Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2014 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2014 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review)

  • Authors:
    • Sadek Malas
    • Micaela Harrasser
    • Katie E. Lacy
    • Sophia N. Karagiannis
  • View Affiliations / Copyright

    Affiliations: St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine and NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals, King's College London, London SE1 9RT, UK
  • Pages: 875-886
    |
    Published online on: June 20, 2014
       https://doi.org/10.3892/or.2014.3275
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The interface between malignant melanoma and patient immunity has long been recognised and efforts to treat this most lethal form of skin cancer by activating immune responses with cytokine, vaccine and also antibody immunotherapies have demonstrated promise in limited subsets of patients. In the present study, we discuss different antibody immunotherapy approaches evaluated in the context of melanoma, each designed to act on distinct targets and to employ different mechanisms to restrict tumour growth and spread. Monoclonal antibodies recognising melanoma-associated antigens such as CSPG4/MCSP and targeting elements of tumour-associated vasculature (VEGF) have constituted long-standing translational approaches aimed at reducing melanoma growth and metastasis. Recent insights into mechanisms of immune regulation and tumour-immune cell interactions have helped to identify checkpoint molecules on immune (CTLA4, PD-1) and tumour (PD-L1) cells as promising therapeutic targets. Checkpoint blockade with antibodies to activate immune responses and perhaps to counteract melanoma-associated immunomodulatory mechanisms led to the first clinical breakthrough in the form of an anti-CTLA4 monoclonal antibody. Novel modalities to target key mechanisms of immune suppression and to redirect potent effector cell subsets against tumours are expected to improve clinical outcomes and to provide previously unexplored avenues for therapeutic interventions.
View Figures

Figure 1

View References

1 

Balch CM, Gershenwald JE, Soong SJ, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Gerner RE, Moore GE and Dickey C: Combination chemotherapy in disseminated melanoma and other solid tumors in adults. Oncology. 31:22–30. 1975. View Article : Google Scholar : PubMed/NCBI

3 

Atkins MB: Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin Cancer Res. 12:2353s–2358s. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Ballantyne AD and Garnock-Jones KP: Dabrafenib: first global approval. Drugs. 73:1367–1376. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Bollag G, Tsai J, Zhang J, et al: Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 11:873–886. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Wright CJ and McCormack PL: Trametinib: first global approval. Drugs. 73:1245–1254. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Sznol M: Advances in the treatment of metastatic melanoma: new immunomodulatory agents. Semin Oncol. 39:192–203. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Oble DA, Loewe R, Yu P and Mihm MC Jr: Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun. 9:32009.PubMed/NCBI

9 

Shimanovsky A, Jethava A and Dasanu CA: Immune alterations in malignant melanoma and current immunotherapy concepts. Expert Opin Biol Ther. 13:1413–1427. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Cipponi A, Mercier M, Seremet T, et al: Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 72:3997–4007. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Gilbert AE, Karagiannis P, Dodev T, et al: Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One. 6:e193302011. View Article : Google Scholar : PubMed/NCBI

12 

Lacy KE, Karagiannis SN and Nestle FO: Advances in the treatment of melanoma. Clin Med. 12:168–171. 2012. View Article : Google Scholar

13 

Fujimura T, Ring S, Umansky V, Mahnke K and Enk AH: Regulatory T cells stimulate B7-H1 expression in myeloid-derived suppressor cells in ret melanomas. J Invest Dermatol. 132:1239–1246. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Karagiannis P, Gilbert AE, Nestle FO and Karagiannis SN: IgG4 antibodies and cancer-associated inflammation: insights into a novel mechanism of immune escape. Oncoimmunology. 2:e248892013. View Article : Google Scholar : PubMed/NCBI

15 

Karagiannis P, Gilbert AE, Josephs DH, et al: IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest. 123:1457–1474. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Wang T, Ge Y, Xiao M, et al: Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res. 25:493–505. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Atkins MB, Lotze MT, Dutcher JP, et al: High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 17:2105–2116. 1999.PubMed/NCBI

