Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
2014-February Volume 31 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
2014-February Volume 31 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Epigenetic regulation and cancer (Review)

  • Authors:
    • Q. W. Chen
    • X. Y. Zhu
    • Y. Y. Li
    • Z. Q. Meng
  • View Affiliations / Copyright

    Affiliations: Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, P.R. China
  • Pages: 523-532
    |
    Published online on: December 11, 2013
       https://doi.org/10.3892/or.2013.2913
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

‘Epigenetics’ is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389:251–260. 1997. View Article : Google Scholar : PubMed/NCBI

2 

Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar

3 

Suzuki MM and Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 9:465–476. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Beauvais CH, Vassetzky Y, Rosen JM and Devinoy E: The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia. 15:85–100. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Bernstein BE, Meissner A and Lander ES: The mammalian epigenome. Cell. 128:669–681. 2007. View Article : Google Scholar

6 

Watt F and Molloy PL: Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2:1136–1143. 1988. View Article : Google Scholar : PubMed/NCBI

7 

Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386–389. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M and Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 39:457–466. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Yamada Y, Shirakawa T, Taylor TD, et al: A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 11q: comparison with chromosome 21q. DNA Seq. 17:300–306. 2006.PubMed/NCBI

10 

Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Cheung P, Allis CD and Sassone-Corsi P: Signaling to chromatin through histone modifications. Cell. 103:263–271. 2000. View Article : Google Scholar

12 

Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR and Price BD: Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol. 11:1376–1382. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Li B, Carey M and Workman JL: The role of chromatin during transcription. Cell. 128:707–719. 2007. View Article : Google Scholar

14 

Li Y, Sun L, Zhang Y, et al: The histone modifications governing TFF1 transcription mediated by estrogen receptor. J Biol Chem. 286:13925–13936. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Rouhi A, Mager DL, Humphries RK and Kuchenbauer F: MiRNAs, epigenetics, and cancer. Mamm Genome. 19:517–525. 2008. View Article : Google Scholar

17 

Lim LP, Glasner ME, Yekta S, Burge CB and Bartel DP: Vertebrate microRNA genes. Science. 299:15402003. View Article : Google Scholar : PubMed/NCBI

18 

Lai EC, Tomancak P, Williams RW and Rubin GM: Computational identification of Drosophila microRNA genes. Genome Biol. 4:R422003. View Article : Google Scholar : PubMed/NCBI

19 

Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res. 32:D109–D111. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Iorio MV, Piovan C and Croce CM: Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. 1799:694–701. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Friedman JM, Liang G, Liu CC, et al: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69:2623–2629. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Pan W, Zhu S, Yuan M, et al: MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 184:6773–6781. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Barber BA and Rastegar M: Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat. 192:261–274. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Martin GS: The road to Src. Oncogene. 23:7910–7917. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med. 10:789–799. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Dietrich D, Lesche R, Tetzner R, et al: Analysis of DNA methylation of multiple genes in microdissected cells from formalin-fixed and paraffin-embedded tissues. J Histochem Cytochem. 57:477–489. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Yballe CM, Vu TH and Hoffman AR: Imprinting and expression of insulin-like growth factor-II and H19 in normal breast tissue and breast tumor. J Clin Endocrinol Metab. 81:1607–1612. 1996.PubMed/NCBI

28 

Li S, Rong M and Iacopetta B: DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett. 237:272–280. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Parrella P, Poeta ML, Gallo AP, et al: Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res. 10:5349–5354. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Swift-Scanlan T, Vang R, Blackford A, Fackler MJ and Sukumar S: Methylated genes in breast cancer: associations with clinical and histopathological features in a familial breast cancer cohort. Cancer Biol Ther. 11:853–865. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Fackler MJ, McVeigh M, Evron E, et al: DNA methylation of RASSF1A, HIN-1, RAR-β, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 107:970–975. 2003.

32 

Yan L, Yang X and Davidson NE: Role of DNA methylation and histone acetylation in steroid receptor expression in breast cancer. J Mammary Gland Biol Neoplasia. 6:183–192. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Lehmann U, Hasemeier B, Romermann D, Muller M, Langer F and Kreipe H: Epigenetic inactivation of microRNA genes in mammary carcinoma. Verh Dtsch Ges Pathol. 91:214–220. 2007.(In German).

