|
1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar
|
|
2
|
Allemani C, Weir HK, Carreira H, Harewood
R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A,
et al CONCORD Working Group: Global surveillance of cancer survival
1995–2009: Analysis of individual data for 25,676,887 patients from
279 population-based registries in 67 countries (CONCORD-2).
Lancet. 385:977–1010. 2015. View Article : Google Scholar
|
|
3
|
Adams J: Development of the proteasome
inhibitor PS-341. Oncologist. 7:9–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tu Y, Chen C, Pan J, Xu J, Zhou ZG and
Wang CY: The Ubiquitin Proteasome Pathway (UPP) in the regulation
of cell cycle control and DNA damage repair and its implication in
tumorigenesis. Int J Clin Exp Pathol. 5:726–738. 2012.PubMed/NCBI
|
|
5
|
Bedford L, Lowe J, Dick LR, Mayer RJ and
Brownell JE: Ubiquitin-like protein conjugation and the
ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov.
10:29–46. 2011. View
Article : Google Scholar
|
|
6
|
Voutsadakis IA: The ubiquitin-proteasome
system and signal transduction pathways regulating Epithelial
Mesenchymal transition of cancer. J Biomed Sci. 19:672012.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Devoy A, Soane T, Welchman R and Mayer RJ:
The ubiquitin-proteasome system and cancer. Essays Biochem.
41:187–203. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Komander D: The emerging complexity of
protein ubiquitination. Biochem Soc Trans. 37:937–953. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pickart CM: Mechanisms underlying
ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zheng N, Schulman BA, Song L, Miller JJ,
Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al:
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase
complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Schulman BA, Carrano AC, Jeffrey PD, Bowen
Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M and
Pavletich NP: Insights into SCF ubiquitin ligases from the
structure of the Skp1-Skp2 complex. Nature. 408:381–386. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hartwell LH, Mortimer RK, Culotti J and
Culotti M: Genetic control of the cell division cycle in yeast: V.
genetic analysis of cdc mutants. Genetics. 74:267–286.
1973.PubMed/NCBI
|
|
13
|
Hubbard EJ, Wu G, Kitajewski J and
Greenwald I: sel-10, a negative regulator of lin-12 activity in
Caenorhabditis elegans, encodes a member of the CDC4 family of
proteins. Genes Dev. 11:3182–3193. 1997. View Article : Google Scholar
|
|
14
|
Moberg KH, Bell DW, Wahrer DC, Haber DA
and Hariharan IK: Archipelago regulates Cyclin E levels in
Drosophila and is mutated in human cancer cell lines. Nature.
413:311–316. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Welcker M and Clurman BE: FBW7 ubiquitin
ligase: A tumour suppressor at the crossroads of cell division,
growth and differentiation. Nat Rev Cancer. 8:83–93. 2008.
View Article : Google Scholar
|
|
16
|
Rajagopalan H, Jallepalli PV, Rago C,
Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C:
Inactivation of hCDC4 can cause chromosomal instability. Nature.
428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Spruck CH, Strohmaier H, Sangfelt O,
Müller HM, Hubalek M, Müller-Holzner E, Marth C, Widschwendter M
and Reed SI: hCDC4 gene mutations in endometrial cancer. Cancer
Res. 62:4535–4539. 2002.PubMed/NCBI
|
|
18
|
Akhoondi S, Sun D, von der Lehr N,
Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D,
Marth C, et al: FBXW7/hCDC4 is a general tumor suppressor in human
cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Davis H, Lewis A, Behrens A and Tomlinson
I: Investigation of the atypical FBXW7 mutation spectrum in human
tumours by conditional expression of a heterozygous propellor tip
missense allele in the mouse intestines. Gut. 63:792–799. 2014.