18 

Hauschild A: Adjuvant interferon alfa for melanoma: new evidence-based treatment recommendations? Curr Oncol. 16:3–6. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Petrella T, Quirt I, Verma S, Haynes AE, Charette M, Bak K, et al: Single-agent interleukin-2 in the treatment of metastatic melanoma: a systematic review. Cancer Treat Rev. 33:484–496. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Sasse AD, Sasse EC, Clark LG, Ulloa L and Clark OA: Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst Rev. CD0054132007.PubMed/NCBI

21 

Borden EC: Interferons: pleiotropic cellular modulators. Clin Immunol Immunopathol. 62:S18–24. 1992. View Article : Google Scholar : PubMed/NCBI

22 

Bart RS, Porzio NR, Kopf AW, Vilcek JT, Cheng EH and Farcet Y: Inhibition of growth of B16 murine malignant melanoma by exogenous interferon. Cancer Res. 40:614–619. 1980.PubMed/NCBI

23 

Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC and Blum RH: Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 14:7–17. 1996.PubMed/NCBI

24 

Wheatley K, Ives N, Hancock B, Gore M, Eggermont A and Suciu S: Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat Rev. 29:241–252. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Hillner BE: Cost-effectiveness assessment of interferon alfa-2b as adjuvant therapy of high-risk resected cutaneous melanoma. Eur J Cancer. 34:S18–S21. 1998. View Article : Google Scholar : PubMed/NCBI

26 

Eggermont AM, Suciu S, Santinami M, et al: Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 372:117–126. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Zikich D, Schachter J and Besser MJ: Immunotherapy for the management of advanced melanoma: the next steps. Am J Clin Dermatol. 14:261–272. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Dannull J, Haley NR, Archer G, et al: Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest. 123:3135–3145. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Yuan J, Ku GY, Gallardo HF, et al: Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun. 9:52009.PubMed/NCBI

31 

Reichert JM and Dhimolea E: The future of antibodies as cancer drugs. Drug Discov Today. 17:954–963. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Azijli K, Stelloo E, Peters GJ and van den Eertwegh AJ: New developments in the treatment of metastatic melanoma: immune checkpoint inhibitors and targeted therapies. Anticancer Res. 34:1493–1505. 2014.PubMed/NCBI

33 

Price MA, Colvin Wanshura LE, Yang J, et al: CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell Melanoma Res. 24:1148–1157. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Wang X, Osada T, Wang Y, et al: CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst. 102:1496–1512. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Yang J, Price MA, Neudauer CL, et al: Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol. 165:881–891. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Yang J, Price MA, Li GY, et al: Melanoma proteoglycan modifies gene expression to stimulate tumor cell motility, growth, and epithelial-to-mesenchymal transition. Cancer Res. 69:7538–7547. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Chekenya M, Krakstad C, Svendsen A, et al: The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling. Oncogene. 27:5182–5194. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Maciag PC, Seavey MM, Pan ZK, Ferrone S and Paterson Y: Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res. 68:8066–8075. 2008. View Article : Google Scholar

39 

Kusama M, Kageshita T, Chen ZJ and Ferrone S: Characterization of syngeneic antiidiotypic monoclonal antibodies to murine anti-human high molecular weight melanoma-associated antigen monoclonal antibodies. J Immunol. 143:3844–3852. 1989.

40 

Chen ZJ, Yang H, Kageshita T and Ferrone S: Human high-molecular-weight melanoma-associated antigen mimicry by mouse antiidiotypic monoclonal antibody TK7-371. Cancer Res. 51:4790–4797. 1991.PubMed/NCBI

41 

Mittelman A, Chen ZJ, Yang H, Wong GY and Ferrone S: Human high molecular weight melanoma-associated antigen (HMW-MAA) mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: induction of humoral anti-HMW-MAA immunity and prolongation of survival in patients with stage IV melanoma. Proc Natl Acad Sci USA. 89:466–470. 1992. View Article : Google Scholar

