Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2014 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2014 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer

  • Authors:
    • Jianchao Li
    • Yonghong Zhang
    • Yutao  Gao
    • Yuqian  Cui
    • Hua Liu
    • Mi Li
    • Yongjie  Tian
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China, Department of Obstetrics and Gynecology, Muping Traditional Chinese Medicine Hospital, Yantai, Shandong, P.R. China, Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing, P.R. China, Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China, Department of Obstetrics and Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China, Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, P.R. China
  • Pages: 979-988
    |
    Published online on: June 27, 2014
       https://doi.org/10.3892/or.2014.3297
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The expression of HNF1 homeobox B (HNF1B) is associated with cancer risk in several tumors, including ovarian cancer, and its decreased expression play roles in cancer development. However, the study of HNF1B and cancer is limited, and its association with drug resistance in cancer has never been reported. On the basis of array data retrieved from Oncomine and Gene Expression Omnibus (GEO) online database, we found that the mRNA expression of HNF1B in 586 ovarian serous cystadenocarcinomas and in platinum-resistant A2780 epithelial ovarian cancer cells was significantly decreased, indicating a potential role of HNF1B in drug resistance in ovarian cancer. Based on this finding, comprehensive bioinformatics analyses, including protein/gene interaction, protein-small molecule/chemical interaction, biological process annotation, gene co-occurrence and pathway enrichment analysis and microRNA-mRNA interaction, were performed to illustrate the association of HNF1B with drug resistance in ovarian cancer. We found that among the proteins/genes, small molecules/chemicals and microRNAs which directly interacted with HNF1B, the majority was associated with drug resistance in cancer, particularly in ovarian cancer. Biological process annotation revealed that HNF1B closely related to 24 biological processes which were all notably associated with ovarian cancer and drug resistance. These results indicated that the downregulation of HNF1B may contribute to drug resistance in ovarian cancer, via its direct interactions with these drug resistance-related proteins/genes, small molecules/chemicals and microRNAs, and via its regulations on the drug resistance-related biological processes. Pathway enrichment analysis of 36 genes which co-occurred with HNF1B, ovarian cancer and drug resistance indicated that the HNF1B may perform its drug resistance-related functions through 4 pathways including ErbB signaling, focal adhesion, apoptosis and p53 signaling. Collectively, in this study, we illustrated for the first time that HNF1B may contribute to drug resistance in ovarian cancer, potentially through the 4 pathways. The present study may pave the way for further investigation of the drug resistance-related functions of HNF1B in ovarian cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar

2 

Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, Friedlander M, Gabra H, Kaye SB, Lord CJ, Lengyel E, Levine DA, McNeish IA, Menon U, Mills GB, Nephew KP, Oza AM, Sood AK, Stronach EA, Walczak H, Bowtell DD and Balkwill FR: Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 11:719–725. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar

4 

Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Cannistra SA: Cancer of the ovary. N Engl J Med. 351:2519–2529. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Johnson SW, Ozols RF and Hamilton TC: Mechanisms of drug resistance in ovarian cancer. Cancer. 71(Suppl 2): S644–S649. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Cheng JQ, Jiang X, Fraser M, Li M, Dan HC, Sun M and Tsang BK: Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat. 5:131–146. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ and Tsang BK: p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res. 63:7081–7088. 2003.PubMed/NCBI

10 

Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep. 30:3–10. 2013.PubMed/NCBI

11 

Bach I and Yaniv M: More potent transcriptional activators or a transdominant inhibitor of the HNF1 homeoprotein family are generated by alternative RNA processing. EMBO J. 12:4229–4242. 1993.PubMed/NCBI

12 

Edghill EL, Bingham C, Slingerland AS, Minton JA, Noordam C, Ellard S and Hattersley AT: Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1β in human pancreatic development. Diabet Med. 23:1301–1306. 2006.PubMed/NCBI

13 

Wu G, Bohn S and Ryffel GU: The HNF1β transcription factor has several domains involved in nephrogenesis and partially rescues Pax8/lim1-induced kidney malformations. Eur J Biochem. 271:3715–3728. 2004.

