Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2015 Volume 34 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2015 Volume 34 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Regulation mechanism of Fbxw7-related signaling pathways (Review)

  • Authors:
    • Zhenyu Zhou
    • Chuanchao He
    • Jie Wang
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
  • Pages: 2215-2224
    |
    Published online on: August 26, 2015
       https://doi.org/10.3892/or.2015.4227
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar

2 

Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, et al CONCORD Working Group: Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 385:977–1010. 2015. View Article : Google Scholar

3 

Adams J: Development of the proteasome inhibitor PS-341. Oncologist. 7:9–16. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Tu Y, Chen C, Pan J, Xu J, Zhou ZG and Wang CY: The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol. 5:726–738. 2012.PubMed/NCBI

5 

Bedford L, Lowe J, Dick LR, Mayer RJ and Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 10:29–46. 2011. View Article : Google Scholar

6 

Voutsadakis IA: The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci. 19:672012. View Article : Google Scholar : PubMed/NCBI

7 

Devoy A, Soane T, Welchman R and Mayer RJ: The ubiquitin-proteasome system and cancer. Essays Biochem. 41:187–203. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans. 37:937–953. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M and Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 408:381–386. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Hartwell LH, Mortimer RK, Culotti J and Culotti M: Genetic control of the cell division cycle in yeast: V. genetic analysis of cdc mutants. Genetics. 74:267–286. 1973.PubMed/NCBI

13 

Hubbard EJ, Wu G, Kitajewski J and Greenwald I: sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 11:3182–3193. 1997. View Article : Google Scholar

14 

Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature. 413:311–316. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Welcker M and Clurman BE: FBW7 ubiquitin ligase: A tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 8:83–93. 2008. View Article : Google Scholar

16 

Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C: Inactivation of hCDC4 can cause chromosomal instability. Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Spruck CH, Strohmaier H, Sangfelt O, Müller HM, Hubalek M, Müller-Holzner E, Marth C, Widschwendter M and Reed SI: hCDC4 gene mutations in endometrial cancer. Cancer Res. 62:4535–4539. 2002.PubMed/NCBI

18 

Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Davis H, Lewis A, Behrens A and Tomlinson I: Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines. Gut. 63:792–799. 2014. View Article : Google Scholar :

20 

Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW and Elledge SJ: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 294:173–177. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Wei W, Jin J, Schlisio S, Harper JW and Kaelin WG Jr: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI

23 

O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al: SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R and Balmain A: FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 321:1499–1502. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Li J, Pauley AM, Myers RL, Shuang R, Brashler JR, Yan R, Buhl AE, Ruble C and Gurney ME: SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem. 82:1540–1548. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, Jamin Y, Thway K, Robinson SP, Roels F, et al: Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell. 24:75–89. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Galli F, Rossi M, D'Alessandra Y, De Simone M, Lopardo T, Haupt Y, Alsheich-Bartok O, Anzi S, Shaulian E, Calabrò V, et al: MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. J Cell Sci. 123:2423–2433. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Kitagawa K, Hiramatsu Y, Uchida C, Isobe T, Hattori T, Oda T, Shibata K, Nakamura S, Kikuchi A and Kitagawa M: Fbw7 promotes ubiquitin-dependent degradation of c-Myb: Involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene. 28:2393–2405. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Cassavaugh JM, Hale SA, Wellman TL, Howe AK, Wong C and Lounsbury KM: Negative regulation of HIF-1α by an FBW7-mediated degradation pathway during hypoxia. J Cell Biochem. 112:3882–3890. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Liu Y, Tong Z, Li T, Chen Q, Zhuo L, Li W, Wu RC and Yu C: Hepatitis B virus X protein stabilizes amplified in breast cancer 1 protein and cooperates with it to promote human hepatocellular carcinoma cell invasiveness. Hepatology. 56:1015–1024. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Tu K, Zheng X, Yin G, Zan X, Yao Y and Liu Q: Evaluation of Fbxw7 expression and its correlation with expression of SREBP-1 in a mouse model of NAFLD. Mol Med Rep. 6:525–530. 2012.PubMed/NCBI