View Article : Google Scholar :
|
|
20
|
Koepp DM, Schaefer LK, Ye X, Keyomarsi K,
Chu C, Harper JW and Elledge SJ: Phosphorylation-dependent
ubiquitination of cyclin E by the SCFFbw7 ubiquitin
ligase. Science. 294:173–177. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yada M, Hatakeyama S, Kamura T, Nishiyama
M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and
Nakayama KI: Phosphorylation-dependent degradation of c-Myc is
mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wei W, Jin J, Schlisio S, Harper JW and
Kaelin WG Jr: The v-Jun point mutation allows c-Jun to escape
GSK3-dependent recognition and destruction by the Fbw7 ubiquitin
ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
O'Neil J, Grim J, Strack P, Rao S,
Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters
R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway
activation and resistance to gamma-secretase inhibitors. J Exp Med.
204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Inuzuka H, Shaik S, Onoyama I, Gao D,
Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al:
SCFFBW7 regulates cellular apoptosis by targeting MCL1
for ubiquitylation and destruction. Nature. 471:104–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mao JH, Kim IJ, Wu D, Climent J, Kang HC,
DelRosario R and Balmain A: FBXW7 targets mTOR for degradation and
cooperates with PTEN in tumor suppression. Science. 321:1499–1502.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li J, Pauley AM, Myers RL, Shuang R,
Brashler JR, Yan R, Buhl AE, Ruble C and Gurney ME: SEL-10
interacts with presenilin 1, facilitates its ubiquitination, and
alters A-beta peptide production. J Neurochem. 82:1540–1548. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Brockmann M, Poon E, Berry T, Carstensen
A, Deubzer HE, Rycak L, Jamin Y, Thway K, Robinson SP, Roels F, et
al: Small molecule inhibitors of aurora-a induce proteasomal
degradation of N-myc in childhood neuroblastoma. Cancer Cell.
24:75–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Galli F, Rossi M, D'Alessandra Y, De
Simone M, Lopardo T, Haupt Y, Alsheich-Bartok O, Anzi S, Shaulian
E, Calabrò V, et al: MDM2 and Fbw7 cooperate to induce p63 protein
degradation following DNA damage and cell differentiation. J Cell
Sci. 123:2423–2433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kitagawa K, Hiramatsu Y, Uchida C, Isobe
T, Hattori T, Oda T, Shibata K, Nakamura S, Kikuchi A and Kitagawa
M: Fbw7 promotes ubiquitin-dependent degradation of c-Myb:
Involvement of GSK3-mediated phosphorylation of Thr-572 in mouse
c-Myb. Oncogene. 28:2393–2405. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cassavaugh JM, Hale SA, Wellman TL, Howe
AK, Wong C and Lounsbury KM: Negative regulation of HIF-1α by an
FBW7-mediated degradation pathway during hypoxia. J Cell Biochem.
112:3882–3890. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu Y, Tong Z, Li T, Chen Q, Zhuo L, Li W,
Wu RC and Yu C: Hepatitis B virus X protein stabilizes amplified in
breast cancer 1 protein and cooperates with it to promote human
hepatocellular carcinoma cell invasiveness. Hepatology.
56:1015–1024. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tu K, Zheng X, Yin G, Zan X, Yao Y and Liu
Q: Evaluation of Fbxw7 expression and its correlation with
expression of SREBP-1 in a mouse model of NAFLD. Mol Med Rep.
6:525–530. 2012.PubMed/NCBI
|
|
33
|
Pérez-Benavente B, García JL, Rodríguez
MS, Pineda-Lucena A, Piechaczyk M, Font de Mora J and Farràs R:
GSK3-SCFFBXW7 targets JunB for degradation in G2 to
preserve chromatid cohesion before anaphase. Oncogene.