34 

Kapoor-Vazirani P, Kagey JD, Powell DR and Vertino PM: Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 68:6810–6821. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Yang X, Karuturi RK, Sun F, et al: CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One. 4:e50112009. View Article : Google Scholar : PubMed/NCBI

36 

Chen J, Luo Q, Yuan Y, et al: Pygo2 associates with MLL2 histone methyltransferase and GCN5 histone acetyltransferase complexes to augment Wnt target gene expression and breast cancer stem-like cell expansion. Mol Cell Biol. 30:5621–5635. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Shi L, Sun L, Li Q, et al: Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci USA. 108:7541–7546. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Wang Y, Zhang H, Chen Y, et al: LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 138:660–672. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Sieuwerts AM, Mostert B, Bolt-de Vries J, et al: mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res. 17:3600–3618. 2011. View Article : Google Scholar : PubMed/NCBI

40 

O’Day E and Lal A: MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 12:2012010.

41 

Yu F, Yao H, Zhu P, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Walter BA, Gomez-Macias G, Valera VA, Sobel M and Merino MJ: miR-21 expression in pregnancy-associated breast cancer: a possible marker of poor prognosis. J Cancer. 2:67–75. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Hossain A, Kuo MT and Saunders GF: Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 26:8191–8201. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Zhu S, Wu H, Wu F, Nie D, Sheng S and Mo YY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18:350–359. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T and Zhu Y: Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer. Cancer Lett. 302:47–53. 2011.

46 

Bedford MT and van Helden PD: Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 47:5274–5276. 1987.PubMed/NCBI

47 

Pakneshan P, Szyf M and Rabbani SA: Hypomethylation of urokinase (uPA) promoter in breast and prostate cancer: prognostic and therapeutic implications. Curr Cancer Drug Targets. 5:471–488. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Cho B, Lee H, Jeong S, et al: Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem Biophys Res Commun. 307:52–63. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Tokizane T, Shiina H, Igawa M, et al: Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res. 11:5793–5801. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Laner T, Schulz WA, Engers R, Muller M and Florl AR: Hypomethylation of the XIST gene promoter in prostate cancer. Oncol Res. 15:257–264. 2005.PubMed/NCBI

51 

Reibenwein J, Pils D, Horak P, et al: Promoter hypermethylation of GSTP1, AR, and 14-3-3σ in serum of prostate cancer patients and its clinical relevance. Prostate. 67:427–432. 2007.PubMed/NCBI

52 

Dammann R, Schagdarsurengin U, Liu L, et al: Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene. 22:3806–3812. 2003.PubMed/NCBI

53 

Woodson K, Hayes R, Wideroff L, Villaruz L and Tangrea J: Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate. 55:199–205. 2003.

54 

Phe V, Cussenot O and Roupret M: Interest of methylated genes as biomarkers in urothelial cell carcinomas of the urinary tract. BJU Int. 104:896–901. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Pulukuri SM, Patibandla S, Patel J, Estes N and Rao JS: Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene. 26:5229–5237. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Henrique R, Costa VL, Cerveira N, et al: Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J Mol Med. 84:911–918. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M and Kurdistani SK: Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 435:1262–1266. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Ellinger J, Kahl P, von der Gathen J, et al: Global levels of histone modifications predict prostate cancer recurrence. Prostate. 70:61–69. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Muller I, Wischnewski F, Pantel K and Schwarzenbach H: Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by methyl-CpG binding proteins and histone modifications. BMC Cancer. 10:2972010. View Article : Google Scholar : PubMed/NCBI

60 

Yu J, Cao Q, Mehra R, et al: Integrative genomics analysis reveals silencing of β-adrenergic signaling by polycomb in prostate cancer. Cancer Cell. 12:419–431. 2007.

61 

Sikand K, Slaibi JE, Singh R, Slane SD and Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer. 129:810–819. 2011.

62 

Majid S, Dar AA, Saini S, et al: MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 116:5637–5649. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Mercatelli N, Coppola V, Bonci D, et al: The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One. 3:e40292008. View Article : Google Scholar : PubMed/NCBI

64 

Dong Q, Meng P, Wang T, et al: MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One. 5:e101472010. View Article : Google Scholar : PubMed/NCBI

65 

Peng X, Guo W, Liu T, et al: Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One. 6:e203412011. View Article : Google Scholar : PubMed/NCBI

