|
1
|
Resta N, Pierannunzio D, Lenato GM, Stella
A, Capocaccia R, Bagnulo R, Lastella P, Susca FC, Bozzao C, Loconte
DC, et al: Cancer risk associated with STK11/LKB1 germline
mutations in Peutz-Jeghers syndrome patients: Results of an Italian
multi-center study. Dig Liver Dis. 45:606–611. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen CY, Zhang XM, Wang FY, Wang ZK, Zhu
M, Ma GJ, Zhang YY, Jin XX, Shi H and Liu J: Mutation screening of
LKB1 gene in familial Peutz-Jeghers syndrome patients. Zhonghua Yi
Xue Yi Chuan Xue Za Zhi. 29:121–125. 2012.In Chinese. PubMed/NCBI
|
|
3
|
Fang R, Zheng C, Sun Y, Han X, Gao B, Li
C, Liu H, Wong KK, Liu XY, Chen H, et al: Integrative genomic
analysis reveals a high frequency of LKB1 genetic alteration in
Chinese lung adenocarcinomas. J Thorac Oncol. 9:254–258. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Loi S, Michiels S, Lambrechts D, Fumagalli
D, Claes B, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Piccart MJ,
Joensuu H, et al: Somatic mutation profiling and associations with
prognosis and trastuzumab benefit in early breast cancer. J Natl
Cancer Inst. 105:960–967. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Avizienyte E, Roth S, Loukola A, Hemminki
A, Lothe RA, Stenwig AE, Fosså SD, Salovaara R and Aaltonen LA:
Somatic mutations in LKB1 are rare in sporadic colorectal and
testicular tumors. Cancer Res. 58:2087–2090. 1998.PubMed/NCBI
|
|
6
|
Veleva-Rotse BO, Smart JL, Baas AF,
Edmonds B, Zhao ZM, Brown A, Klug LR, Hansen K, Reilly G, Gardner
AP, et al: STRAD pseudokinases regulate axogenesis and LKB1
stability. Neural Dev. 9:52014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zeqiraj E, Filippi BM, Deak M, Alessi DR
and van Aalten DM: Structure of the LKB1-STRAD-MO25 complex reveals
an allosteric mechanism of kinase activation. Science.
326:1707–1711. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mirouse V, Swick LL, Kazgan N, St Johnston
D and Brenman JE: LKB1 and AMPK maintain epithelial cell polarity
under energetic stress. J Cell Biol. 203:3732013. View Article : Google Scholar :
|
|
9
|
Dahmani R, Just PA, Delay A, Canal F,
Finzi L, Prip-Buus C, Lambert M, Sujobert P, Buchet-Poyau K, Miller
E, et al: A novel LKB1 isoform enhances AMPK metabolic activity and
displays oncogenic properties. Oncogene. 34:2337–2346. 2015.
View Article : Google Scholar
|
|
10
|
Partanen JI, Tervonen TA and Klefström J:
Breaking the epithelial polarity barrier in cancer: The strange
case of LKB1/PAR-4. Philos Trans R Soc Lond B Biol Sci.
368:201301112013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li J, Liu J, Li P, Mao X, Li W, Yang J and
Liu P: Loss of LKB1 disrupts breast epithelial cell polarity and
promotes breast cancer metastasis and invasion. J Exp Clin Cancer
Res. 33:702014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liang X, Wang P, Gao Q and Tao X:
Exogenous activation of LKB1/AMPK signaling induces G1 arrest in
cells with endogenous LKB1 expression. Mol Med Rep. 9:1019–1024.
2014.PubMed/NCBI
|
|
13
|
Luo L, Huang W, Tao R, Hu N, Xiao ZX and
Luo Z: ATM and LKB1 dependent activation of AMPK sensitizes cancer
cells to etoposide-induced apoptosis. Cancer Lett. 328:114–119.
2013. View Article : Google Scholar
|
|
14
|
Hardie DG and Alessi DR: LKB1 and AMPK and
the cancer-metabolism link - ten years after. BMC Biol. 11:362013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gormand A, Henriksson E, Ström K, Jensen
TE, Sakamoto K and Göransson O: Regulation of AMP-activated protein
kinase by LKB1 and CaMKK in adipocytes. J Cell Biochem.