14 

Shao DD, Tsherniak A, Gopal S, Weir BA, Tamayo P, Stransky N, Schumacher SE, Zack TI, Beroukhim R, Garraway LA, Margolin AA, Root DE, Hahn WC and Mesirov JP: ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Res. 23:665–678. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Rebouissou S, Vasiliu V, Thomas C, Bellanné-Chantelot C, Bui H, Chrétien Y, Timsit J, Rosty C, Laurent-Puig P, Chauveau D and Zucman-Rossi J: Germline hepatocyte nuclear factor 1α and 1β mutations in renal cell carcinomas. Hum Mol Genet. 14:603–614. 2005.

16 

Terasawa K, Toyota M, Sagae S, Ogi K, Suzuki H, Sonoda T, Akino K, Maruyama R, Nishikawa N, Imai K, Shinomura Y, Saito T and Tokino T: Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br J Cancer. 94:914–921. 2006.

17 

Silva TD, Vidigal VM, Felipe AV, DE Lima JM, Neto RA, Saad SS and Forones NM: DNA methylation as an epigenetic biomarker in colorectal cancer. Oncol Lett. 6:1687–1692. 2013.PubMed/NCBI

18 

Grisanzio C, Werner L, Takeda D, Awoyemi BC, Pomerantz MM, Yamada H, Sooriakumaran P, Robinson BD, Leung R, Schinzel AC, Mills I, Ross-Adams H, Neal DE, Kido M, Yamamoto T, Petrozziello G, Stack EC, Lis R, Kantoff PW, Loda M, Sartor O, Egawa S, Tewari AK, Hahn WC and Freedman ML: Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc Natl Acad Sci USA. 109:11252–11257. 2012.PubMed/NCBI

19 

Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Blondal T, Stacey SN, Helgason A, Gunnarsdottir S, Olafsdottir A, Kristinsson KT, Birgisdottir B, Ghosh S, Thorlacius S, Magnusdottir D, Stefansdottir G, Kristjansson K, Bagger Y, Wilensky RL, Reilly MP, Morris AD, Kimber CH, Adeyemo A, Chen Y, Zhou J, So WY, Tong PC, Ng MC, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Tres A, Fuertes F, Ruiz-Echarri M, Asin L, Saez B, van Boven E, Klaver S, Swinkels DW, Aben KK, Graif T, Cashy J, Suarez BK, van Vierssen Trip O, Frigge ML, Ober C, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Palmer CN, Rotimi C, Chan JC, Pedersen O, Sigurdsson G, Benediktsson R, Jonsson E, Einarsson GV, Mayordomo JI, Catalona WJ, Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A and Stefansson K: Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 39:977–983. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Sun J, Zheng SL, Wiklund F, Isaacs SD, Purcell LD, Gao Z, Hsu FC, Kim ST, Liu W, Zhu Y, Stattin P, Adami HO, Wiley KE, Dimitrov L, Li T, Turner AR, Adams TS, Adolfsson J, Johansson JE, Lowey J, Trock BJ, Partin AW, Walsh PC, Trent JM, Duggan D, Carpten J, Chang BL, Grönberg H, Isaacs WB and Xu J: Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat Genet. 40:1153–1155. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hayes RB, Hunter DJ and Chanock SJ: Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 40:310–315. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Spurdle AB1, Thompson DJ, Ahmed S, Ferguson K, Healey CS, O’Mara T, Walker LC, Montgomery SB and Dermitzakis ET; Australian National Endometrial Cancer Study Group. Fahey P, Montgomery GW, Webb PM, Fasching PA, Beckmann MW, Ekici AB, Hein A, Lambrechts D, Coenegrachts L, Vergote I, Amant F, Salvesen HB, Trovik J, Njolstad TS, Helland H, Scott RJ, Ashton K, Proietto T and Otton G; National Study of Endometrial Cancer Genetics Group. Tomlinson I, Gorman M, Howarth K, Hodgson S, Garcia-Closas M, Wentzensen N, Yang H, Chanock S, Hall P, Czene K, Liu J, Li J, Shu XO, Zheng W, Long J, Xiang YB, Shah M, Morrison J, Michailidou K, Pharoah PD, Dunning AM and Easton DF: Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet. 43:451–454. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Elliott KS, Zeggini E, McCarthy MI, Gudmundsson J, Sulem P, Stacey SN, Thorlacius S, Amundadottir L, Gronberg H, Xu J, Gaborieau V, Eeles RA, Neal DE, Donovan JL, Hamdy FC, Muir K, Hwang SJ, Spitz MR, Zanke B, Carvajal-Carmona L, Brown KM, Hayward NK, Macgregor S, Tomlinson IP, Lemire M, Amos CI, Murabito JM, Isaacs WB, Easton DF, Brennan P, Barkardottir RB, Gudbjartsson DF, Rafnar T, Hunter DJ, Chanock SJ, Stefansson K and Ioannidis JP: Evaluation of association of HNF1B variants with diverse cancers: collaborative analysis of data from 19 genome-wide association studies. PLoS One. 5:e108582010.PubMed/NCBI

