuroblastoma x glioma NG108–15 hybrid cells. Eur J Neurosci.
34:1074–1084. 2011.
|
|
67
|
Weng JR, Bai LY, Chiu CF, Hu JL, Chiu SJ
and Wu CY: Cucurbitane triterpenoid from Momordica charantia
induces apoptosis and autophagy in breast cancer cells, in part,
through peroxisome proliferator-activated receptor gamma
activation. Evid Based Complement Alternat Med.
2013:9356752013.PubMed/NCBI
|
|
68
|
Tolba MF, Esmat A, Al-Abd AM, et al:
Caffeic acid phenethyl ester synergistically enhances docetaxel and
paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life.
65:716–729. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li X, Pu J, Jiang S, et al: Henryin, an
ent-kaurane diterpenoid, inhibits Wnt signaling through
interference with beta-catenin/TCF4 interaction in colorectal
cancer cells. PLoS One. 8:e685252013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chung YC, Lu LC, Tsai MH, et al: The
inhibitory effect of ellagic acid on cell growth of ovarian
carcinoma cells. Evid Based Complement Alternat Med.
2013:3067052013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li H, Sun L, Xu Y, et al: Overexpression
of MTA3 correlates with tumor progression in non-small cell lung
cancer. PLoS One. 8:e666792013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chang MS, Kim DH, Roh JK, et al:
Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric
carcinoma cells through regulation of NF-kappaB. J Virol.
87:10515–10523. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jiang J, Huang X, Wang Y, Deng A and Zhou
J: FTY720 induces cell cycle arrest and apoptosis of rat glomerular
mesangial cells. Mol Biol Rep. 39:8243–8250. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li QY, Chi YY and Liu SQ: Cell cycle
arrest effects of large-dose FTY720 on lymphocytes in mouse skin
transplantation models. Immunopharmacol Immunotoxicol. 30:365–381.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gulappa T, Reddy RS, Suman S, Nyakeriga AM
and Damodaran C: Molecular interplay between cdk4 and p21 dictates
G/G cell cycle arrest in prostate cancer cells. Cancer Lett.
337:177–183. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bermudez O, Hennen E, Koch I, Lindner M
and Eickelberg O: Gli1 mediates lung cancer cell proliferation and
Sonic Hedgehog-dependent mesenchymal cell activation. PLoS One.
8:e632262013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Aigelsreiter A, Ress AL, Bettermann K, et
al: Low expression of the putative tumour suppressor spinophilin is
associated with higher proliferative activity and poor prognosis in
patients with hepatocellular carcinoma. Br J Cancer. 108:1830–1837.
2013. View Article : Google Scholar
|
|
78
|
Guo J, Gao J, Li Z, et al: Adenovirus
vector-mediated Gli1 siRNA induces growth inhibition and apoptosis
in human pancreatic cancer with Smo-dependent or Smo-independent Hh
pathway activation in vitro and in vivo. Cancer Lett. 339:185–194.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yoon JS, Kim HM, Yadunandam AK, et al:
Neferine isolated from Nelumbo nucifera enhances anti-cancer
activities in Hep3B cells: Molecular mechanisms of cell cycle
arrest, ER stress induced apoptosis and anti-angiogenic response.
Phytomedicine. 20:1013–1022. 2013. View Article : Google Scholar
|
|
80
|
Kurokawa K, Akaike Y, Masuda K, et al:
Downregulation of serine/arginine-rich splicing factor 3 induces G1
cell cycle arrest and apoptosis in colon cancer cells. Oncogene.
March 18–2013.(Epub ahead of print).
|
|
81
|
Xing Z, Zhang Y, Zhang X, Yang Y, Ma Y and
Pang D: Fangchinoline induces G1 arrest in breast cancer cells
through cell-cycle regulation. Phytother Res. Feb 11–2013.(Epub
ahead of print).
|
|
82
|
Steck PA, Pershouse MA, Jasser SA, et al:
Identification of a candidate tumour suppressor gene, MMAC1, at
chromosome 10q23.3 that is mutated in multiple advanced cancers.
Nat Genet. 15:356–362. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Santoni M, Burattini L, Nabissi M, et al:
Essential role of gli proteins in glioblastoma multiforme. Curr
Protein Pept Sci. 14:133–140. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yang P, Wang Y, Peng X, et al: Management
and survival rates in patients with glioma in China (2004–2010): a
retrospective study from a single-institution. J Neurooncol.
113:259–266. 2013.PubMed/NCBI
|
|
85
|
Brucka A and Szyłło K: Immunoexpression of
the PTEN protein and matrix metalloproteinase-2 in endometrial
cysts, endometrioid and clear cell ovarian cancer. Ginekol Pol.
84:344–351. 2013.PubMed/NCBI
|
|
86
|
Abdulkareem IH and Blair M: Effects of
indomethacin on expression of PTEN tumour suppressor in human
cancers. Niger Med J. 54:100–106. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
McQuitty E, Zhang W, Hendrickson H, et al:
Lung adenocarcinoma biomarker incidence in Hispanic versus
non-Hispanic white patients. Arch Pathol Lab Med. Jun 26–2013.(Epub
ahead of print).
|
|
88
|
Filippini SE and Vega A: Breast cancer
genes: beyond BRCA1 and BRCA2. Front Biosci. 18:1358–1372. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Alshaker H, Sauer L, Monteil D, et al:
Therapeutic potential of targeting SK1 in human cancers. Adv Cancer
Res. 117:143–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lim KG, Tonelli F, Berdyshev E, et al:
Inhibition kinetics and regulation of sphingosine kinase 1
expression in prostate cancer cells: functional differences between
sphingosine kinase 1a and 1b. Int J Biochem Cell Biol.
44:1457–1464. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Rosa R, Marciano R, Malapelle U, et al:
Sphingosine kinase 1 overexpression contributes to cetuximab
resistance in human colorectal cancer models. Clin Cancer Res.
19:138–147. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lim KG, Tonelli F, Li Z, et al: FTY720
analogues as sphingosine kinase 1 inhibitors: enzyme inhibition
kinetics, allosterism, proteasomal degradation, and actin
rearrangement in MCF-7 breast cancer cells. J Biol Chem.
286:18633–18640. 2011. View Article : Google Scholar
|
|
93
|
Tonelli F, Lim KG, Loveridge C, et al:
FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1
and promote its proteasomal degradation in human pulmonary artery
smooth muscle, breast cancer and androgen-independent prostate
cancer cells. Cell Signal. 22:1536–1542. 2010. View Article : Google Scholar
|
|
94
|
Pitson SM: Regulation of sphingosine
kinase and sphingolipid signaling. Trends Biochem Sci. 36:97–107.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li MH, Hla T and Ferrer F: Sphingolipid
modulation of angiogenic factor expression in neuroblastoma. Cancer
Prev Res (Phila). 4:1325–1332. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu Z, Graham K, Foote M, et al: 14-3-3
targets chaperone-associated misfolded proteins to aggresomes. J
Cell Sci. 126:4173–4186
|
|
97
|
Zhang L, Chen J and Fu H: Suppression of
apoptosis signal-regulating kinase 1-induced cell death by 14-3-3
proteins. Proc Natl Acad Sci USA. 96:8511–8515. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Woodcock JM, Ma Y, Coolen C, et al:
Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins
to regulate their function. Cell Signal. 22:1291–1299. 2010.
View Article : Google Scholar : PubMed/NCBI
|