112:1364–1375. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hardie DG: The LKB1-AMPK pathway-friend or
foe in cancer? Cancer Cell. 23:131–132. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hardie DG, Ross FA and Hawley SA:
AMP-activated protein kinase: A target for drugs both ancient and
modern. Chem Biol. 19:1222–1236. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rena G, Pearson ER and Sakamoto K:
Molecular mechanism of action of metformin: Old or new insights?
Diabetologia. 56:1898–1906. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mihaylova MM and Shaw RJ: The AMPK
signalling pathway coordinates cell growth, autophagy and
metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Carling D, Mayer FV, Sanders MJ and
Gamblin SJ: AMP-activated protein kinase: Nature's energy sensor.
Nat Chem Biol. 7:512–518. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lu J, Tan M and Cai Q: The Warburg effect
in tumor progression: Mitochondrial oxidative metabolism as an
anti-metastasis mechanism. Cancer Lett. 356:156–164. 2015.
View Article : Google Scholar
|
|
22
|
Faubert B, Boily G, Izreig S, Griss T,
Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, et
al: AMPK is a negative regulator of the Warburg effect and
suppresses tumor growth in vivo. Cell Metab. 17:113–124. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Teng RJ, Du J, Afolayan AJ, Eis A, Shi Y
and Konduri GG: AMP kinase activation improves angiogenesis in
pulmonary artery endothelial cells with in utero pulmonary
hypertension. Am J Physiol Lung Cell Mol Physiol. 304:L29–L42.
2013. View Article : Google Scholar :
|
|
24
|
Rattan R, Giri S, Singh AK and Singh I:
5-Aminoimida-zole-4-carboxamide-1-beta-D-ribofuranoside inhibits
cancer cell proliferation in vitro and in vivo via AMP-activated
protein kinase. J Biol Chem. 280:39582–39593. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
van Veelen W, Korsse SE, van de Laar L and
Peppelenbosch MP: The long and winding road to rational treatment
of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene.
30:2289–2303. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dunlop EA and Tee AR: mTOR and autophagy:
A dynamic relationship governed by nutrients and energy. Semin Cell
Dev Biol. 36:121–129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jung CH, Ro SH, Cao J, Otto NM and Kim DH:
mTOR regulation of autophagy. FEBS Lett. 584:1287–1295. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shang L and Wang X: AMPK and mTOR
coordinate the regulation of Ulk1 and mammalian autophagy
initiation. Autophagy. 7:924–926. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mack HI, Zheng B, Asara JM and Thomas SM:
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization.
Autophagy. 8:1197–1214. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fenouille N, Tichet M, Dufies M, Pottier
A, Mogha A, Soo JK, Rocchi S, Mallavialle A, Galibert MD, Khammari
A, et al: The epithelial-mesenchymal transition (EMT) regulatory
factor SLUG (SNAI2) is a downstream target of SPARC and AKT in
promoting melanoma cell invasion. PLoS One. 7:e403782012.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wong GS and Rustgi AK: Matricellular
proteins: Priming the tumour microenvironment for cancer
development and metastasis. Br J Cancer. 108:755–761. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xiang X, Zhao X, Qu H, Li D, Yang D, Pu J,
Mei H, Zhao J, Huang K, Zheng L, et al: Hepatocyte nuclear factor 4
alpha promotes the invasion, metastasis and angiogenesis of
neuroblastoma cells via targeting matrix metalloproteinase 14.
Cancer Lett. 359:187–197. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Magee PJ, Allsopp P, Samaletdin A and
Rowland IR: Daidzein, R-(+)equol and S-(−)equol inhibit the
invasion of MDA-MB-231 breast cancer cells potentially via the
down-regulation of matrix metalloproteinase-2. Eur J Nutr.
53:345–350. 2014. View Article : Google Scholar
|
|
34
|
Merdad A, Karim S, Schulten HJ, Dallol A,
Buhmeida A, Al-Thubaity F, Gari MA, Chaudhary AG, Abuzenadah AM and
Al-Qahtani MH: Expression of matrix metalloproteinases (MMPs) in
primary human breast cancer: MMP-9 as a potential biomarker for
cancer invasion and metastasis. Anticancer Res. 34:1355–1366.
