|
1
|
Piazuelo MB and Correa P: Gastric cáncer:
Overview. Colomb Med. 44:192–201. 2013.
|
|
2
|
Lauren P: The two histological main types
of gastric carcinoma: Diffuse and so-called intestinal-type
carcinoma. An attempt at a histo-clinical classification. Acta
Pathol Microbiol Scand. 64:31–49. 1965.PubMed/NCBI
|
|
3
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kim BS, Oh ST, Yook JH and Kim BS: Signet
ring cell type and other histologic types: Differing clinical
course and prognosis in T1 gastric cancer. Surgery. 155:1030–1035.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kwon KJ, Shim KN, Song EM, Choi JY, Kim
SE, Jung HK and Jung SA: Clinicopathological characteristics and
prognosis of signet ring cell carcinoma of the stomach. Gastric
Cancer. 17:43–53. 2014. View Article : Google Scholar
|
|
6
|
Tabouret T, Dhooge M, Rouquette A,
Brezault C, Beuvon F, Chaussade S and Coriat R: Gastric signet ring
cell adenocarcinoma: A distinct entity. Presse Med. 43:353–357.
2014.In French. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Huh CW, Jung H, Kim JH, Lee YC, Kim H, Kim
H, Yoon SO, Youn YH, Park H, Lee SI, et al: Signet ring cell mixed
histology may show more aggressive behavior than other histologies
in early gastric cancer. J Surg Oncol. 107:124–129. 2013.
View Article : Google Scholar
|
|
8
|
Hass HG, Smith U, Jäger C, Schäffer M,
Wellhäuber U, Hehr T, Markmann HU, Nehls O and Denzlinger C: Signet
ring cell carcinoma of the stomach is significantly associated with
poor prognosis and diffuse gastric cancer (Lauren’s): Single-center
experience of 160 cases. Onkologie. 34:682–686. 2011. View Article : Google Scholar
|
|
9
|
Llauradó M, Majem B, Altadill T, Lanau L,
Castellví J, Sánchez-Iglesias JL, Cabrera S, De la Torre J,
Díaz-Feijoo B, Pérez-Benavente A, et al: MicroRNAs as prognostic
markers in ovarian cancer. Mol Cell Endocrinol. 390:73–84. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mulrane L, Klinger R, McGee SF, Gallagher
WM and O’Connor DP: microRNAs: A new class of breast cancer
biomarkers. Expert Rev Mol Diagn. 14:347–363. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xue Y, Abou Tayoun AN, Abo KM, Pipas JM,
Gordon SR, Gardner TB, Barth RJ Jr, Suriawinata AA and Tsongalis
GJ: MicroRNAs as diagnostic markers for pancreatic ductal
adenocarcinoma and its precursor, pancreatic intraepithelial
neoplasm. Cancer Genet. 206:217–221. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Valencia-Sanchez MA, Liu J, Hannon GJ and
Parker R: Control of translation and mRNA degradation by miRNAs and
siRNAs. Genes Dev. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Selbach M, Schwanhäusser B, Thierfelder N,
Fang Z, Khanin R and Rajewsky N: Widespread changes in protein
synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li H, Meng F, Ma J, Yu Y, Hua X, Qin J and
Li Y: Insulin receptor substrate-1 and Golgi phosphoprotein 3 are
downstream targets of miR-126 in esophageal squamous cell
carcinoma. Oncol Rep. 32:1225–1233. 2014.PubMed/NCBI
|
|
15
|
Konno Y, Dong P, Xiong Y, Suzuki F, Lu J,
Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJ, et al:
MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation,
invasion and stem cell-like phenotype of aggressive endometrial
cancer cells. Oncotarget. 5:6049–6062. 2014.PubMed/NCBI
|
|
16
|
Zhong D, Huang G, Zhang Y, Zeng Y, Xu Z,
Zhao Y, He X and He F: MicroRNA-1 and microRNA-206 suppress
LXRα-induced lipogenesis in hepatocytes. Cell Signal. 25:1429–1437.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nygren MK, Tekle C, Ingebrigtsen VA,
Mäkelä R, Krohn M, Aure MR, Nunes-Xavier CE, Perälä M, Tramm T,
Alsner J, et al: Identifying microRNAs regulating B7-H3 in breast
cancer: The clinical impact of microRNA-29c. Br J Cancer.
110:2072–2080. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Garzon R, Heaphy CE, Havelange V, Fabbri
M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA,
et al: MicroRNA 29b functions in acute myeloid leukemia. Blood.