24 

Shen H, Fridley BL, Song H, Lawrenson K, Cunningham JM, Ramus SJ, Cicek MS, Tyrer J, Stram D, Larson MC and Köbel M; PRACTICAL Consortium. Ziogas A, Zheng W, Yang HP, Wu AH, Wozniak EL, Woo YL, Winterhoff B, Wik E, Whittemore AS, Wentzensen N, Weber RP, Vitonis AF, Vincent D, Vierkant RA, Vergote I, Van Den Berg D, Van Altena AM, Tworoger SS, Thompson PJ, Tessier DC, Terry KL, Teo SH, Templeman C, Stram DO, Southey MC, Sieh W, Siddiqui N, Shvetsov YB, Shu XO, Shridhar V, Wang-Gohrke S, Severi G, Schwaab I, Salvesen HB, Rzepecka IK, Runnebaum IB, Rossing MA, Rodriguez-Rodriguez L, Risch HA, Renner SP, Poole EM, Pike MC, Phelan CM, Pelttari LM, Pejovic T, Paul J, Orlow I, Omar SZ, Olson SH, Odunsi K, Nickels S, Nevanlinna H, Ness RB, Narod SA, Nakanishi T, Moysich KB, Monteiro AN, Moes-Sosnowska J, Modugno F, Menon U, McLaughlin JR, McGuire V, Matsuo K, Adenan NA, Massuger LF, Lurie G, Lundvall L, Lubiński J, Lissowska J, Levine DA, Leminen A, Lee AW, Le ND, Lambrechts S, Lambrechts D, Kupryjanczyk J, Krakstad C, Konecny GE, Kjaer SK, Kiemeney LA, Kelemen LE, Keeney GL, Karlan BY, Karevan R, Kalli KR, Kajiyama H, Ji BT, Jensen A, Jakubowska A, Iversen E, Hosono S, Høgdall CK, Høgdall E, Hoatlin M, Hillemanns P, Heitz F, Hein R, Harter P, Halle MK, Hall P, Gronwald J, Gore M, Goodman MT, Giles GG, Gentry-Maharaj A, Garcia-Closas M, Flanagan JM, Fasching PA, Ekici AB, Edwards R, Eccles D, Easton DF, Dürst M, du Bois A, Dörk T, Doherty JA, Despierre E, Dansonka-Mieszkowska A, Cybulski C, Cramer DW, Cook LS, Chen X, Charbonneau B, Chang-Claude J, Campbell I, Butzow R, Bunker CH, Brueggmann D, Brown R, Brooks-Wilson A, Brinton LA, Bogdanova N, Block MS, Benjamin E, Beesley J, Beckmann MW, Bandera EV, Baglietto L, Bacot F, Armasu SMK and Hildebrandt MA; Australian Ovarian Cancer Study Group; Australian Cancer Study. Schildkraut JM, Sellers TA, Huntsman D, Berchuck A, Chenevix-Trench G, Gayther SA, Pharoah PD, Laird PW, Goode EL and Pearce CL: Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat Commun. 4:16282013. View Article : Google Scholar : PubMed/NCBI