32:2189–2199. 2013. View Article : Google Scholar
|
|
34
|
Arabi A, Ullah K, Branca RM, Johansson J,
Bandarra D, Haneklaus M, Fu J, Ariës I, Nilsson P, Den Boer ML, et
al: Proteomic screen reveals Fbw7 as a modulator of the NF-κB
pathway. Nat Commun. 3:9762012. View Article : Google Scholar
|
|
35
|
Mao JH, Perez-Losada J, Wu D, Delrosario
R, Tsunematsu R, Nakayama KI, Brown K, Bryson S and Balmain A:
Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor
gene. Nature. 432:775–779. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Teng CL, Hsieh YC, Phan L, Shin J, Gully
C, Velazquez-Torres G, Skerl S, Yeung SC, Hsu SL and Lee MH: FBXW7
is involved in Aurora B degradation. Cell Cycle. 11:4059–4068.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhao J, Tang J, Men W and Ren K:
FBXW7-mediated degradation of CCDC6 is impaired by ATM during DNA
damage response in lung cancer cells. FEBS Lett. 586:4257–4263.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Davis MA, Larimore EA, Fissel BM, Swanger
J, Taatjes DJ and Clurman BE: The SCF-Fbw7 ubiquitin ligase
degrades MED13 and MED13L and regulates CDK8 module association
with Mediator. Genes Dev. 27:151–156. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tan M, Zhao Y, Kim SJ, Liu M, Jia L,
Saunders TL, Zhu Y and Sun Y: SAG/RBX2/ROC2 E3 ubiquitin ligase is
essential for vascular and neural development by targeting NF1 for
degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang R, Wang Y, Liu N, Ren C, Jiang C,
Zhang K, Yu S, Chen Y, Tang H, Deng Q, et al: FBW7 regulates
endothelial functions by targeting KLF2 for ubiquitination and
degradation. Cell Res. 23:803–819. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bialkowska AB, Liu Y, Nandan MO and Yang
VW: A colon cancer-derived mutant of Krüppel-like factor 5 (KLF5)
is resistant to degradation by glycogen synthase kinase 3β (GSK3β)
and the E3 ubiquitin ligase F-box and WD repeat domain-containing
7α (FBW7α). J Biol Chem. 289:5997–6005. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bengoechea-Alonso MT and Ericsson J: The
ubiquitin ligase Fbxw7 controls adipocyte differentiation by
targeting C/EBPalpha for degradation. Proc Natl Acad Sci USA.
107:11817–11822. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Balamurugan K, Sharan S, Klarmann KD,
Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR and
Sterneck E: FBXW7α attenuates inflammatory signalling by
downregulating C/EBPδ and its target gene Tlr4. Nat Commun.
4:16622013. View Article : Google Scholar
|
|
44
|
Biswas M, Phan D, Watanabe M and Chan JY:
The Fbw7 tumor suppressor regulates nuclear factor E2-related
factor 1 transcription factor turnover through proteasome-mediated
proteolysis. J Biol Chem. 286:39282–39289. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lochab S, Pal P, Kapoor I, Kanaujiya JK,
Sanyal S, Behre G and Trivedi AK: E3 ubiquitin ligase Fbw7
negatively regulates granulocytic differentiation by targeting
G-CSFR for degradation. Biochim Biophys Acta. 1833:2639–2652. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yumimoto K, Matsumoto M, Onoyama I,
Imaizumi K and Nakayama KI: F-box and WD repeat domain-containing-7
(Fbxw7) protein targets endoplasmic reticulum-anchored osteogenic
and chondrogenic transcriptional factors for degradation. J Biol
Chem. 288:28488–28502. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen MC, Chen CH, Chuang HC, Kulp SK, Teng
CM and Chen CS: Novel mechanism by which histone deacetylase
inhibitors facilitate topoisomerase IIα degradation in
hepatocellular carcinoma cells. Hepatology. 53:148–159. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bengoechea-Alonso MT and Ericsson J: Tumor
suppressor Fbxw7 regulates TGFβ signaling by targeting TGIF1 for
degradation. Oncogene. 29:5322–5328. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sun Y and Li X: The canonical wnt signal
restricts the glycogen synthase kinase 3/fbw7-dependent
ubiquitination and degradation of eya1 phosphatase. Mol Cell Biol.
34:2409–2417. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kitagawa K, Shibata K, Matsumoto A,
Matsumoto M, Ohhata T, Nakayama KI, Niida H and Kitagawa M: Fbw7
targets GATA3 through cyclin-dependent kinase 2-dependent
proteolysis and contributes to regulation of T-cell development.