33 

Pérez-Benavente B, García JL, Rodríguez MS, Pineda-Lucena A, Piechaczyk M, Font de Mora J and Farràs R: GSK3-SCFFBXW7 targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase. Oncogene. 32:2189–2199. 2013. View Article : Google Scholar

34 

Arabi A, Ullah K, Branca RM, Johansson J, Bandarra D, Haneklaus M, Fu J, Ariës I, Nilsson P, Den Boer ML, et al: Proteomic screen reveals Fbw7 as a modulator of the NF-κB pathway. Nat Commun. 3:9762012. View Article : Google Scholar

35 

Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, Brown K, Bryson S and Balmain A: Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 432:775–779. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Teng CL, Hsieh YC, Phan L, Shin J, Gully C, Velazquez-Torres G, Skerl S, Yeung SC, Hsu SL and Lee MH: FBXW7 is involved in Aurora B degradation. Cell Cycle. 11:4059–4068. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Zhao J, Tang J, Men W and Ren K: FBXW7-mediated degradation of CCDC6 is impaired by ATM during DNA damage response in lung cancer cells. FEBS Lett. 586:4257–4263. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Davis MA, Larimore EA, Fissel BM, Swanger J, Taatjes DJ and Clurman BE: The SCF-Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with Mediator. Genes Dev. 27:151–156. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Tan M, Zhao Y, Kim SJ, Liu M, Jia L, Saunders TL, Zhu Y and Sun Y: SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Wang R, Wang Y, Liu N, Ren C, Jiang C, Zhang K, Yu S, Chen Y, Tang H, Deng Q, et al: FBW7 regulates endothelial functions by targeting KLF2 for ubiquitination and degradation. Cell Res. 23:803–819. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Bialkowska AB, Liu Y, Nandan MO and Yang VW: A colon cancer-derived mutant of Krüppel-like factor 5 (KLF5) is resistant to degradation by glycogen synthase kinase 3β (GSK3β) and the E3 ubiquitin ligase F-box and WD repeat domain-containing 7α (FBW7α). J Biol Chem. 289:5997–6005. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Bengoechea-Alonso MT and Ericsson J: The ubiquitin ligase Fbxw7 controls adipocyte differentiation by targeting C/EBPalpha for degradation. Proc Natl Acad Sci USA. 107:11817–11822. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR and Sterneck E: FBXW7α attenuates inflammatory signalling by downregulating C/EBPδ and its target gene Tlr4. Nat Commun. 4:16622013. View Article : Google Scholar

44 

Biswas M, Phan D, Watanabe M and Chan JY: The Fbw7 tumor suppressor regulates nuclear factor E2-related factor 1 transcription factor turnover through proteasome-mediated proteolysis. J Biol Chem. 286:39282–39289. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Lochab S, Pal P, Kapoor I, Kanaujiya JK, Sanyal S, Behre G and Trivedi AK: E3 ubiquitin ligase Fbw7 negatively regulates granulocytic differentiation by targeting G-CSFR for degradation. Biochim Biophys Acta. 1833:2639–2652. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Yumimoto K, Matsumoto M, Onoyama I, Imaizumi K and Nakayama KI: F-box and WD repeat domain-containing-7 (Fbxw7) protein targets endoplasmic reticulum-anchored osteogenic and chondrogenic transcriptional factors for degradation. J Biol Chem. 288:28488–28502. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Chen MC, Chen CH, Chuang HC, Kulp SK, Teng CM and Chen CS: Novel mechanism by which histone deacetylase inhibitors facilitate topoisomerase IIα degradation in hepatocellular carcinoma cells. Hepatology. 53:148–159. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Bengoechea-Alonso MT and Ericsson J: Tumor suppressor Fbxw7 regulates TGFβ signaling by targeting TGIF1 for degradation. Oncogene. 29:5322–5328. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Sun Y and Li X: The canonical wnt signal restricts the glycogen synthase kinase 3/fbw7-dependent ubiquitination and degradation of eya1 phosphatase. Mol Cell Biol. 34:2409–2417. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama KI, Niida H and Kitagawa M: Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 34:2732–2744. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Dai X, North BJ and Inuzuka H: Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget. 5:3307–3315. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Trausch-Azar JS, Abed M, Orian A and Schwartz AL: Isoform-specific SCFFbw7 ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol. 230:842–852. 2015. View Article : Google Scholar