66 

Fujita Y, Kojima K, Hamada N, et al: Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun. 377:114–119. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Lodygin D, Tarasov V, Epanchintsev A, et al: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 7:2591–2600. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Lin SL, Chiang A, Chang D and Ying SY: Loss of mir-146a function in hormone-refractory prostate cancer. RNA. 14:417–424. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Rauch TA, Zhong X, Wu X, et al: High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA. 105:252–257. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Glazer CA, Smith IM, Ochs MF, et al: Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC. PLoS One. 4:e81892009. View Article : Google Scholar : PubMed/NCBI

71 

Otterson GA, Khleif SN, Chen W, Coxon AB and Kaye FJ: CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene. 11:1211–1216. 1995.PubMed/NCBI

72 

Paz MF, Avila S, Fraga MF, et al: Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 62:4519–4524. 2002.PubMed/NCBI

73 

Pereira MA, Tao L, Liu Y, Li L, Steele VE and Lubet RA: Modulation by budesonide of DNA methylation and mRNA expression in mouse lung tumors. Int J Cancer. 120:1150–1153. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Katayama H, Hiraki A, Fujiwara K, et al: Aberrant promoter methylation profile in pleural fluid DNA and clinicopathological factors in patients with non-small cell lung cancer. Asian Pac J Cancer Prev. 8:221–224. 2007.PubMed/NCBI

75 

Licchesi JD, Westra WH, Hooker CM and Herman JG: Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin Cancer Res. 14:2570–2578. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Barski A, Cuddapah S, Cui K, et al: High-resolution profiling of histone methylations in the human genome. Cell. 129:823–837. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Seligson DB, Horvath S, McBrian MA, et al: Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 174:1619–1628. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Feng Y, Wang X, Xu L, et al: The transcription factor ZBP-89 suppresses p16 expression through a histone modification mechanism to affect cell senescence. FEBS J. 276:4197–4206. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Nonaka D, Fabbri A, Roz L, et al: Reduced FEZ1/LZTS1 expression and outcome prediction in lung cancer. Cancer Res. 65:1207–1212. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Nishioka M, Kohno T, Tani M, et al: MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc Natl Acad Sci USA. 99:12269–12274. 2002. View Article : Google Scholar : PubMed/NCBI

81 

Chen MW, Hua KT, Kao HJ, et al: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res. 70:7830–7840. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Johnson SM, Grosshans H, Shingara J, et al: RAS is regulated by the let-7 microRNA family. Cell. 120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Grosshans H, Johnson T, Reinert KL, Gerstein M and Slack FJ: The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell. 8:321–330. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Lujambio A and Esteller M: CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 6:1455–1459. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Mendell JT: miRiad roles for the miR-17-92 cluster in development and disease. Cell. 133:217–222. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Saito M, Schetter AJ, Mollerup S, et al: The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res. 17:1875–1882. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Fang JY, Lu R, Mikovits JA, Cheng ZH, Zhu HY and Chen YX: Regulation of hMSH2 and hMLH1 expression in the human colon cancer cell line SW1116 by DNA methyltransferase 1. Cancer Lett. 233:124–130. 2006.

88 

Goel A, Arnold CN, Niedzwiecki D, et al: Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 64:3014–3021. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Yuan BZ, Durkin ME and Popescu NC: Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genet Cytogenet. 140:113–117. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Thangaraju M, Carswell KN, Prasad PD and Ganapathy V: Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochem J. 417:379–389. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW and Giardina C: HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog. 47:137–147. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Godman CA, Joshi R, Tierney BR, et al: HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol Ther. 7:1570–1580. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Tuttle R, Simon M, Hitch DC, et al: Senescence-associated gene YPEL3 is downregulated in human colon tumors. Ann Surg Oncol. 18:1791–1796. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Li Q and Chen H: Transcriptional silencing of N-Myc downstream-regulated gene 1 (NDRG1) in metastatic colon cancer cell line SW620. Clin Exp Metastasis. 28:127–135. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Menigatti M, Cattaneo E, Sabates-Bellver J, et al: The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. Mol Cancer. 8:1242009. View Article : Google Scholar : PubMed/NCBI

96 

Yadav S, Singhal J, Singhal SS and Awasthi S: hSET1: a novel approach for colon cancer therapy. Biochem Pharmacol. 77:1635–1641. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S and Giaccia AJ: Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1α enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 30:344–353. 2010.