Mol Cell Biol. 34:2732–2744. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dai X, North BJ and Inuzuka H: Negative
regulation of DAB2IP by Akt and SCFFbw7 pathways.
Oncotarget. 5:3307–3315. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Trausch-Azar JS, Abed M, Orian A and
Schwartz AL: Isoform-specific SCFFbw7 ubiquitination
mediates differential regulation of PGC-1α. J Cell Physiol.
230:842–852. 2015. View Article : Google Scholar
|
|
53
|
Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C,
Yao Y and Q: Fbxw7 is an independent prognostic marker and induces
apoptosis and growth arrest by regulating YAP abundance in
hepatocellular carcinoma. Mol Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jin J, Cardozo T, Lovering RC, Elledge SJ,
Pagano M and Harper JW: Systematic analysis and nomenclature of
mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sterian A, Kan T, Berki AT, Mori Y, Olaru
A, Schulmann K, Sato F, Wang S, Paun B, Cai K, et al: Mutational
and LOH analyses of the chromosome 4q region in esophageal
adenocarcinoma. Oncology. 70:168–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
van Drogen F, Sangfelt O, Malyukova A,
Matskova L, Yeh E, Means AR and Reed SI: Ubiquitylation of cyclin E
requires the sequential function of SCF complexes containing
distinct hCdc4 isoforms. Mol Cell. 23:37–48. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Matsumoto A, Tateishi Y, Onoyama I, Okita
Y, Nakayama K and Nakayama KI: Fbxw7β resides in the endoplasmic
reticulum membrane and protects cells from oxidative stress. Cancer
Sci. 102:749–755. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ren H, Zhao L, Li Y, Yue P, Deng X,
Owonikoko TK, Chen M, Khuri FR and Sun SY: The PI3 kinase inhibitor
NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation,
contributing to induction of apoptosis and enhancement of
TRAIL-induced apoptosis. Cancer Lett. 338:229–238. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Embi N, Rylatt DB and Cohen P: Glycogen
synthase kinase-3 from rabbit skeletal muscle. Separation from
cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J
Biochem. 107:519–527. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Woodgett JR: Molecular cloning and
expression of glycogen synthase kinase-3/factor A. EMBO J.
9:2431–2438. 1990.PubMed/NCBI
|
|
61
|
Wu D and Pan W: GSK3: A multifaceted
kinase in Wnt signaling. Trends Biochem Sci. 35:161–168. 2010.
View Article : Google Scholar :
|
|
62
|
Kim L and Kimmel AR: GSK3, a master switch
regulating cell-fate specification and tumorigenesis. Curr Opin
Genet Dev. 10:508–514. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Buttrick GJ and Wakefield JG: PI3-K and
GSK-3: Akt-ing together with microtubules. Cell Cycle. 7:2621–2625.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Welcker M, Singer J, Loeb KR, Grim J,
Bloecher A, Gurien-West M, Clurman BE and Roberts JM: Multisite
phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol
Cell. 12:381–392. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hao B, Oehlmann S, Sowa ME, Harper JW and
Pavletich NP: Structure of a Fbw7-Skp1-cyclin E complex:
Multisite-phosphorylated substrate recognition by SCF ubiquitin
ligases. Mol Cell. 26:131–143. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bahram F, von der Lehr N, Cetinkaya C and
Larsson LG: c-Myc hot spot mutations in lymphomas result in
inefficient ubiquitination and decreased proteasome-mediated
turnover. Blood. 95:2104–2110. 2000.PubMed/NCBI
|
|
67
|
Tan Y, Sangfelt O and Spruck C: The
Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett.
271:1–12. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Strohmaier H, Spruck CH, Kaiser P, Won KA,
Sangfelt O and Reed SI: Human F-box protein hCdc4 targets cyclin E
for proteolysis and is mutated in a breast cancer cell line.