42 

Mittelman A, Chen GZ, Wong GY, Liu C, Hirai S and Ferrone S: Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: modulation of the immunogenicity in patients with malignant melanoma. Clin Cancer Res. 1:705–713. 1995.PubMed/NCBI

43 

Mittelman A, Wang X, Matsumoto K and Ferrone S: Antiantiidiotypic response and clinical course of the disease in patients with malignant melanoma immunized with mouse antiidiotypic monoclonal antibody MK2-23. Hybridoma. 14:175–181. 1995. View Article : Google Scholar

44 

Murray JL, Gillogly M, Kawano K, et al: Fine specificity of high molecular weight-melanoma-associated antigen-specific cytotoxic T lymphocytes elicited by anti-idiotypic monoclonal antibodies in patients with melanoma. Cancer Res. 64:5481–5488. 2004. View Article : Google Scholar

45 

Torisu-Itakura H, Schoellhammer HF, Sim MS, et al: Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells. J Immunother. 34:597–605. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Rybczynska AA, Dierckx RA, Ishiwata K, Elsinga PH and van Waarde A: Cytotoxicity of sigma-receptor ligands is associated with major changes of cellular metabolism and complete occupancy of the sigma-2 subpopulation. J Nucl Med. 49:2049–2056. 2008. View Article : Google Scholar : PubMed/NCBI

47 

de Bruyn M, Rybczynska AA, Wei Y, et al: Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo. Mol Cancer. 9:3012010.

48 

Geldres C, Savoldo B, Hoyos V, et al: T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res. 20:962–971. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Mehnert JM, McCarthy MM, Jilaveanu L, et al: Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol. 41:375–384. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Spinella F, Caprara V, Cianfrocca R, et al: The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor. Carcinogenesis. 35:840–848. 2014. View Article : Google Scholar

51 

Hsu JY and Wakelee HA: Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs. 23:289–304. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Molhoek KR, Griesemann H, Shu J, Gershenwald JE, Brautigan DL and Slingluff CL Jr: Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res. 68:4392–4397. 2008. View Article : Google Scholar

53 

Del Vecchio M, Mortarini R, Canova S, et al: Bevacizumab plus fotemustine as first-line treatment in metastatic melanoma patients: clinical activity and modulation of angiogenesis and lymphangiogenesis factors. Clin Cancer Res. 16:5862–5872. 2010.PubMed/NCBI

54 

Varker KA, Biber JE, Kefauver C, et al: A randomized phase 2 trial of bevacizumab with or without daily low-dose interferon alfa-2b in metastatic malignant melanoma. Ann Surg Oncol. 14:2367–2376. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Guenterberg KD, Grignol VP, Relekar KV, et al: A pilot study of bevacizumab and interferon-alpha2b in ocular melanoma. Am J Clin Oncol. 34:87–91. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Corrie PG, Marshall A, Dunn JA, et al: Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol. 15:620–630. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP and Rosenberg SA: Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70:6171–6180. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Perez DG, Suman VJ, Fitch TR, et al: Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047A. Cancer. 115:119–127. 2009. View Article : Google Scholar

59 

Perez EA, Hillman DW, Dentchev T, et al: North Central Cancer Treatment Group (NCCTG) N0432: phase II trial of docetaxel with capecitabine and bevacizumab as first-line chemotherapy for patients with metastatic breast cancer. Ann Oncol. 21:269–274. 2010. View Article : Google Scholar

60 

Allison JP, Chambers C, Hurwitz A, et al: A role for CTLA-4 mediated inhibitory signals in peripheral T cell tolerance? Novartis Found Symp. 215:92–98. 1998.PubMed/NCBI

61 

Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK and Ledbetter JA: CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 174:561–569. 1991. View Article : Google Scholar : PubMed/NCBI

62 

Simpson TR, Li F, Montalvo-Ortiz W, et al: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 210:1695–1710. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Bulliard Y, Jolicoeur R, Windman M, et al: Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med. 210:1685–1693. 2013.