114:5331–5341. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shenouda SK and Alahari SK: MicroRNA
function in cancer: Oncogene or a tumor suppressor? Cancer
Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ishiguro H, Kimura M and Takeyama H: Role
of microRNAs in gastric cancer. World J Gastroenterol.
20:5694–5699. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang M, Zhao C, Shi H, Zhang B, Zhang L,
Zhang X, Wang S, Wu X, Yang T, Huang F, et al: Deregulated
microRNAs in gastric cancer tissue-derived mesenchymal stem cells:
Novel biomarkers and a mechanism for gastric cancer. Br J Cancer.
110:1199–1210. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Brenner B, Hoshen MB, Purim O, David MB,
Ashkenazi K, Marshak G, Kundel Y, Brenner R, Morgenstern S, Halpern
M, et al: MicroRNAs as a potential prognostic factor in gastric
cancer. World J Gastroenterol. 17:3976–3985. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lim JY, Yoon SO, Seol SY, Hong SW, Kim JW,
Choi SH, Lee JS and Cho JY: Overexpression of miR-196b and HOXA10
characterize a poor-prognosis gastric cancer subtype. World J
Gastroenterol. 19:7078–7088. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Peng Y, Liu YM, Li LC, Wang LL and Wu XL:
microRNA-503 inhibits gastric cancer cell growth and
epithelial-to-mesenchymal transition. Oncol Lett. 7:1233–1238.
2014.PubMed/NCBI
|
|
25
|
Shen ZY, Zhang ZZ, Liu H, Zhao EH and Cao
H: miR-375 inhibits the proliferation of gastric cancer cells by
repressing ERBB2 expression. Exp Ther Med. 7:1757–1761.
2014.PubMed/NCBI
|
|
26
|
Ren J, Huang HJ, Gong Y, Yue S, Tang LM
and Cheng SY: MicroRNA-206 suppresses gastric cancer cell growth
and metastasis. Cell Biosci. 4:262014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Peng Y, Guo JJ, Liu YM and Wu XL:
MicroRNA-34A inhibits the growth, invasion and metastasis of
gastric cancer by targeting PDGFR and MET expression. Biosci Rep.
34:342014. View Article : Google Scholar
|
|
28
|
Tsai MM, Wang CS, Tsai CY, Chen CY, Chi
HC, Tseng YH, Chung PJ, Lin YH, Chung IH, Chen CY, et al:
MicroRNA-196a/-196b promote cell metastasis via negative regulation
of radixin in human gastric cancer. Cancer Lett. 351:222–231. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang T, Ge G, Ding Y, Zhou X, Huang Z, Zhu
W, Shu Y and Liu P: MiR-503 regulates cisplatin resistance of human
gastric cancer cell lines by targeting IGF1R and BCL2. Chin Med J.
127:2357–2362. 2014.PubMed/NCBI
|
|
30
|
Yang M, Shan X, Zhou X, Qiu T, Zhu W, Ding
Y, Shu Y and Liu P: miR-1271 regulates cisplatin resistance of
human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and
BCL2. Anticancer Agents Med Chem. 14:884–891. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Aizawa K, Muto I, Suzuki S, Tanaka N,
Yabusaki H, Tanaka S, Katayanagi N, Suzuki T, Tanaka O and Muto T:
Augmentation of 5-fluorouracil cytotoxicity by epidermal growth
factor in a newly established human signet-ring cell carcinoma of
the stomach in culture. Surg Today. 24:420–428. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shimada S, Mimata A, Sekine M, Mogushi K,
Akiyama Y, Fukamachi H, Jonkers J, Tanaka H, Eishi Y and Yuasa Y:
Synergistic tumour suppressor activity of E-cadherin and p53 in a
conditional mouse model for metastatic diffuse-type gastric cancer.
Gut. 61:344–353. 2012. View Article : Google Scholar
|
|
33
|
Takeuchi T, Adachi Y and Nagayama T: A
WWOX-binding molecule, transmembrane protein 207, is related to the
invasiveness of gastric signet-ring cell carcinoma. Carcinogenesis.
33:548–554. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Humar B, Blair V, Charlton A, More H,
Martin I and Guilford P: E-cadherin deficiency initiates gastric
signet-ring cell carcinoma in mice and man. Cancer Res.