Nature. 413:316–322. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ye X, Nalepa G, Welcker M, Kessler BM,
Spooner E, Qin J, Elledge SJ, Clurman BE and Harper JW: Recognition
of phosphodegron motifs in human cyclin E by the SCFFbw7
ubiquitin ligase. J Biol Chem. 279:50110–50119. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Welcker M and Clurman BE: Fbw7/hCDC4
dimerization regulates its substrate interactions. Cell Div.
2:72007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Geng Y, Lee YM, Welcker M, Swanger J,
Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE and
Sicinski P: Kinase-independent function of cyclin E. Mol Cell.
25:127–139. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Siu KT, Rosner MR and Minella AC: An
integrated view of cyclin E function and regulation. Cell Cycle.
11:57–64. 2012. View Article : Google Scholar :
|
|
73
|
Minella AC, Grim JE, Welcker M and Clurman
BE: p53 and SCFFbw7 cooperatively restrain cyclin
E-associated genome instability. Oncogene. 26:6948–6953. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Minella AC, Swanger J, Bryant E, Welcker
M, Hwang H and Clurman BE: p53 and p21 form an inducible barrier
that protects cells against cyclin E-cdk2 deregulation. Curr Biol.
12:1817–1827. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kimura T, Gotoh M, Nakamura Y and Arakawa
H: hCDC4b, a regulator of cyclin E, as a direct transcriptional
target of p53. Cancer Sci. 94:431–436. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Mandal S, Freije WA, Guptan P and Banerjee
U: Metabolic control of G1-S transition: Cyclin E degradation by
p53-induced activation of the ubiquitin-proteasome system. J Cell
Biol. 188:473–479. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Finkin S, Aylon Y, Anzi S, Oren M and
Shaulian E: Fbw7 regulates the activity of endoreduplication
mediators and the p53 pathway to prevent drug-induced polyploidy.
Oncogene. 27:4411–4421. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Guo Z, Zhou Y, Evers BM and Wang Q: Rictor
regulates FBXW7-dependent c-Myc and cyclin E degradation in
colorectal cancer cells. Biochem Biophys Res Commun. 418:426–432.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang H, Zhang X, Geng L, Teng L and
Legerski RJ: Artemis regulates cell cycle recovery from the S phase
checkpoint by promoting degradation of cyclin E. J Biol Chem.
284:18236–18243. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Welcker M and Clurman BE: The SV40 large T
antigen contains a decoy phosphodegron that mediates its
interactions with Fbw7/hCdc4. J Biol Chem. 280:7654–7658. 2005.
View Article : Google Scholar
|
|
81
|
Sarbassov DD, Ali SM, Kim DH, Guertin DA,
Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a
novel binding partner of mTOR, defines a rapamycin-insensitive and
raptor-independent pathway that regulates the cytoskeleton. Curr
Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Poinsignon C, de Chasseval R, Soubeyrand
S, Moshous D, Fischer A, Haché RJ and de Villartay JP:
Phosphorylation of Artemis following irradiation-induced DNA
damage. Eur J Immunol. 34:3146–3155. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ahuja D, Sáenz-Robles MT and Pipas JM:
SV40 large T antigen targets multiple cellular pathways to elicit
cellular transformation. Oncogene. 24:7729–7745. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Minella AC, Welcker M and Clurman BE: Ras
activity regulates cyclin E degradation by the Fbw7 pathway. Proc
Natl Acad Sci USA. 102:9649–9654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hynes NE and Lane HA: ERBB receptors and
cancer: The complexity of targeted inhibitors. Nat Rev Cancer.
