Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2016 Volume 35 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2016 Volume 35 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

The emerging role of RUNX3 in cancer metastasis (Review)

  • Authors:
    • Feifei Chen
    • Xin Liu
    • Jin Bai
    • Dongsheng Pei
    • Junnian Zheng
  • View Affiliations / Copyright

    Affiliations: Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
  • Pages: 1227-1236
    |
    Published online on: December 24, 2015
       https://doi.org/10.3892/or.2015.4515
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Metastasis remains the major driver of mortality in patients with cancer. The multistep metastatic process starts with the dissemination of tumor cells from a primary site and leading to secondary tumor development in an anatomically distant location. Although significant progress has been made in understanding the molecular characteristics of metastasis, many questions remain regarding the intracellular mechanisms governing transition through the various metastatic stages. The runt-related transcription factor 3 (RUNX3) is a downstream effector of the transforming growth factor-β (TGF-β) signaling pathway, and has critical roles in the regulation of cell death by apoptosis, and in angiogenesis, epithelial-to-mesenchymal transition (EMT), cell migration and invasion. RUNX3 functions as a bona fide initiator of carcinogenesis by linking the Wnt oncogenic and TGF-β tumor suppressive pathways. RUNX3 is frequently inactivated in human cancer cell lines and cancer samples by hemizygous deletion of the Runx3 gene, hypermethylation of the Runx3 promoter, or cytoplasmic sequestration of RUNX3 protein. Inactivation of RUNX3 makes it a putative tumor suppressor in human neoplasia. In the present review, we summarize the proposed roles of RUNX3 in metastasis and, when applicable, highlight the mechanism by which they function.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Steeg PS: Tumor metastasis: Mechanistic insights and clinical challenges. Nat Med. 12:895–904. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A and Muschel RJ: Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nat Med. 6:100–102. 2000. View Article : Google Scholar

4 

Fidler IJ: The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Fukushima-Nakase Y, Naoe Y, Taniuchi I, Hosoi H, Sugimoto T and Okuda T: Shared and distinct roles mediated through C-terminal subdomains of acute myeloid leukemia/Runt-related transcription factor molecules in murine development. Blood. 105:4298–4307. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P, Cameron E and Neil JC: Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival. Oncogene. 27:5856–5866. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Brady G and Farrell PJ: RUNX3-mediated repression of RUNX1 in B cells. J Cell Physiol. 221:283–287. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Fukamachi H and Ito K: Growth regulation of gastric epithelial cells by Runx3. Oncogene. 23:4330–4335. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, et al: The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21:3454–3463. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Woolf E, Brenner O, Goldenberg D, Levanon D and Groner Y: Runx3 regulates dendritic epidermal T cell development. Dev Biol. 303:703–714. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Bagchi A and Mills AA: The quest for the 1p36 tumor suppressor. Cancer Res. 68:2551–2556. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K and Salto-Tellez M: Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta. 1796:315–331. 2009.PubMed/NCBI

13 

Oshimo Y, Oue N, Mitani Y, Nakayama H, Kitadai Y, Yoshida K, Ito Y, Chayama K and Yasui W: Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Pathobiology. 71:137–143. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, Putti TC, Loh M, Ko TK, Huang C, et al: RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 66:6512–6520. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, Rognum TO, Skotheim RI, Thiis-Evensen E and Lothe RA: Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 7:942008. View Article : Google Scholar

16 

Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H, Huang C, Shah N, Inoue M, Rajnakova A, et al: RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 65:7743–7750. 2005.PubMed/NCBI

17 

Voon DC, Wang H, Koo JK, Nguyen TA, Hor YT, Chu YS, Ito K, Fukamachi H, Chan SL, Thiery JP, et al: Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells. 30:2088–2099. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Chen F, Bai J, Li W, Mei P, Liu H, Li L, Pan Z, Wu Y and Zheng J: RUNX3 suppresses migration, invasion and angiogenesis of human renal cell carcinoma. PLoS One. 8:e562412013. View Article : Google Scholar : PubMed/NCBI

19 

Sakakura C, Hasegawa K, Miyagawa K, Nakashima S, Yoshikawa T, Kin S, Nakase Y, Yazumi S, Yamagishi H, Okanoue T, et al: Possible involvement of RUNX3 silencing in the peritoneal metastases of gastric cancers. Clin Cancer Res. 11:6479–6488. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K, Ida H, Bouillet P, Strasser A, Bae SC, et al: The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol. 26:4474–4488. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Peng Z, Wei D, Wang L, Tang H, Zhang J, Le X, Jia Z, Li Q and Xie K: RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res. 12:6386–6394. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Mei PJ, Bai J, Liu H, Li C, Wu YP, Yu ZQ and Zheng JN: RUNX3 expression is lost in glioma and its restoration causes drastic suppression of tumor invasion and migration. J Cancer Res Clin Oncol. 137:1823–1830. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Zhang Z, Chen G, Cheng Y, Martinka M and Li G: Prognostic significance of RUNX3 expression in human melanoma. Cancer. 117:2719–2727. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Chen F, Wang M, Bai J, Liu Q, Xi Y, Li W and Zheng J: Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One. 9:e869172014. View Article : Google Scholar : PubMed/NCBI

25 

Chen W, Salto-Tellez M, Palanisamy N, Ganesan K, Hou Q, Tan LK, Sii LH, Ito K, Tan B, Wu J, et al: Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes Chromosomes Cancer. 46:288–301. 2007. View Article : Google Scholar