2014.PubMed/NCBI
|
|
35
|
Jiang H, Gao M, Shen Z, Luo B, Li R, Jiang
X, Ding R, Ha Y, Wang Z and Jie W: Blocking PI3K/Akt signaling
attenuates metastasis of nasopharyngeal carcinoma cells through
induction of mesenchymal-epithelial reverting transition. Oncol
Rep. 32:559–566. 2014.PubMed/NCBI
|
|
36
|
Son H and Moon A: Epithelial-mesenchymal
transition and cell invasion. Toxicol Res. 26:245–252. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Y and Zhou BP: Epithelial-mesenchymal
transition in breast cancer progression and metastasis. Chin J
Cancer. 30:603–611. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
May CD, Sphyris N, Evans KW, Werden SJ,
Guo W and Mani SA: Epithelial-mesenchymal transition and cancer
stem cells: A dangerously dynamic duo in breast cancer progression.
Breast Cancer Res. 13:2022011. View
Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xu J, Lamouille S and Derynck R:
TGF-beta-induced epithelial to mesenchymal transition. Cell Res.
19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Weiss A and Attisano L: The TGFbeta
superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol.
2:47–63. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
41
|
Katsuno Y, Lamouille S and Derynck R:
TGF-β signaling and epithelial-mesenchymal transition in cancer
progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar
|
|
42
|
Porsch H, Bernert B, Mehić M, Theocharis
AD, Heldin CH and Heldin P: Efficient TGFβ-induced
epithelial-mesenchymal transition depends on hyaluronan synthase
HAS2. Oncogene. 32:4355–4365. 2013. View Article : Google Scholar :
|
|
43
|
Wiercinska E, Naber HP, Pardali E, van der
Pluijm G, van Dam H and ten Dijke P: The TGF-β/Smad pathway induces
breast cancer cell invasion through the up-regulation of matrix
metal-loproteinase 2 and 9 in a spheroid invasion model system.
Breast Cancer Res Treat. 128:657–666. 2011. View Article : Google Scholar
|
|
44
|
Lamouille S and Derynck R: Cell size and
invasion in TGF-beta-induced epithelial to mesenchymal transition
is regulated by activation of the mTOR pathway. J Cell Biol.
178:437–451. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lamouille S, Connolly E, Smyth JW, Akhurst
RJ and Derynck R: TGF-β-induced activation of mTOR complex 2 drives
epithelial-mesenchymal transition and cell invasion. J Cell Sci.
125:1259–1273. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Thakur N, Gudey SK, Marcusson A, Fu JY,
Bergh A, Heldin CH and Landström M: TGFβ-induced invasion of
prostate cancer cells is promoted by c-Jun-dependent
transcriptional activation of Snail1. Cell Cycle. 13:2400–2414.
2014. View Article : Google Scholar :
|
|
47
|
Saini KS, Loi S, de Azambuja E,
Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE and
Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK
pathways in the treatment of breast cancer. Cancer Treat Rev.
39:935–946. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yeh CB, Hsieh MJ, Hsieh YH, Chien MH,
Chiou HL and Yang SF: Antimetastatic effects of norcantharidin on
hepatocellular carcinoma by transcriptional inhibition of MMP-9
through modulation of NF-κB activity. PLoS One. 7:e310552012.
View Article : Google Scholar
|
|
49
|
Zhang W, Liu Y and Wang CW: S100A4
promotes squamous cell laryngeal cancer Hep-2 cell invasion via
NF-κB/MMP-9 signal. Eur Rev Med Pharmacol Sci. 18:1361–1367.
2014.
|
|
50
|
Lu JT, Zhao WD, He W and Wei W: Hedgehog
signaling pathway mediates invasion and metastasis of
hepatocellular carcinoma via ERK pathway. Acta Pharmacol Sin.