53 

Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, Yao Y and Q: Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI

54 

Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M and Harper JW: Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Sterian A, Kan T, Berki AT, Mori Y, Olaru A, Schulmann K, Sato F, Wang S, Paun B, Cai K, et al: Mutational and LOH analyses of the chromosome 4q region in esophageal adenocarcinoma. Oncology. 70:168–172. 2006. View Article : Google Scholar : PubMed/NCBI

56 

van Drogen F, Sangfelt O, Malyukova A, Matskova L, Yeh E, Means AR and Reed SI: Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol Cell. 23:37–48. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Matsumoto A, Tateishi Y, Onoyama I, Okita Y, Nakayama K and Nakayama KI: Fbxw7β resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. Cancer Sci. 102:749–755. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Ren H, Zhao L, Li Y, Yue P, Deng X, Owonikoko TK, Chen M, Khuri FR and Sun SY: The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis. Cancer Lett. 338:229–238. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Embi N, Rylatt DB and Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 107:519–527. 1980. View Article : Google Scholar : PubMed/NCBI

60 

Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9:2431–2438. 1990.PubMed/NCBI

61 

Wu D and Pan W: GSK3: A multifaceted kinase in Wnt signaling. Trends Biochem Sci. 35:161–168. 2010. View Article : Google Scholar :

62 

Kim L and Kimmel AR: GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr Opin Genet Dev. 10:508–514. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Buttrick GJ and Wakefield JG: PI3-K and GSK-3: Akt-ing together with microtubules. Cell Cycle. 7:2621–2625. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE and Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 12:381–392. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Hao B, Oehlmann S, Sowa ME, Harper JW and Pavletich NP: Structure of a Fbw7-Skp1-cyclin E complex: Multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell. 26:131–143. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Bahram F, von der Lehr N, Cetinkaya C and Larsson LG: c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood. 95:2104–2110. 2000.PubMed/NCBI

67 

Tan Y, Sangfelt O and Spruck C: The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 271:1–12. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O and Reed SI: Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature. 413:316–322. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, Elledge SJ, Clurman BE and Harper JW: Recognition of phosphodegron motifs in human cyclin E by the SCFFbw7 ubiquitin ligase. J Biol Chem. 279:50110–50119. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Welcker M and Clurman BE: Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2:72007. View Article : Google Scholar : PubMed/NCBI

71 

Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE and Sicinski P: Kinase-independent function of cyclin E. Mol Cell. 25:127–139. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Siu KT, Rosner MR and Minella AC: An integrated view of cyclin E function and regulation. Cell Cycle. 11:57–64. 2012. View Article : Google Scholar :

73 

Minella AC, Grim JE, Welcker M and Clurman BE: p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene. 26:6948–6953. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Minella AC, Swanger J, Bryant E, Welcker M, Hwang H and Clurman BE: p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol. 12:1817–1827. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Kimura T, Gotoh M, Nakamura Y and Arakawa H: hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Sci. 94:431–436. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Mandal S, Freije WA, Guptan P and Banerjee U: Metabolic control of G1-S transition: Cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol. 188:473–479. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Finkin S, Aylon Y, Anzi S, Oren M and Shaulian E: Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene. 27:4411–4421. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Guo Z, Zhou Y, Evers BM and Wang Q: Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells. Biochem Biophys Res Commun. 418:426–432. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Wang H, Zhang X, Geng L, Teng L and Legerski RJ: Artemis regulates cell cycle recovery from the S phase checkpoint by promoting degradation of cyclin E. J Biol Chem. 284:18236–18243. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Welcker M and Clurman BE: The SV40 large T antigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J Biol Chem. 280:7654–7658. 2005. View Article : Google Scholar