69:2050–2056. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lim JY, Yoon SO, Seol SY, Hong SW, Kim JW,
Choi SH and Cho JY: Overexpression of the M2 isoform of pyruvate
kinase is an adverse prognostic factor for signet ring cell gastric
cancer. World J Gastroenterol. 18:4037–4043. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Piessen G, Messager M, Le Malicot K, Robb
WB, Di Fiore F, Guilbert M, Moreau M, Christophe V, Adenis A and
Mariette C: Phase II/III multicentre randomised controlled trial
evaluating a strategy of primary surgery and adjuvant chemotherapy
versus peri-operative chemotherapy for resectable gastric signet
ring cell adenocarcinomas - PRODIGE 19 - FFCD1103 - ADCI002. BMC
Cancer. 13:2812013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen XP, Chen YG, Lan JY and Shen ZJ:
MicroRNA-370 suppresses proliferation and promotes endometrioid
ovarian cancer chemosensitivity to cDDP by negatively regulating
ENG. Cancer Lett. 353:201–210. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li R, Yuan W, Mei W, Yang K and Chen Z:
MicroRNA 520d-3p inhibits gastric cancer cell proliferation,
migration, and invasion by downregulating EphA2 expression. Mol
Cell Biochem. 396:295–305. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Korhan P, Erdal E and Atabey N:
MiR-181a-5p is downregulated in hepatocellular carcinoma and
suppresses motility, invasion and branching-morphogenesis by
directly targeting c-Met. Biochem Biophys Res Commun.
450:1304–1312. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang CH, Yue J, Pfeffer SR, Fan M, Paulus
E, Hosni-Ahmed A, Sims M, Qayyum S, Davidoff AM, Handorf CR, et al:
MicroRNA-21 promotes glioblastoma tumorigenesis by downregulating
IGFBP3. J Biol Chem. 289:25079–25087. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen X, Wang J, Cheng L and Lu MP: miR-18a
downregulates DICER1 and promotes proliferation and metastasis of
nasopha-ryngeal carcinoma. Int J Clin Exp Med. 7:847–855. 2014.
|
|
42
|
Mo X, Zhang F, Liang H, Liu M, Li H and
Xia H: miR-544a promotes the invasion of lung cancer cells by
targeting cadherina 1 in vitro. Onco Targets Ther. 7:895–900. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zang W, Wang Y, Du Y, Xuan X, Wang T, Li
M, Ma Y, Li P, Chen X, Dong Z, et al: Differential expression
profiling of microRNAs and their potential involvement in
esophageal squamous cell carcinoma. Tumour Biol. 35:3295–3304.
2014. View Article : Google Scholar
|
|
44
|
Cheng W, Gao J, Zhang Z, Ge J, Xu F and
Wei Z: Study on microRNAs in urothelial carcinoma (II grade) of the
bladder. J Med Postgraduates China. 23:48–52. 2010.
|
|
45
|
Huang Z, Huang S, Wang Q, Liang L, Ni S,
Wang L, Sheng W, He X and Du X: MicroRNA-95 promotes cell
proliferation and targets sorting Nexin 1 in human colorectal
carcinoma. Cancer Res. 71:2582–2589. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yao T, Rao Q, Liu L, Zheng C, Xie Q, Liang
J and Lin Z: Exploration of tumor-suppressive microRNAs silenced by
DNA hypermethylation in cervical cancer. Virol J. 10:1752013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li WG, Yuan YZ, Qiao MM and Zhang YP: High
dose glargine alters the expression profiles of microRNAs in
pancreatic cancer cells. World J Gastroenterol. 18:2630–2639. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xiao Z, Ching Chow S, Han Li C, Chun Tang
S, Tsui SK, Lin Z and Chen Y: Role of microRNA-95 in the anticancer
activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol.
728:141–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang X, Taeb S, Jahangiri S, Emmenegger
U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al:
miRNA-95 mediates radioresistance in tumors by targeting the
sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chen X, Chen S, Hang W, Huang H and Ma H:
MiR-95 induces proliferation and chemo- or radioresistance through
directly targeting sorting nexin1 (SNX1) in non-small cell lung
cancer. Biomed Pharmacother. 68:589–595. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Skalsky RL and Cullen BR: Reduced
expression of brain-enriched microRNAs in glioblastomas permits
targeted regulation of a cell death gene. PLoS One. 6:e242482011.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wan J, Zhou J, Zhao H, Wang M, Wei Z, Gao
H, Wang Y and Cui H: Sonic hedgehog pathway contributes to gastric
cancer cell growth and proliferation. Biores Open Access. 3:53–59.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Huang L, Walter V, Hayes DN and Onaitis M:
Hedgehog-GLI signaling inhibition suppresses tumor growth in
squamous lung cancer. Clin Cancer Res. 20:1566–1575. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
An Y, Cai B, Chen J, Lv N, Yao J, Xue X,
Tu M, Tang D, Wei J, Jiang K, et al: MAP3K10 promotes the
proliferation and decreases the sensitivity of pancreatic cancer
cells to gemcitabine by upregulating Gli-1 and Gli-2. Cancer Lett.
