Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells

  • Authors:
    • Shigeki Nakagawa
    • Yasuo Sakamoto
    • Hirohisa Okabe
    • Hiromitsu Hayashi
    • Daisuke Hashimoto
    • Naomi Yokoyama
    • Ryuma Tokunaga
    • Keita Sakamoto
    • Hideyuki Kuroki
    • Kosuke Mima
    • Toru Beppu
    • Hideo Baba
  • View Affiliations

  • Published online on: December 13, 2013     https://doi.org/10.3892/or.2013.2922
  • Pages: 983-988
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Enhancer of zeste homolog 2 (EZH2) is involved in malignant transformation and the biological aggressiveness of several human malignancies. Growing evidence indicates that EZH2 may be an appropriate therapeutic target for malignancies, including cholangiocarcinoma. Recently, an S-adenosyl-L-homocysteine hydrolase inhibitor, 3-deazaneplanocin A (DZNep) was shown to deplete and inhibit EZH2. The aim of this study was to determine the effect of DZNep and the combination of gemcitabine and DZNep in cholangiocarcinoma cells. The effects of DZNep and its combination with gemcitabine were assessed in the cholangiocarcinoma cell lines RBE and TFK-1. DZNep depleted the cellular levels of EZH2 and inhibited the associated histone H3 lysine 27 trimethylation. DZNep treatment resulted in the inhibition of proliferation in the cholangiocarcinoma cell lines, and the combination of DZNep and gemcitabine showed synergistic inhibition of cell proliferation. DZNep induced apoptosis and G1 phase cell cycle arrest in cholangiocarcinoma cells, and the combination of DZNep and gemcitabine enhanced the induced apoptosis and G1 arrest when compared with gemcitabine alone. Inhibition of cell proliferation by DZNep was partially associated with upregulation of p16INK4a and p17KIP1. The present study shows that DZNep inhibits cell proliferation by inducing G1 arrest and apoptosis. These results indicate that an epigenetic therapy that pharmacologically targets EZH2 via DZNep may constitute a novel approach for the treatment of cholangiocarcinoma.
View Figures
View References

Related Articles

Journal Cover

February 2014
Volume 31 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
APA
Nakagawa, S., Sakamoto, Y., Okabe, H., Hayashi, H., Hashimoto, D., Yokoyama, N. ... Baba, H. (2014). Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells. Oncology Reports, 31, 983-988. https://doi.org/10.3892/or.2013.2922
MLA
Nakagawa, S., Sakamoto, Y., Okabe, H., Hayashi, H., Hashimoto, D., Yokoyama, N., Tokunaga, R., Sakamoto, K., Kuroki, H., Mima, K., Beppu, T., Baba, H."Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells". Oncology Reports 31.2 (2014): 983-988.
Chicago
Nakagawa, S., Sakamoto, Y., Okabe, H., Hayashi, H., Hashimoto, D., Yokoyama, N., Tokunaga, R., Sakamoto, K., Kuroki, H., Mima, K., Beppu, T., Baba, H."Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells". Oncology Reports 31, no. 2 (2014): 983-988. https://doi.org/10.3892/or.2013.2922