25 

Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, Senz J, Yang W, Spillman MA, Cochrane DR, Shumansky K, Shah SP, Kalloger SE and Huntsman DG: Type-specific cell line models for type-specific ovarian cancer research. PLoS One. 8:e721622013. View Article : Google Scholar : PubMed/NCBI

26 

Kalloger SE, Köbel M, Leung S, Mehl E, Gao D, Marcon KM, Chow C, Clarke BA, Huntsman DG and Gilks CB: Calculator for ovarian carcinoma subtype prediction. Mod Pathol. 24:512–521. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Edgar R, Domrachev M and Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Barrett T and Edgar R: Mining microarray data at NCBI’s Gene Expression Omnibus (GEO)*. Methods Mol Biol. 338:175–190. 2006.

30 

Mostafavi S, Ray D, Warde-Farley D, Grouios C and Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9(Suppl 1): S42008. View Article : Google Scholar : PubMed/NCBI

31 

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD and Morris Q: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD and Morris Q: GeneMANIA prediction server 2013 update. Nucleic Acids Res. 41:W115–W122. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ and Bork P: STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 40:D876–D880. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, Beyer A and Bork P: STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res. 38:D552–D556. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Kuhn M, von Mering C, Campillos M, Jensen LJ and Bork P: STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36:D684–D688. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Baitaluk M, Sedova M, Ray A and Gupta A: BiologicalNetworks: visualization and analysis tool for systems biology. Nucleic Acids Res. 34:W466–W471. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Kozhenkov S, Dubinina Y, Sedova M, Gupta A, Ponomarenko J and Baitaluk M: BiologicalNetworks 2.0 - an integrative view of genome biology data. BMC Bioinformatics. 11:6102010. View Article : Google Scholar : PubMed/NCBI

38 

de Leeuw N1, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, Kuhn RM, Ledbetter DH, Martin CL, van Ravenswaaij-Arts CM, Scherer SW, Shams S, Van Vooren S, Sijmons R, Swertz M and Hastings R: Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat. 33:930–940. 2012.PubMed/NCBI

39 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2008.PubMed/NCBI

40 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009.PubMed/NCBI

41 

Dweep H, Sticht C, Pandey P and Gretz N: miRWalk - database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011.

42 

Zhou C, Smith JL and Liu J: Role of BRCA1 in cellular resistance to paclitaxel and ionizing radiation in an ovarian cancer cell line carrying a defective BRCA1. Oncogene. 22:2396–2404. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK and Zhang W: Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 306:1557–1565. 2011.

44 

Lee S, Choi EJ, Jin C and Kim DH: Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 97:26–34. 2005.

45 

Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S and Ma D: Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett. 271:260–271. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Yang G, Xiao X, Rosen DG, Cheng X, Wu X, Chang B, Liu G, Xue F, Mercado-Uribe I, Chiao P, Du X and Liu J: The biphasic role of NF-κB in progression and chemoresistance of ovarian cancer. Clin Cancer Res. 17:2181–2194. 2011.

47 

Zhang X, Wang X, Song X, Liu C, Shi Y, Wang Y, Afonja O, Ma C, Chen YH and Zhang L: Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101:2163–2170. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Strathdee G, MacKean MJ, Illand M and Brown R: A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene. 18:2335–2341. 1999.PubMed/NCBI

49 

Plumb JA, Strathdee G, Sludden J, Kaye SB and Brown R: Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60:6039–6044. 2000.