81 

Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Poinsignon C, de Chasseval R, Soubeyrand S, Moshous D, Fischer A, Haché RJ and de Villartay JP: Phosphorylation of Artemis following irradiation-induced DNA damage. Eur J Immunol. 34:3146–3155. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Ahuja D, Sáenz-Robles MT and Pipas JM: SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 24:7729–7745. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Minella AC, Welcker M and Clurman BE: Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 102:9649–9654. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Hynes NE and Lane HA: ERBB receptors and cancer: The complexity of targeted inhibitors. Nat Rev Cancer. 5:341–354. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Tan Y, Sun D, Jiang W, Klotz-Noack K, Vashisht AA, Wohlschlegel J, Widschwendter M and Spruck C: PP2A-B55β antagonizes cyclin E1 proteolysis and promotes its dysregulation in cancer. Cancer Res. 74:2006–2014. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Bhaskaran N, van Drogen F, Ng HF, Kumar R, Ekholm-Reed S, Peter M, Sangfelt O and Reed SI: Fbw7α and Fbw7γ collaborate to shuttle cyclin E1 into the nucleolus for multiubiquitylation. Mol Cell Biol. 33:85–97. 2013. View Article : Google Scholar :

88 

Reed SI: Cooperation between different Cdc4/Fbw7 isoforms may be associated with 2-step inactivation of SCFCdc4 targets. Cell Cycle. 5:1923–1924. 2006. View Article : Google Scholar : PubMed/NCBI

89 

Zhang W, MacDonald EM and Koepp DM: The stomatin-like protein SLP-1 and Cdk2 interact with the F-Box protein Fbw7-γ. PLoS One. 7:e477362012. View Article : Google Scholar

90 

Schülein C, Eilers M and Popov N: PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Lett. 585:2151–2157. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Sim KG, Zang Z, Yang CM, Bonventre JV and Hsu SI: TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle. 3:1296–1304. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Cizmecioglu O, Krause A, Bahtz R, Ehret L, Malek N and Hoffmann I: Plk2 regulates centriole duplication through phosphorylation-mediated degradation of Fbxw7 (human Cdc4). J Cell Sci. 125:981–992. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CH, et al: The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 210:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Keck JM, Summers MK, Tedesco D, Ekholm-Reed S, Chuang LC, Jackson PK and Reed SI: Cyclin E overexpression impairs progression through mitosis by inhibiting APCCdh1. J Cell Biol. 178:371–385. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Lau AW, Inuzuka H, Fukushima H, Wan L, Liu P, Gao D, Sun Y and Wei W: Regulation of APCCdh1 E3 ligase activity by the Fbw7/cyclin E signaling axis contributes to the tumor suppressor function of Fbw7. Cell Res. 23:947–961. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Meyer N and Penn LZ: Reflecting on 25 years with MyC. Nat Rev Cancer. 8:976–990. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alborán IM, Nakayama K and Nakayama KI: Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med. 204:2875–2888. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN and Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Sears R, Nuckolls F, Haura E, Taya Y, Tamai K and Nevins JR: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14:2501–2514. 2000. View Article : Google Scholar : PubMed/NCBI

100 

Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, et al: A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 6:308–318. 2004. View Article : Google Scholar : PubMed/NCBI

101 

Arnold HK, Zhang X, Daniel CJ, Tibbitts D, Escamilla-Powers J, Farrell A, Tokarz S, Morgan C and Sears RC: The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J. 28:500–512. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Liu L and Eisenman RN: Regulation of c-Myc protein abundance by a protein phosphatase 2A-glycogen synthase kinase 3β-negative feedback pathway. Genes Cancer. 3:23–36. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Seo HR, Kim J, Bae S, Soh JW and Lee YS: Cdk5-mediated phosphorylation of c-Myc on Ser-62 is essential in transcriptional activation of cyclin B1 by cyclin G1. J Biol Chem. 283:15601–15610. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Sjostrom SK, Finn G, Hahn WC, Rowitch DH and Kenney AM: The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell. 9:327–338. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Junttila MR, Puustinen P, Niemelä M, Ahola R, Arnold H, Böttzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y, et al: CIP2A inhibits PP2A in human malignancies. Cell. 130:51–62. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Bonetti P, Davoli T, Sironi C, Amati B, Pelicci PG and Colombo E: Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol. 182:19–26. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Welcker M, Orian A, Grim JE, Eisenman RN and Clurman BE: A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol. 14:1852–1857. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, Modi P, Srivastava V and Sengupta S: Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 126:3782–3795. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Tikoo S and Sengupta S: Time to bloom. Genome Integr. 1:142010. View Article : Google Scholar : PubMed/NCBI

