Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2014 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2014 Volume 32 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells

  • Authors:
    • Jianhong Zhu
    • Handong Wang
    • Youwu Fan
    • Yangchun  Hu
    • Xiangjun Ji
    • Qing Sun
    • Huandong Liu
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China, Department of Neurosurgery, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
  • Pages: 1170-1178
    |
    Published online on: July 10, 2014
       https://doi.org/10.3892/or.2014.3320
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioma stem cells (GSCs) are key in the progression and recurrence of glioblastoma. Inducing the differentiation of GSCs is an important therapeutic target for glioblastoma. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been reported to be important in maintaining the stem cell status of GSCs; however, its association with differentiation has not been studied. Herein, we knocked down Nrf2 from GSCs to investigate the role of Nrf2 in the differentiation of GSCs. First, Nrf2 expression was observed at different stages of differentiation; then, Nrf2 was knocked down and the association of Nrf2 with differentiation degree was observed in vitro. Finally, GSCs were planted in nude mice to study the association of Nrf2 with differentiation in vivo. The expression of Nrf2 decreased with the differentiation process. Following Nrf2 knockdown, the proportion of sphere-like colonies decreased and the dendritic cells in spheres increased; the expression of Nrf2 significantly decreased while the expression of differentiation marker glial fibrillary acidic protein (GFAP) and βIII-tubulin increased both at the protein and the gene level. In the xenografts of nude mice, the differentiation of tumor cells was improved. These results suggest that Nrf2 is a key factor inhibiting the differentiation of GSCs, and knockdown of Nrf2 may promote the differentiation process, providing a therapy target for GSCs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Van Meir EG, Hadjipanayis CG, Norden AD, Shu H, Wen PY and Olson JJ: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 60:166–193. 2010.PubMed/NCBI

2 

Yang L, Lin C, Wang L, Guo H and Wang X: Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res. 318:2417–2426. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Reya T, Morrison SJ, Clarke MF and Weissman1 IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI

5 

Fan X, Salford LG and Widegren B: Glioma stem cells: evidence and limitation. Semin Cancer Biol. 17:214–218. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Jin X, Jin X, Jung JE, Beck S and Kim H: Cell surface Nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun. 433:496–501. 2013. View Article : Google Scholar : PubMed/NCBI

7 

He J, Shan Z, Li L, Liu F, Liu Z, Song M and Zhu H: Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas. Oncol Rep. 26:1305–1313. 2011.PubMed/NCBI

8 

Park D, Xiang AP, Mao FF, et al: Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 28:2162–2171. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Park DM and Rich JN: Biology of glioma cancer stem cells. Mol Cells. 28:7–12. 2009. View Article : Google Scholar

10 

Shmelkov SV, St Clair R, Lyden D and Rafii S: AC133/CD133/ Prominin-1. Int J Biochem Cell Biol. 37:715–719. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar

12 

Johannessen TC, Bjerkvig R and Tysnes BB: DNA repair and cancer stem-like cells - potential partners in glioma drug resistance. Cancer Treat Rev. 34:558–567. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Alam J and Stewart D: Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 274:26071–26078. 1999.

14 

Kensler TW, Wakabayashi N and Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Kim HJ, Zheng M, Kim SK, Cho JJ, Shin CH, Joe Y and Chung HT: CO/HO-1 induces NQO-1 expression via Nrf2 activation. Immune Netw. 11:376–382. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Piao MS, Choi JY, Lee DH, Yun SJ, Lee JB and Lee SC: Differentiation-dependent expression of NADP(H):quinone oxidoreductase-1 via NF-E2 related factor-2 activation in human epidermal keratinocytes. J Dermatol Sci. 62:147–153. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Ji L, Li H, Gao P, Shang G, Zhang DD, Zhang N and Jiang T: Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 8:e634042013. View Article : Google Scholar : PubMed/NCBI