50 

Qiu L, Di W, Jiang Q, Scheffler E, Derby S, Yang J, Kouttab N, Wanebo H, Yan B and Wan Y: Targeted inhibition of transient activation of the EGFR-mediated cell survival pathway enhances paclitaxel-induced ovarian cancer cell death. Int J Oncol. 27:1441–1448. 2005.PubMed/NCBI

51 

Skirnisdóttir I, Sorbe B and Seidal T: The growth factor receptors HER-2/neu and EGFR, their relationship, and their effects on the prognosis in early stage (FIGO I–II) epithelial ovarian carcinoma. Int J Gynecol Cancer. 11:119–129. 2001.PubMed/NCBI

52 

Houvras Y, Benezra M, Zhang H, Manfredi JJ, Weber BL and Licht JD: BRCA1 physically and functionally interacts with ATF1. J Biol Chem. 275:36230–36237. 2000. View Article : Google Scholar : PubMed/NCBI

53 

Balch C, Naegeli K, Nam S, Ballard B, Hyslop A, Melki C, Reilly E, Hur MW and Nephew KP: A unique histone deacetylase inhibitor alters microRNA expression and signal transduction in chemoresistant ovarian cancer cells. Cancer Biol Ther. 13:681–693. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Belanger AS, Tojcic J, Harvey M and Guillemette C: Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Mol Biol. 11:92010.

55 

Reuning U, Guerrini L, Nishiguchi T, Page S, Seibold H, Magdolen V, Graeff H and Schmitt M: Rel transcription factors contribute to elevated urokinase expression in human ovarian carcinoma cells. Eur J Biochem. 259:143–148. 1999. View Article : Google Scholar : PubMed/NCBI

56 

Chen H, Hao J, Wang L and Li Y: Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer. 101:432–440. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Danoy P, Sonoda E, Lathrop M, Takeda S and Matsuda F: A naturally occurring genetic variant of human XRCC2 (R188H) confers increased resistance to cisplatin-induced DNA damage. Biochem Biophys Res Commun. 352:763–768. 2007.PubMed/NCBI

58 

Fink D, Nebel S, Aebi S, Nehme A and Howell S: Loss of DNA mismatch repair due to knockout of MSH2 or PMS2 results in resistance to cisplatin and carboplatin. Int J Oncol. 11:539–542. 1997.PubMed/NCBI

59 

Gerhardt J, Montani M, Wild P, Beer M, Huber F, Hermanns T, Muntener M and Kristiansen G: FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol. 180:848–861. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Nadkarni A, Furda A, Rajesh C, McInnes C, Ruch RJ and Pittman DL: Functional characterization of the RAD51D E233G genetic variant. Pharmacogenet Genomics. 19:153–160. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Oh SJ, Han HK, Kang KW, Lee YJ and Lee MY: Menadione serves as a substrate for P-glycoprotein: implication in chemosensitizing activity. Arch Pharm Res. 36:509–516. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Gilloteaux J, Jamison JM, Lorimer HE, Jarjoura D, Taper HS, Calderon PB, Neal DR and Summers JL: Autoschizis: a new form of cell death for human ovarian carcinoma cells following ascorbate:menadione treatment. Nuclear and DNA degradation. Tissue Cell. 36:197–209. 2004. View Article : Google Scholar

63 

Gilloteaux J, Jamison JM, Arnold D, Jarjoura D, Von Greuningen V and Summers JL: Autoschizis of human ovarian carcinoma cells: scanning electron and light microscopy of a new cell death induced by sodium ascorbate: menadione treatment. Scanning. 25:137–149. 2003. View Article : Google Scholar

64 

Zhang D, Holmes WF, Wu S, Soprano DR and Soprano KJ: Retinoids and ovarian cancer. J Cell Physiol. 185:1–20. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Pratt MA, Niu MY and Renart LI: Regulation of survivin by retinoic acid and its role in paclitaxel-mediated cytotoxicity in MCF-7 breast cancer cells. Apoptosis. 11:589–605. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Zhang Y, Guan DX, Shi J, Gao H, Li JJ, Zhao JS, Qiu L, Liu J, Li N, Guo WX, Xue J, Zhou FG, Wu MC, Wang HY, Xie D and Cheng SQ: All-trans retinoic acid potentiates the chemotherapeutic effect of cisplatin by inducing differentiation of tumor initiating cells in liver cancer. J Hepatol. 59:1255–1263. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Lu M, Xiao L and Li Z: The relationship between p38MAPK and apoptosis during paclitaxel resistance of ovarian cancer cells. J Huazhong Univ Sci Technolog Med Sci. 27:725–728. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Lee LF, Haskill JS, Mukaida N, Matsushima K and Ting JP: Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter. Mol Cell Biol. 17:5097–5105. 1997.PubMed/NCBI

69 

Duan Z, Feller AJ, Penson RT, Chabner BA and Seiden MV: Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res. 5:3445–3453. 1999.