98 

Vlaicu SI, Tegla CA, Cudrici CD, et al: Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 88:67–76. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Yin Q, Wang X, Fewell C, et al: MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein-Barr virus reactivation. J Virol. 84:6318–6327. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Liu C, Kelnar K, Liu B, et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T and Baserga R: Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 282:32582–32590. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Li T, Li D, Sha J, Sun P and Huang Y: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 383:280–285. 2009. View Article : Google Scholar : PubMed/NCBI

103 

Tang JT, Wang JL, Du W, et al: MicroRNA-345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis. 32:1207–1215. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Schneider AC, Heukamp LC, Rogenhofer S, et al: Global histone H4K20 trimethylation predicts cancer-specific survival in patients with muscle-invasive bladder cancer. BJU Int. 1082:E290–E296. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Elsheikh SE, Green AR, Rakha EA, et al: Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69:3802–3809. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Van Den Broeck A, Brambilla E, Moro-Sibilot D, et al: Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 14:7237–7245. 2008.PubMed/NCBI

107 

Ellinger J, Kahl P, Mertens C, et al: Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer. 127:2360–2366. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Ke XS, Qu Y, Rostad K, et al: Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One. 4:e46872009. View Article : Google Scholar : PubMed/NCBI

109 

Li Q, Wang X, Lu Z, et al: Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. PLoS One. 5:e137322010. View Article : Google Scholar : PubMed/NCBI

110 

McGarvey KM, Van Neste L, Cope L, et al: Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res. 68:5753–5759. 2008. View Article : Google Scholar : PubMed/NCBI

111 

Wei Y, Xia W, Zhang Z, et al: Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 47:701–706. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Pogribny IP, Tryndyak VP, Muskhelishvili L, Rusyn I and Ross SA: Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr. 137:216S–222S. 2007.PubMed/NCBI

113 

Canaani E, Nakamura T, Rozovskaia T, Smith ST, Mori T, Croce CM and Mazo A: ALL-1/MLL1, a homologue of Drosophila TRITHORAX, modifies chromatin and is directly involved in infant acute leukaemia. Br J Cancer. 90:756–760. 2004.

114 

Liu H, Takeda S, Kumar R, et al: Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature. 467:343–346. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Scacheri PC, Davis S, Odom DT, et al: Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2:e512006. View Article : Google Scholar : PubMed/NCBI

116 

Seigne C, Fontaniere S, Carreira C, et al: Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice. BMC Cancer. 10:3952010. View Article : Google Scholar : PubMed/NCBI

117 

Feng ZJ, Gao SB, Wu Y, Xu XF, Hua X and Jin GH: Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP β/ζ signaling by menin. Oncogene. 29:5416–5426. 2010.PubMed/NCBI

118 

Wang J, Zhou Y, Yin B, et al: ASH2L: alternative splicing and downregulation during induced megakaryocytic differentiation of multipotential leukemia cell lines. J Mol Med. 79:399–405. 2001. View Article : Google Scholar

119 

Magerl C, Ellinger J, Braunschweig T, et al: H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol. 41:181–189. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Kobayashi Y, Absher DM, Gulzar ZG, et al: DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 21:1017–1027. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Chase A and Cross NC: Aberrations of EZH2 in cancer. Clin Cancer Res. 17:2613–2618. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM and Elemento O: EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood. 116:5247–5255. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Tell R, Rivera CA, Eskra J, Taglia LN, Blunier A, Wang QT and Benya RV: Gastrin-releasing peptide signaling alters colon cancer invasiveness via heterochromatin protein 1Hsβ. Am J Pathol. 178:672–678. 2011.PubMed/NCBI

124 

Xi Y, Formentini A, Nakajima G, Kornmann M and Ju J: Validation of biomarkers associated with 5-fluorouracil and thymidylate synthase in colorectal cancer. Oncol Rep. 19:257–262. 2008.PubMed/NCBI

125 

Wang XQ, Miao X, Cai Q, Garcia-Barcelo MM and Fan ST: SMYD3 tandem repeats polymorphism is not associated with the occurrence and metastasis of hepatocellular carcinoma in a Chinese population. Exp Oncol. 29:71–73. 2007.PubMed/NCBI

126 

Oue N, Mitani Y, Motoshita J, et al: Accumulation of DNA methylation is associated with tumor stage in gastric cancer. Cancer. 106:1250–1259. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Fang W, Piao Z, Buyse IM, Simon D, Sheu JC, Perucho M and Huang S: Preferential loss of a polymorphic RIZ allele in human hepatocellular carcinoma. Br J Cancer. 84:743–747. 2001. View Article : Google Scholar : PubMed/NCBI