64 

Friedline RH, Brown DS, Nguyen H, et al: CD4+regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 206:421–434. 2009.PubMed/NCBI

65 

Phan GQ, Yang JC, Sherry RM, et al: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 100:8372–8377. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Weber JS, O’Day S, Urba W, et al: Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol. 26:5950–5956. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Ribas A, Camacho LH, Lopez-Berestein G, et al: Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol. 23:8968–8977. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Robert C, Thomas L, Bondarenko I, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Hersh EM, O’Day SJ, Powderly J, et al: A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest New Drugs. 29:489–498. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Hodi FS, O’Day SJ, McDermott DF, et al: Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med. 363:711–723. 2010. View Article : Google Scholar

71 

Callahan MK, Postow MA and Wolchok JD: Immunomodulatory therapy for melanoma: ipilimumab and beyond. Clin Dermatol. 31:191–199. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Postow MA, Callahan MK and Wolchok JD: The antitumor immunity of ipilimumab: (T-cell) memories to last a lifetime? Clin Cancer Res. 18:1821–1823. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Della Vittoria Scarpati G, Fusciello C, Perri F, et al: Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther. 7:203–209. 2014.PubMed/NCBI

74 

Ribas A, Kefford R, Marshall MA, et al: Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 31:616–622. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Hino R, Kabashima K, Kato Y, et al: Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 116:1757–1766. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Ahmadzadeh M, Johnson LA, Heemskerk B, et al: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114:1537–1544. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Brahmer JR, Drake CG, Wollner I, et al: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 28:3167–3175. 2010. View Article : Google Scholar

79 

Topalian SL, Sznol M, McDermott DF, et al: Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 32:1020–1030. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Lipson EJ, Sharfman WH, Drake CG, et al: Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 19:462–468. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Hamid O, Robert C, Daud A, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. New Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Brahmer JR, Tykodi SS, Chow LQ, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Yao X, Ahmadzadeh M, Lu YC, et al: Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood. 119:5688–5696. 2012. View Article : Google Scholar : PubMed/NCBI

84 

De Panfilis G, Campanini N, Santini M, et al: Phase- and stage-related proportions of T cells bearing the transcription factor FOXP3 infiltrate primary melanoma. J Invest Dermatol. 128:676–684. 2008.PubMed/NCBI

85 

Miracco C, Mourmouras V, Biagioli M, et al: Utility of tumour-infiltrating CD25+FOXP3+regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep. 18:1115–1122. 2007.PubMed/NCBI

86 

Agius E, Lacy KE, Vukmanovic-Stejic M, et al: Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+T cells during aging. J Exp Med. 206:1929–1940. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Jacobs JF, Punt CJ, Lesterhuis WJ, et al: Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase III study in metastatic melanoma patients. Clin Cancer Res. 16:5067–5078. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Wolchok JD, Kluger H, Callahan MK, et al: Nivolumab plus ipilimumab in advanced melanoma. New Engl J Med. 369:122–133. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Ly LV, Sluijter M, van der Burg SH, Jager MJ and van Hall T: Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma. J Immunol. 190:489–496. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Alderson KL, Luangrath M, Elsenheimer MM, et al: Enhancement of the anti-melanoma response of Hu14.18K322A by αCD40 + CpG. Cancer Immunol Immunother. 62:665–675. 2013.PubMed/NCBI

92 

Flaherty KT: Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets. Clin Exp Metastasis. 29:841–846. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Chapman PB, Hauschild A, Robert C, et al: Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with BRAFV600E-mutated melanoma. J Clin Oncol. 85022012.