70 

Chen N, Chon HS, Xiong Y, Marchion DC, Judson PL, Hakam A, Gonzalez-Bosquet J, Permuth-Wey J, Wenham RM, Apte SM, Cheng JQ, Sellers TA and Lancaster JM: Human cancer cell line microRNAs associated with in vitro sensitivity to paclitaxel. Oncol Rep. 31:376–383. 2014.PubMed/NCBI

71 

Shao X, Mei W, Weng W, Qin J, Zhou J, Liu J and Cheng J: Mir-375 enhances ruthenium-derived compound Rawq01 induced cell death in human ovarian cancer. Int J Clin Exp Pathol. 6:1095–1102. 2013.PubMed/NCBI

72 

Shen Y, Wang P, Li Y, Ye F, Wang F, Wan X, Cheng X, Lu W and Xie X: miR-375 is upregulated in acquired paclitaxel resistance in cervical cancer. Br J Cancer. 109:92–99. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Zhang J, Kuai X, Song M, Chen X, Yu Z, Zhang H and Mao Z: microRNA-32 inhibits the proliferation and invasion of the SGC-7901 gastric cancer cell line in vitro. Oncol Lett. 7:270–274. 2014.PubMed/NCBI

74 

Wu W, Yang J, Feng X, Wang H, Ye S, Yang P, Tan W, Wei G and Zhou Y: MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol Cancer. 12:302013. View Article : Google Scholar : PubMed/NCBI

75 

Li H, Zhao J, Zhang JW, Huang QY, Huang JZ, Chi LS, Tang HJ, Liu GQ, Zhu DJ and Ma WM: MicroRNA-217, down-regulated in clear cell renal cell carcinoma and associated with lower survival, suppresses cell proliferation and migration. Neoplasma. 60:511–515. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Husted S, Søkilde R, Rask L, Cirera S, Busk PK, Eriksen J and Litman T: MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm. 8:2055–2062. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Singh R and Saini N: Downregulation of BCL2 by miRNAs augments drug-induced apoptosis - a combined computational and experimental approach. J Cell Sci. 125:1568–1578. 2012.

78 

Srivastava N, Manvati S, Srivastava A, Pal R, Kalaiarasan P, Chattopadhyay S, Gochhait S, Dua R and Bamezai RN: miR-24–2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention. Breast Cancer Res. 13:R392011.

79 

Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J and Sakuragi N: MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer. 10:992011. View Article : Google Scholar : PubMed/NCBI

80 

Zhou Y, Hu Y, Yang M, Jat P, Li K, Lombardo Y, Xiong D, Coombes RC, Raguz S and Yagüe E: The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300. Cell Death Differ. 21:462–474. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Phuong T and Nhung N: Predicting gene function using similarity learning. BMC Genomics. 14(Suppl 4): S42013. View Article : Google Scholar : PubMed/NCBI

82 

Sharan R, Ulitsky I and Shamir R: Network-based prediction of protein function. Mol Syst Biol. 3:882007. View Article : Google Scholar : PubMed/NCBI

83 

Stuart JM, Segal E, Koller D and Kim SK: A gene-coexpression network for global discovery of conserved genetic modules. Science. 302:249–255. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S and Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 403:623–627. 2000. View Article : Google Scholar : PubMed/NCBI

85 

Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer. Int J Oncol. 42:1305–1316. 2013.PubMed/NCBI

86 

Liu X, Gao Y, Lu Y, Zhang J, Li L and Yin F: Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncol Rep. 31:745–754. 2014.PubMed/NCBI