33:691–700. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Setia S, Nehru B and Sanyal SN:
Upregulation of MAPK/Erk and PI3K/Akt pathways in ulcerative
colitis-associated colon cancer. Biomed Pharmacother. 68:1023–1029.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Arechederra M, Priego N, Vázquez-Carballo
A, Sequera C, Gutiérrez-Uzquiza Á, Cerezo-Guisado MI, Ortiz-Rivero
S, Roncero C, Cuenda A, Guerrero C, et al: p38 MAPK down-regulates
fibulin 3 expression through methylation of gene regulatory
sequences: Role in migration and invasion. J Biol Chem.
290:4383–4397. 2015. View Article : Google Scholar
|
|
53
|
Chen X, Meng J, Yue W, Yu J, Yang J, Yao Z
and Zhang L: Fibulin-3 suppresses Wnt/β-catenin signaling and lung
cancer invasion. Carcinogenesis. 35:1707–1716. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Z, Rebowe RE, Wang Z, Li Y, Wang Z,
DePaolo JS, Guo J, Qian C and Liu W: KIF3a promotes proliferation
and invasion via Wnt signaling in advanced prostate cancer. Mol
Cancer Res. 12:491–503. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu HT, Sie SS, Kuan TC and Lin CS:
Identifying the regulative role of NF-κB binding sites within
promoter region of human matrix metalloproteinase 9 (mmp-9) by
TNF-α induction. Appl Biochem Biotechnol. 169:438–449. 2013.
View Article : Google Scholar
|
|
56
|
Oue T, Uehara S, Yamanaka H, Nomura M and
Usui N: Hedgehog signal inhibitors suppress the invasion of human
rhabdomyosarcoma cells. Pediatr Surg Int. 29:1153–1158. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Goodwin JM, Svensson RU, Lou HJ, Winslow
MM, Turk BE and Shaw RJ: An AMPK-independent signaling pathway
downstream of the LKB1 tumor suppressor controls Snail1 and
metastatic potential. Mol Cell. 55:436–450. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Roy BC, Kohno T, Iwakawa R, Moriguchi T,
Kiyono T, Morishita K, Sanchez-Cespedes M, Akiyama T and Yokota J:
Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of
human lung cancer cells. Lung Cancer. 70:136–145. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shorning BY, Griffiths D and Clarke AR:
Lkb1 and Pten synergise to suppress mTOR-mediated tumorigenesis and
epithelial-mesenchymal transition in the mouse bladder. PLoS One.
6:e162092011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kim EK, Park JM, Lim S, Choi JW, Kim HS,
Seok H, Seo JK, Oh K, Lee DS, Kim KT, et al: Activation of
AMP-activated protein kinase is essential for lysophosphatidic
acid-induced cell migration in ovarian cancer cells. J Biol Chem.
286:24036–24045. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cerezo M, Tichet M, Abbe P, Ohanna M,
Lehraiki A, Rouaud F, Allegra M, Giacchero D, Bahadoran P,
Bertolotto C, et al: Metformin blocks melanoma invasion and
metastasis development in AMPK/p53-dependent manner. Mol Cancer
Ther. 12:1605–1615. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Esfahanian N, Shakiba Y, Nikbin B, Soraya
H, Maleki-Dizaji N, Ghazi-Khansari M and Garjani A: Effect of
metformin on the proliferation, migration, and MMP-2 and -9
expression of human umbilical vein endothelial cells. Mol Med Rep.
5:1068–1074. 2012.PubMed/NCBI
|
|
63
|
Hsu CJ, Wu MH, Chen CY, Tsai CH, Hsu HC
and Tang CH: AMP-activated protein kinase activation mediates
CCL3-induced cell migration and matrix metalloproteinase-2
expression in human chondrosarcoma. Cell Commun Signal. 11:682013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kim HS, Kim MJ, Kim EJ, Yang Y, Lee MS and
Lim JS: Berberine-induced AMPK activation inhibits the metastatic
potential of melanoma cells via reduction of ERK activity and COX-2
protein expression. Biochem Pharmacol. 83:385–394. 2012. View Article : Google Scholar
|
|
65
|
Chou CC, Lee KH, Lai IL, Wang D, Mo X,
Kulp SK, Shapiro CL and Chen CS: AMPK reverses the mesenchymal
phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a
signaling axis. Cancer Res. 74:4783–4795. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Choudhury Y, Yang Z, Ahmad I, Nixon C,
Salt IP and Leung HY: AMP-activated protein kinase (AMPK) as a
potential therapeutic target independent of PI3K/Akt signaling in
prostate cancer. Oncoscience. 1:446–456. 2014. View Article : Google Scholar
|
|
67
|
Petursson F, Husa M, June R, Lotz M,
Terkeltaub R and Liu-Bryan R: Linked decreases in liver kinase B1
and AMP-activated protein kinase activity modulate matrix catabolic
responses to biomechanical injury in chondrocytes. Arthritis Res
Ther. 15:R772013. View
Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ramnanan CJ, McMullen DC, Groom AG and
Storey KB: The regulation of AMPK signaling in a natural state of
profound metabolic rate depression. Mol Cell Biochem. 335:91–105.