5:341–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tan Y, Sun D, Jiang W, Klotz-Noack K,
Vashisht AA, Wohlschlegel J, Widschwendter M and Spruck C:
PP2A-B55β antagonizes cyclin E1 proteolysis and promotes its
dysregulation in cancer. Cancer Res. 74:2006–2014. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bhaskaran N, van Drogen F, Ng HF, Kumar R,
Ekholm-Reed S, Peter M, Sangfelt O and Reed SI: Fbw7α and Fbw7γ
collaborate to shuttle cyclin E1 into the nucleolus for
multiubiquitylation. Mol Cell Biol. 33:85–97. 2013. View Article : Google Scholar :
|
|
88
|
Reed SI: Cooperation between different
Cdc4/Fbw7 isoforms may be associated with 2-step inactivation of
SCFCdc4 targets. Cell Cycle. 5:1923–1924. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang W, MacDonald EM and Koepp DM: The
stomatin-like protein SLP-1 and Cdk2 interact with the F-Box
protein Fbw7-γ. PLoS One. 7:e477362012. View Article : Google Scholar
|
|
90
|
Schülein C, Eilers M and Popov N:
PI3K-dependent phosphorylation of Fbw7 modulates substrate
degradation and activity. FEBS Lett. 585:2151–2157. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sim KG, Zang Z, Yang CM, Bonventre JV and
Hsu SI: TRIP-Br links E2F to novel functions in the regulation of
cyclin E expression during cell cycle progression and in the
maintenance of genomic stability. Cell Cycle. 3:1296–1304. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cizmecioglu O, Krause A, Bahtz R, Ehret L,
Malek N and Hoffmann I: Plk2 regulates centriole duplication
through phosphorylation-mediated degradation of Fbxw7 (human Cdc4).
J Cell Sci. 125:981–992. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mansour MR, Sanda T, Lawton LN, Li X,
Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA,
Jamieson CH, et al: The TAL1 complex targets the FBXW7 tumor
suppressor by activating miR-223 in human T cell acute
lymphoblastic leukemia. J Exp Med. 210:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Keck JM, Summers MK, Tedesco D,
Ekholm-Reed S, Chuang LC, Jackson PK and Reed SI: Cyclin E
overexpression impairs progression through mitosis by inhibiting
APCCdh1. J Cell Biol. 178:371–385. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lau AW, Inuzuka H, Fukushima H, Wan L, Liu
P, Gao D, Sun Y and Wei W: Regulation of APCCdh1 E3
ligase activity by the Fbw7/cyclin E signaling axis contributes to
the tumor suppressor function of Fbw7. Cell Res. 23:947–961. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Meyer N and Penn LZ: Reflecting on 25
years with MyC. Nat Rev Cancer. 8:976–990. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Onoyama I, Tsunematsu R, Matsumoto A,
Kimura T, de Alborán IM, Nakayama K and Nakayama KI: Conditional
inactivation of Fbxw7 impairs cell-cycle exit during T cell
differentiation and results in lymphomatogenesis. J Exp Med.
204:2875–2888. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Welcker M, Orian A, Jin J, Grim JE, Harper
JW, Eisenman RN and Clurman BE: The Fbw7 tumor suppressor regulates
glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein
degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sears R, Nuckolls F, Haura E, Taya Y,
Tamai K and Nevins JR: Multiple Ras-dependent phosphorylation
pathways regulate Myc protein stability. Genes Dev. 14:2501–2514.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yeh E, Cunningham M, Arnold H, Chasse D,
Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida
T, et al: A signalling pathway controlling c-Myc degradation that
impacts oncogenic transformation of human cells. Nat Cell Biol.
6:308–318. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Arnold HK, Zhang X, Daniel CJ, Tibbitts D,
Escamilla-Powers J, Farrell A, Tokarz S, Morgan C and Sears RC: The
Axin1 scaffold protein promotes formation of a degradation complex
for c-Myc. EMBO J. 28:500–512. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu L and Eisenman RN: Regulation of c-Myc
protein abundance by a protein phosphatase 2A-glycogen synthase
kinase 3β-negative feedback pathway. Genes Cancer. 3:23–36. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Seo HR, Kim J, Bae S, Soh JW and Lee YS:
Cdk5-mediated phosphorylation of c-Myc on Ser-62 is essential in
transcriptional activation of cyclin B1 by cyclin G1. J Biol Chem.
283:15601–15610. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sjostrom SK, Finn G, Hahn WC, Rowitch DH
and Kenney AM: The Cdk1 complex plays a prime role in regulating
N-myc phosphorylation and turnover in neural precursors. Dev Cell.