128 

Zhao Q, Caballero OL, Levy S, et al: Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc Natl Acad Sci USA. 106:1886–1891. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Lucio-Eterovic AK, Singh MM, Gardner JE, Veerappan CS, Rice JC and Carpenter PB: Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function. Proc Natl Acad Sci USA. 107:16952–16957. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Berdasco M, Ropero S, Setien F, et al: Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA. 106:21830–21835. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ and Kaneda Y: A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 460:287–291. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Taketani T, Taki T, Nakamura H, Taniwaki M, Masuda J and Hayashi Y: NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes. Cancer Genet Cytogenet. 190:108–112. 2009. View Article : Google Scholar : PubMed/NCBI

133 

Morishita M and di Luccio E: Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta. 1816:158–163. 2011.PubMed/NCBI

134 

Watanabe H, Soejima K, Yasuda H, et al: Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int. 8:152008. View Article : Google Scholar

135 

Visakorpi T, Suikki HE, Kujala PM, Tammela TLJ, van Weerden WM and Vessella RL: Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate. 70:889–898. 2010.PubMed/NCBI

136 

Fukuda T, Tokunaga A, Sakamoto R and Yoshida N: Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 46:614–624. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Vinatzer U, Gollinger M, Mullauer L, Raderer M, Chott A and Streubel B: Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 14:6426–6431. 2008. View Article : Google Scholar

138 

Yang ZQ, Imoto I, Fukuda Y, et al: Identification of a novel gene, GASC1, within an amplicon at 9p23–24 frequently detected in esophageal cancer cell lines. Cancer Res. 60:4735–4739. 2000.PubMed/NCBI

139 

Zeng J, Ge Z, Wang L, et al: The histone demethylase RBP2 is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology. 138:981–992. 2010. View Article : Google Scholar : PubMed/NCBI

140 

Rao M, Chinnasamy N, Hong JA, et al: Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res. 71:4192–4204. 2011. View Article : Google Scholar : PubMed/NCBI

141 

Liggins AP, Lim SH, Soilleux EJ, Pulford K and Banham AH: A panel of cancer-testis genes exhibiting broad-spectrum expression in haematological malignancies. Cancer Immun. 10:82010.PubMed/NCBI

142 

Jankowska A, Makishima H, Tiu RV, et al: Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 116:268–269. 2010.PubMed/NCBI

143 

Xiang Y, Zhu Z, Han G, Lin H, Xu L and Chen CD: JMJD3 is a histone H3K27 demethylase. Cell Res. 17:850–857. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen QW, Zhu XY, Li YY and Meng ZQ: Epigenetic regulation and cancer (Review). Oncol Rep 31: 523-532, 2014.
APA
Chen, Q.W., Zhu, X.Y., Li, Y.Y., & Meng, Z.Q. (2014). Epigenetic regulation and cancer (Review). Oncology Reports, 31, 523-532. https://doi.org/10.3892/or.2013.2913
MLA
Chen, Q. W., Zhu, X. Y., Li, Y. Y., Meng, Z. Q."Epigenetic regulation and cancer (Review)". Oncology Reports 31.2 (2014): 523-532.
Chicago
Chen, Q. W., Zhu, X. Y., Li, Y. Y., Meng, Z. Q."Epigenetic regulation and cancer (Review)". Oncology Reports 31, no. 2 (2014): 523-532. https://doi.org/10.3892/or.2013.2913
Copy and paste a formatted citation
x
Spandidos Publications style
Chen QW, Zhu XY, Li YY and Meng ZQ: Epigenetic regulation and cancer (Review). Oncol Rep 31: 523-532, 2014.
APA
Chen, Q.W., Zhu, X.Y., Li, Y.Y., & Meng, Z.Q. (2014). Epigenetic regulation and cancer (Review). Oncology Reports, 31, 523-532. https://doi.org/10.3892/or.2013.2913
MLA
Chen, Q. W., Zhu, X. Y., Li, Y. Y., Meng, Z. Q."Epigenetic regulation and cancer (Review)". Oncology Reports 31.2 (2014): 523-532.
Chicago
Chen, Q. W., Zhu, X. Y., Li, Y. Y., Meng, Z. Q."Epigenetic regulation and cancer (Review)". Oncology Reports 31, no. 2 (2014): 523-532. https://doi.org/10.3892/or.2013.2913
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team