87 

Zeng X, Yin F, Liu X, Xu J, Xu Y, Huang J, Nan Y and Qiu X: Upregulation of E2F transcription factor 3 is associated with poor prognosis in hepatocellular carcinoma. Oncol Rep. 31:1139–1146. 2014.PubMed/NCBI

88 

Roose J and Clevers H: TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta. 1424:M23–M37. 1999.PubMed/NCBI

89 

Lancman JJ, Zvenigorodsky N, Gates KP, Zhang D, Solomon K, Humphrey RK, Kuo T, Setiawan L, Verkade H, Chi YI, Jhala US, Wright CV, Stainier DY and Dong PD: Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb. Development. 140:2669–2679. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Welters HJ, Oknianska A, Erdmann KS, Ryffel GU and Morgan NG: The protein tyrosine phosphatase-BL, modulates pancreatic β-cell proliferation by interaction with the Wnt signalling pathway. J Endocrinol. 197:543–552. 2008.PubMed/NCBI

91 

Manandhar S, Choi BH, Jung KA, Ryoo IG, Song M, Kang SJ, Choi HG, Kim JA, Park PH and Kwak MK: NRF2 inhibition represses ErbB2 signaling in ovarian carcinoma cells: implications for tumor growth retardation and docetaxel sensitivity. Free Radic Biol Med. 52:1773–1785. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, Zand B, Liu T, Huang J, Jennings NB, Rupaimoole R, Taylor M, Pradeep S, Wu SY, Lu C, Wen Y, Liu J and Sood AK: Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst. 105:1485–1495. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Halder J, Landen CN Jr, Lutgendorf SK, Li Y, Jennings NB, Fan D, Nelkin GM, Schmandt R, Schaller MD and Sood AK: Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin Cancer Res. 11:8829–8836. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C and Bourguignon LY: The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 132:739–744. 2014.

95 

Farrand L, Byun S, Kim JY, Im-Aram A, Lee J, Lim S, Lee KW, Suh JY, Lee HJ and Tsang BK: Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J Biol Chem. 288:23740–23750. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Benoit DS, Henry SM, Shubin AD, Hoffman AS and Stayton PS: pH-responsive polymeric sirna carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of polo-like kinase 1. Mol Pharm. 7:442–455. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Yan X, Fraser M, Qiu Q and Tsang BK: Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner. Gynecol Oncol. 102:348–355. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Lum E, Vigliotti M, Banerjee N, Cutter N, Wrzeszczynski KO, Khan S, Kamalakaran S, Levine DA, Dimitrova N and Lucito R: Loss of DOK2 induces carboplatin resistance in ovarian cancer via suppression of apoptosis. Gynecol Oncol. 130:369–376. 2013.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M and Tian Y: Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 32: 979-988, 2014.
APA
Li, J., Zhang, Y., Gao, Y., Cui, Y., Liu, H., Li, M., & Tian, Y. (2014). Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncology Reports, 32, 979-988. https://doi.org/10.3892/or.2014.3297
MLA
Li, J., Zhang, Y., Gao, Y., Cui, Y., Liu, H., Li, M., Tian, Y."Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer". Oncology Reports 32.3 (2014): 979-988.
Chicago
Li, J., Zhang, Y., Gao, Y., Cui, Y., Liu, H., Li, M., Tian, Y."Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer". Oncology Reports 32, no. 3 (2014): 979-988. https://doi.org/10.3892/or.2014.3297
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M and Tian Y: Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 32: 979-988, 2014.
APA
Li, J., Zhang, Y., Gao, Y., Cui, Y., Liu, H., Li, M., & Tian, Y. (2014). Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncology Reports, 32, 979-988. https://doi.org/10.3892/or.2014.3297
MLA
Li, J., Zhang, Y., Gao, Y., Cui, Y., Liu, H., Li, M., Tian, Y."Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer". Oncology Reports 32.3 (2014): 979-988.
Chicago
Li, J., Zhang, Y., Gao, Y., Cui, Y., Liu, H., Li, M., Tian, Y."Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer". Oncology Reports 32, no. 3 (2014): 979-988. https://doi.org/10.3892/or.2014.3297
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team