18 

Tsai JJ, Dudakov JA, Takahashi K, et al: Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol. 15:309–316. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Wang XJ, Sun Z, Villeneuve NF, et al: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 29:1235–1243. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Lau A, Villeneuve NF, Sun Z, Wong PK and Zhang DD: Dual roles of Nrf2 in cancer. Pharmacol Res. 58:262–270. 2008. View Article : Google Scholar

21 

Zhu J, Wang H, Sun Q, et al: Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer. 13:3802013. View Article : Google Scholar : PubMed/NCBI

22 

Vescovi AL, Galli R and Reynolds BA: Brain tumour stem cells. Nat Rev Cancer. 6:425–436. 2006. View Article : Google Scholar

23 

Venere M, Fine HA, Dirks PB and Rich JN: Cancer stem cells in gliomas: identifying and understanding the apex cell in cancer’s hierarchy. Glia. 59:1148–1154. 2011.PubMed/NCBI

24 

Stiles CD and Rowitch DH: Glioma stem cells: a midterm exam. Neuron. 58:832–846. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Cullinan SB, Zhang D, Hannink M, et al: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 23:7198–7209. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Iida K, Itoh K, Kumagai Y, et al: Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:6424–6431. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Singh A, Misra V, Thimmulappa RK, et al: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3:e4202006. View Article : Google Scholar : PubMed/NCBI

28 

Ikeda H, Nishi S and Sakai M: Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. Biochem J. 380:515–521. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Pan H, Wang H, Zhu L, Wang X, Cong Z, Sun K and Fan Y: The involvement of Nrf2-ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol Res. 35:71–78. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Ji XJ, Chen SH, Zhu L, et al: Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model. Oncol Rep. 30:157–164. 2013.PubMed/NCBI

31 

Park EJ, Lim JH, Nam SI, Park JW and Kwon TK: Rottlerin induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen species (ROS) dependent and PKC delta-independent pathway in human colon cancer HT29 cells. Biochimie. 92:110–115. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Kim JE, Kang YJ, Lee KY and Choi HC: Isoproterenol inhibits angiotensin II-stimulated proliferation and reactive oxygen species production in vascular smooth muscle cells through heme oxygenase-1. Biol Pharm Bull. 32:1047–1052. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Hsieh HL, Wang HH, Wu CY and Yang CM: Reactive oxygen species-dependent c-Fos/activator protein 1 induction upregulates heme oxygenase-1 expression by bradykinin in brain astrocytes. Antioxid Redox Signal. 13:1829–1844. 2010. View Article : Google Scholar : PubMed/NCBI

34 

DeNicola GM, Karreth FA, Humpton TJ, et al: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 475:106–109. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu J, Wang H, Fan Y, Hu Y, Ji X, Sun Q and Liu H: Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells. Oncol Rep 32: 1170-1178, 2014.
APA
Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., & Liu, H. (2014). Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells. Oncology Reports, 32, 1170-1178. https://doi.org/10.3892/or.2014.3320
MLA
Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., Liu, H."Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells". Oncology Reports 32.3 (2014): 1170-1178.
Chicago
Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., Liu, H."Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells". Oncology Reports 32, no. 3 (2014): 1170-1178. https://doi.org/10.3892/or.2014.3320
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu J, Wang H, Fan Y, Hu Y, Ji X, Sun Q and Liu H: Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells. Oncol Rep 32: 1170-1178, 2014.
APA
Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., & Liu, H. (2014). Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells. Oncology Reports, 32, 1170-1178. https://doi.org/10.3892/or.2014.3320
MLA
Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., Liu, H."Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells". Oncology Reports 32.3 (2014): 1170-1178.
Chicago
Zhu, J., Wang, H., Fan, Y., Hu, Y., Ji, X., Sun, Q., Liu, H."Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells". Oncology Reports 32, no. 3 (2014): 1170-1178. https://doi.org/10.3892/or.2014.3320
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team