2010. View Article : Google Scholar
|
|
69
|
Lee JH, Kim JH, Kim JS, Chang JW, Kim SB,
Park JS and Lee SK: AMP-activated protein kinase inhibits TGF-β-,
angiotensin II-, aldosterone-, high glucose-, and albumin-induced
epithelial-mesenchymal transition. Am J Physiol Renal Physiol.
304:F686–F697. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lim JY, Oh MA, Kim WH, Sohn HY and Park
SI: AMP-activated protein kinase inhibits TGF-β-induced fibrogenic
responses of hepatic stellate cells by targeting transcriptional
coactivator p300. J Cell Physiol. 227:1081–1089. 2012. View Article : Google Scholar
|
|
71
|
Goncharova EA, Goncharov DA, James ML,
Atochina-Vasserman EN, Stepanova V, Hong SB, Li H, Gonzales L, Baba
M, Linehan WM, et al: Folliculin controls lung alveolar enlargement
and epithelial cell survival through E-cadherin, LKB1, and AMPK.
Cell Reports. 7:412–423. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou J, Yang Z, Tsuji T, Gong J, Xie J,
Chen C, Li W, Amar S and Luo Z: LITAF and TNFSF15, two downstream
targets of AMPK, exert inhibitory effects on tumor growth.
Oncogene. 30:1892–1900. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Queiroz EA, Puukila S, Eichler R, Sampaio
SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB and
Khaper N: Metformin induces apoptosis and cell cycle arrest
mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast
cancer cells. PLoS One. 9:e982072014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhou J, Huang W, Tao R, Ibaragi S, Lan F,
Ido Y, Wu X, Alekseyev YO, Lenburg ME, Hu GF, et al: Inactivation
of AMPK alters gene expression and promotes growth of prostate
cancer cells. Oncogene. 28:1993–2002. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee GR, Jang SH, Kim CJ, Kim AR, Yoon DJ,
Park NH and Han IS: Capsaicin suppresses the migration of
cholangiocarcinoma cells by down-regulating matrix
metalloproteinase-9 expression via the AMPK-NF-κB signaling
pathway. Clin Exp Metastasis. 31:897–907. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wu X, Yan Q, Zhang Z, Du G and Wan X:
Acrp30 inhibits leptin-induced metastasis by downregulating the
JAK/STAT3 pathway via AMPK activation in aggressive SPEC-2
endometrial cancer cells. Oncol Rep. 27:1488–1496. 2012.PubMed/NCBI
|
|
77
|
Park SY, Lee YK, Lee WS, Park OJ and Kim
YM: The involvement of AMPK/GSK3-beta signals in the control of
metastasis and proliferation in hepatocarcinoma cells treated with
anthocyanins extracted from Korea wild berry Meoru. BMC Complement
Altern Med. 14:1092014. View Article : Google Scholar
|
|
78
|
Suzuki A, Lu J, Kusakai G, Kishimoto A,
Ogura T and Esumi H: ARK5 is a tumor invasion-associated factor
downstream of Akt signaling. Mol Cell Biol. 24:3526–3535. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen P, Li K, Liang Y, Li L and Zhu X:
High NUAK1 expression correlates with poor prognosis and involved
in NSCLC cells migration and invasion. Exp Lung Res. 39:9–17. 2013.
View Article : Google Scholar
|