110 

Kim BY, Yang JS, Kwak SY, Zhang XK and Han YH: NEMO stabilizes c-Myc through direct interaction in the nucleus. FEBS Lett. 584:4524–4530. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J, Jin H, Xu D, Gao J and Huang C: NF-κB1 inhibits c-Myc protein degradation through suppression of FBW7 expression. Oncotarget. 5:493–505. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Chen J, Shin JH, Zhao R, Phan L, Wang H, Xue Y, Post SM, Ho Choi H, Chen JS, Wang E, et al: CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 5:53842014. View Article : Google Scholar : PubMed/NCBI

113 

Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC, Greaney SK, Sodir NM, Zhou AY, Balakrishnan A, et al: A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. eLife. 2:e008222013. View Article : Google Scholar : PubMed/NCBI

114 

Onoyama I, Suzuki A, Matsumoto A, Tomita K, Katagiri H, Oike Y, Nakayama K and Nakayama KI: Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J Clin Invest. 121:342–354. 2011. View Article : Google Scholar :

115 

Tu K, Zheng X, Zan X, Han S, Yao Y and Liu Q: Evaluation of Fbxw7 expression and its correlation with the expression of c-Myc, cyclin E and p53 in human hepatocellular carcinoma. Hepatol Res. 42:904–910. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Tu K, Zheng X, Zhou Z, Li C, Zhang J, Gao J, Yao Y and Liu Q: Recombinant human adenovirus-p53 injection induced apoptosis in hepatocellular carcinoma cell lines mediated by p53-Fbxw7 pathway, which controls c-Myc and cyclin E. PLoS One. 8:e685742013. View Article : Google Scholar : PubMed/NCBI

117 

Imura S, Tovuu LO, Utsunomiya T, Morine Y, Ikemoto T, Arakawa Y, Kanamoto M, Iwahashi S, Saito Y, Takasu C, et al: The role of Fbxw7 expression in hepatocellular carcinoma and adjacent non-tumor liver tissue. J Gastroenterol Hepatol. 29:1822–1829. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Tien JC and Xu J: Steroid receptor coactivator-3 as a potential molecular target for cancer therapy. Expert Opin Ther Targets. 16:1085–1096. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Chen T, Sun Y, Ji P, Kopetz S and Zhang W: Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene. Oct 20–2014.Epub ahead of print. View Article : Google Scholar

120 

Piccolo S, Dupont S and Cordenonsi M: The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev. 94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Lahusen T, Henke RT, Kagan BL, Wellstein A and Riegel AT: The role and regulation of the nuclear receptor co-activator AIB1 in breast cancer. Breast Cancer Res Treat. 116:225–237. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou Z, He C and Wang J: Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 34: 2215-2224, 2015.
APA
Zhou, Z., He, C., & Wang, J. (2015). Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncology Reports, 34, 2215-2224. https://doi.org/10.3892/or.2015.4227
MLA
Zhou, Z., He, C., Wang, J."Regulation mechanism of Fbxw7-related signaling pathways (Review)". Oncology Reports 34.5 (2015): 2215-2224.
Chicago
Zhou, Z., He, C., Wang, J."Regulation mechanism of Fbxw7-related signaling pathways (Review)". Oncology Reports 34, no. 5 (2015): 2215-2224. https://doi.org/10.3892/or.2015.4227
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou Z, He C and Wang J: Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 34: 2215-2224, 2015.
APA
Zhou, Z., He, C., & Wang, J. (2015). Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncology Reports, 34, 2215-2224. https://doi.org/10.3892/or.2015.4227
MLA
Zhou, Z., He, C., Wang, J."Regulation mechanism of Fbxw7-related signaling pathways (Review)". Oncology Reports 34.5 (2015): 2215-2224.
Chicago
Zhou, Z., He, C., Wang, J."Regulation mechanism of Fbxw7-related signaling pathways (Review)". Oncology Reports 34, no. 5 (2015): 2215-2224. https://doi.org/10.3892/or.2015.4227
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team