9:327–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Junttila MR, Puustinen P, Niemelä M, Ahola
R, Arnold H, Böttzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y, et
al: CIP2A inhibits PP2A in human malignancies. Cell. 130:51–62.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bonetti P, Davoli T, Sironi C, Amati B,
Pelicci PG and Colombo E: Nucleophosmin and its AML-associated
mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol.
182:19–26. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Welcker M, Orian A, Grim JE, Eisenman RN
and Clurman BE: A nucleolar isoform of the Fbw7 ubiquitin ligase
regulates c-Myc and cell size. Curr Biol. 14:1852–1857. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chandra S, Priyadarshini R, Madhavan V,
Tikoo S, Hussain M, Mudgal R, Modi P, Srivastava V and Sengupta S:
Enhancement of c-Myc degradation by BLM helicase leads to delayed
tumor initiation. J Cell Sci. 126:3782–3795. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Tikoo S and Sengupta S: Time to bloom.
Genome Integr. 1:142010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kim BY, Yang JS, Kwak SY, Zhang XK and Han
YH: NEMO stabilizes c-Myc through direct interaction in the
nucleus. FEBS Lett. 584:4524–4530. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J,
Jin H, Xu D, Gao J and Huang C: NF-κB1 inhibits c-Myc protein
degradation through suppression of FBW7 expression. Oncotarget.
5:493–505. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen J, Shin JH, Zhao R, Phan L, Wang H,
Xue Y, Post SM, Ho Choi H, Chen JS, Wang E, et al: CSN6 drives
carcinogenesis by positively regulating Myc stability. Nat Commun.
5:53842014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Olive V, Sabio E, Bennett MJ, De Jong CS,
Biton A, McGann JC, Greaney SK, Sodir NM, Zhou AY, Balakrishnan A,
et al: A component of the mir-17-92 polycistronic oncomir promotes
oncogene-dependent apoptosis. eLife. 2:e008222013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Onoyama I, Suzuki A, Matsumoto A, Tomita
K, Katagiri H, Oike Y, Nakayama K and Nakayama KI: Fbxw7 regulates
lipid metabolism and cell fate decisions in the mouse liver. J Clin
Invest. 121:342–354. 2011. View Article : Google Scholar :
|
|
115
|
Tu K, Zheng X, Zan X, Han S, Yao Y and Liu
Q: Evaluation of Fbxw7 expression and its correlation with the
expression of c-Myc, cyclin E and p53 in human hepatocellular
carcinoma. Hepatol Res. 42:904–910. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Tu K, Zheng X, Zhou Z, Li C, Zhang J, Gao
J, Yao Y and Liu Q: Recombinant human adenovirus-p53 injection
induced apoptosis in hepatocellular carcinoma cell lines mediated
by p53-Fbxw7 pathway, which controls c-Myc and cyclin E. PLoS One.
8:e685742013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Imura S, Tovuu LO, Utsunomiya T, Morine Y,
Ikemoto T, Arakawa Y, Kanamoto M, Iwahashi S, Saito Y, Takasu C, et
al: The role of Fbxw7 expression in hepatocellular carcinoma and
adjacent non-tumor liver tissue. J Gastroenterol Hepatol.
29:1822–1829. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Tien JC and Xu J: Steroid receptor
coactivator-3 as a potential molecular target for cancer therapy.
Expert Opin Ther Targets. 16:1085–1096. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Chen T, Sun Y, Ji P, Kopetz S and Zhang W:
Topoisomerase IIα in chromosome instability and personalized cancer
therapy. Oncogene. Oct 20–2014.Epub ahead of print. View Article : Google Scholar
|
|
120
|
Piccolo S, Dupont S and Cordenonsi M: The
biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev.
94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Lahusen T, Henke RT, Kagan BL, Wellstein A
and Riegel AT: The role and regulation of the nuclear receptor
co-activator AIB1 in breast cancer. Breast Cancer Res Treat.
116:225–237. 2009. View Article : Google Scholar : PubMed/NCBI
|