329:228–235. 2013. View Article : Google Scholar
|
|
55
|
Luongo C, Ambrosio R, Salzano S, Dlugosz
AA, Missero C and Dentice M: The sonic hedgehog-induced type 3
deiodinase facilitates tumorigenesis of basal cell carcinoma by
reducing Gli2 inactivation. Endocrinology. 155:2077–2088. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Perrot CY, Gilbert C, Marsaud V, Postigo
A, Javelaud D and Mauviel A: GLI2 cooperates with ZEB1 for
transcriptional repression of CDH1 expression in human melanoma
cells. Pigment Cell Melanoma Res. 26:861–873. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lattanzio R, Marchisio M, La Sorda R,
Tinari N, Falasca M, Alberti S, Miscia S, Ercolani C, Di Benedetto
A, Perracchio L, et al CINBO (Consorzio Interuniversitario
Nazionale per Bio-Oncologia): Overexpression of activated
phospholipase Cγ1 is a risk factor for distant metastases in T1–T2,
N0 breast cancer patients undergoing adjuvant chemotherapy. Int J
Cancer. 132:1022–1031. 2013. View Article : Google Scholar
|
|
58
|
Ma LW, Zhou ZT, He QB and Jiang WW:
Phospholipase C-γ1 expression correlated with cancer progression of
potentially malignant oral lesions. J Oral Pathol Med. 42:47–52.
2013. View Article : Google Scholar
|
|
59
|
Behjati S, Tarpey PS, Sheldon H,
Martincorena I, Van Loo P, Gundem G, Wedge DC, Ramakrishna M, Cooke
SL, Pillay N, et al: Recurrent PTPRB and PLCG1 mutations in
angiosarcoma. Nat Genet. 46:376–379. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Vaqué JP, Gómez-López G, Monsálvez V,
Varela I, Martínez N, Pérez C, Domínguez O, Graña O,
Rodríguez-Peralto JL, Rodríguez-Pinilla SM, et al: PLCG1 mutations
in cutaneous T-cell lymphomas. Blood. 123:2034–2043. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Meyer RD, Husain D and Rahimi N: c-Cbl
inhibits angiogenesis and tumor growth by suppressing activation of
PLCγ1. Oncogene. 30:2198–2206. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Phillips-Mason PJ, Kaur H, Burden-Gulley
SM, Craig SE and Brady-Kalnay SM: Identification of phospholipase C
gamma1 as a protein tyrosine phosphatase mu substrate that
regulates cell migration. J Cell Biochem. 112:39–48. 2011.
View Article : Google Scholar :
|
|
63
|
Yang J, Song X, Chen Y, Lu XA, Fu Y and
Luo Y: PLCγ1-PKCγ signaling-mediated Hsp90α plasma membrane
translocation facilitates tumor metastasis. Traffic. 15:861–878.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Choi AY, Choi JH, Hwang KY, Jeong YJ, Choe
W, Yoon KS, Ha J, Kim SS, Youn JH, Yeo EJ, et al: Licochalcone A
induces apoptosis through endoplasmic reticulum stress via a
phospholipase Cγ1-, Ca2+-, and reactive oxygen
species-dependent pathway in HepG2 human hepatocellular carcinoma
cells. Apoptosis. 19:682–697. 2014. View Article : Google Scholar
|
|
65
|
Kortum RL, Rouquette-Jazdanian AK, Miyaji
M, Merrill RK, Markegard E, Pinski JM, Wesselink A, Nath NN,
Alexander CP, Li W, et al: A phospholipase C-γ1-independent,
RasGRP1-ERK-dependent pathway drives lymphoproliferative disease in
linker for activation of T cells-Y136F mutant mice. J Immunol.
190:147–158. 2013. View Article : Google Scholar
|
|
66
|
Zhang Q, Yu C, Peng S, Xu H, Wright E,
Zhang X, Huo X, Cheng E, Pham TH, Asanuma K, et al: Autocrine VEGF
signaling promotes proliferation of neoplastic Barrett’s epithelial
cells through a PLC-dependent pathway. Gastroenterology.
146:461–472.e6. 2014. View Article : Google Scholar
|
|
67
|
Yang JM, Vassil AD and Hait WN: Activation
of phospholipase C induces the expression of the multidrug
resistance (MDR1) gene through the Raf-MAPK pathway. Mol Pharmacol.
60:674–680. 2001.PubMed/NCBI
|