94 

Hauschild A, Grob JJ, Demidov LV, et al: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 380:358–365. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Knight DA, Ngiow SF, Li M, et al: Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest. 123:1371–1381. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Ngiow SF, Knight DA, Ribas A, McArthur GA and Smyth MJ: BRAF-targeted therapy and immune responses to melanoma. Oncoimmunology. 2:e244622013. View Article : Google Scholar : PubMed/NCBI

97 

Ascierto PA, Simeone E, Giannarelli D, Grimaldi AM, Romano A and Mozzillo N: Sequencing of BRAF inhibitors and ipilimumab in patients with metastatic melanoma: a possible algorithm for clinical use. J Transl Med. 10:1072012. View Article : Google Scholar : PubMed/NCBI

98 

Ribas A, Hodi FS, Callahan M, Konto C and Wolchok J: Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 368:1365–1366. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Culos KA and Cuellar S: Novel targets in the treatment of advanced melanoma: new first-line treatment options. Ann Pharmacother. 47:519–526. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Woof JM: Insights from Fc receptor biology: a route to improved antibody reagents. MAbs. 4:291–293. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Bossi G, Buisson S, Oates J, Jakobsen BK and Hassan NJ: ImmTAC-redirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells. Cancer Immunol Immunother. 63:437–448. 2014. View Article : Google Scholar : PubMed/NCBI

102 

McCormack E, Adams KJ, Hassan NJ, et al: Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol Immunother. 62:773–785. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Karagiannis SN, Josephs DH, Karagiannis P, et al: Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother. 61:1547–1564. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Josephs DH, Spicer JF, Karagiannis P, Gould HJ and Karagiannis SN: IgE immunotherapy: a novel concept with promise for the treatment of cancer. MAbs. 6:54–72. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Boross P, Lohse S, Nederend M, et al: IgA EGFR antibodies mediate tumour killing in vivo. EMBO Mol Med. 5:1213–1226. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Lohse S, Brunke C, Derer S, et al: Characterization of a mutated IgA2 antibody of the m(1) allotype against the epidermal growth factor receptor for the recruitment of monocytes and macrophages. J Biol Chem. 287:25139–25150. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Lohse S, Derer S, Beyer T, et al: Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol. 186:3770–3778. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Peggs KS, Quezada SA, Chambers CA, Korman AJ and Allison JP: Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 206:1717–1725. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Silina K, Rulle U, Kalnina Z and Line A: Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother. Apr 3–2014.(Epub ahead of print).

110 

Cipponi A, Wieers G, van Baren N and Coulie PG: Tumor-infiltrating lymphocytes: apparently good for melanoma patients. But why? Cancer Immunol Immunother. 60:1153–1160. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Tsoka S, Ainali C, Karagiannis P, et al: Toward prediction of immune mechanisms and design of immunotherapies in melanoma. Crit Rev Biomed Eng. 40:279–294. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Malas S, Harrasser M, Lacy KE and Karagiannis SN: Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review). Oncol Rep 32: 875-886, 2014.
APA
Malas, S., Harrasser, M., Lacy, K.E., & Karagiannis, S.N. (2014). Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review). Oncology Reports, 32, 875-886. https://doi.org/10.3892/or.2014.3275
MLA
Malas, S., Harrasser, M., Lacy, K. E., Karagiannis, S. N."Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review)". Oncology Reports 32.3 (2014): 875-886.
Chicago
Malas, S., Harrasser, M., Lacy, K. E., Karagiannis, S. N."Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review)". Oncology Reports 32, no. 3 (2014): 875-886. https://doi.org/10.3892/or.2014.3275
Copy and paste a formatted citation
x
Spandidos Publications style
Malas S, Harrasser M, Lacy KE and Karagiannis SN: Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review). Oncol Rep 32: 875-886, 2014.
APA
Malas, S., Harrasser, M., Lacy, K.E., & Karagiannis, S.N. (2014). Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review). Oncology Reports, 32, 875-886. https://doi.org/10.3892/or.2014.3275
MLA
Malas, S., Harrasser, M., Lacy, K. E., Karagiannis, S. N."Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review)". Oncology Reports 32.3 (2014): 875-886.
Chicago
Malas, S., Harrasser, M., Lacy, K. E., Karagiannis, S. N."Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review)". Oncology Reports 32, no. 3 (2014): 875-886. https://doi.org/10.3892/or.2014.3275
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team