26 

Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 14:518–527. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Sakakura C, Miyagawa K, Fukuda KI, Nakashima S, Yoshikawa T, Kin S, Nakase Y, Ida H, Yazumi S, Yamagishi H, et al: Frequent silencing of RUNX3 in esophageal squamous cell carcinomas is associated with radioresistance and poor prognosis. Oncogene. 26:5927–5938. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Chuang LS and Ito Y: RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene. 29:2605–2615. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Yu YY, Chen C, Kong FF and Zhang W: Clinicopathological significance and potential drug target of RUNX3 in breast cancer. Drug Des Devel Ther. 8:2423–2430. 2014.PubMed/NCBI

30 

Wang D, Cui W, Wu X, Qu Y, Wang N, Shi B and Hou P: RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence. Am J Cancer Res. 4:725–737. 2014.PubMed/NCBI

31 

Katayama Y, Takahashi M and Kuwayama H: Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun. 388:496–500. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A, Rodriguez BA, Liu J, Yan PS, Quackenbush J, et al: Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res. 68:1786–1796. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Fujii S, Ito K, Ito Y and Ochiai A: Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 283:17324–17332. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Lee SH, Kim J, Kim WH and Lee YM: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 28:184–194. 2009. View Article : Google Scholar

35 

Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al: Genomic loss of microRNA-101 leads to overexpression of histone methyl-transferase EZH2 in cancer. Science. 322:1695–1699. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, Lim XY, Vaithilingam A, Salto-Tellez M, Iacopetta B, Ito Y, et al Singapore Gastric Cancer Consortium: MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer. 46:1456–1463. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Kitago M, Martinez SR, Nakamura T, Sim MS and Hoon DS: Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. Clin Cancer Res. 15:2988–2994. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Goh YM, Cinghu S, Hong ET, Lee YS, Kim JH, Jang JW, Li YH, Chi XZ, Lee KS, Wee H, et al: Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem. 285:10122–10129. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Kim HR, Oh BC, Choi JK and Bae SC: Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization. J Cell Biochem. 105:1048–1058. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Kim JH, Choi JK, Cinghu S, Jang JW, Lee YS, Li YH, Goh YM, Chi XZ, Lee KS, Wee H, et al: Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. J Cell Biochem. 107:557–565. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Sheen YY, Kim MJ, Park SA, Park SY and Nam JS: Targeting the transforming growth factor-β signaling in cancer therapy. Biomol Ther. 21:323–331. 2013. View Article : Google Scholar

42 

Ito Y and Miyazono K: RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev. 13:43–47. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL, Kim HR, Cha EJ, Lee YH, Kaneda A, et al: RUNX3 suppresses gastric epithelial cell growth by inducing p21WAF1/Cip1 expression in cooperation with transforming growth factor β-activated SMAD. Mol Cell Biol. 25:8097–8107. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Yamamura Y, Lee WL, Inoue K, Ida H and Ito Y: RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem. 281:5267–5276. 2006. View Article : Google Scholar

45 

Yao H, Ashihara E and Maekawa T: Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 15:873–887. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Tanaka S, Shiraha H, Nakanishi Y, Nishina S, Matsubara M, Horiguchi S, Takaoka N, Iwamuro M, Kataoka J, Kuwaki K, et al: Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Cancer. 131:2537–2546. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, Lee CW, Voon DC, Koo JK, Wang H, et al: RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell. 14:226–237. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Ju X, Ishikawa TO, Naka K, Ito K, Ito Y and Oshima M: Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells. Cancer Sci. 105:418–424. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Palmero I, Pantoja C and Serrano M: p19ARF links the tumour suppressor p53 to Ras. Nature. 395:125–126. 1998. View Article : Google Scholar : PubMed/NCBI

50 

Lee KS, Lee YS, Lee JM, Ito K, Cinghu S, Kim JH, Jang JW, Li YH, Goh YM, Chi XZ, et al: Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene. 29:3349–3361. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Kruse JP and Gu W: Modes of p53 regulation. Cell. 137:609–622. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H, Kim WJ, Park WY, Oh BC, Stein GS, et al: Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res. 69:8111–8119. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Efeyan A and Serrano M: p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle. 6:1006–1010. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, Kim MK, Kim DM, Choi BS, Kim EG, et al: Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell. 24:603–616. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Hnilicová J, Hozeifi S, Stejskalová E, Dušková E, Poser I, Humpolíčková J, Hof M and Staněk D: The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing. Mol Biol Cell. 24:3557–3568. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY and Bae SC: Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem. 279:29409–29417. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Padua D and Massagué J: Roles of TGFbeta in metastasis. Cell Res. 19:89–102. 2009. View Article : Google Scholar

59 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Lee JM, Shin JO, Cho KW, Hosoya A, Cho SW, Lee YS, Ryoo HM, Bae SC and Jung HS: Runx3 is a crucial regulator of alveolar differentiation and lung tumorigenesis in mice. Differentiation. 81:261–268. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, et al: p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 13:317–323. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M and Allgayer H: MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer. 130:2044–2053. 2012. View Article : Google Scholar

63 

Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M and Enokida H: Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 41:805–817. 2012.PubMed/NCBI

64 

Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL and Shen CY: MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 134:1081–1093. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Liu Z, Chen L, Zhang X, Xu X, Xing H, Zhang Y, Li W, Yu H, Zeng J and Jia J: RUNX3 regulates vimentin expression via miR-30a during epithelial-mesenchymal transition in gastric cancer cells. J Cell Mol Med. 18:610–623. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI

67 

Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar

68 

Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI

69 

Jain RK: Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Yang M, Kuang X, Pan Y, Tan M, Lu B, Lu J, Cheng Q and Li J: Clinicopathological characteristics of vascular endothelial growth factor expression in uveal melanoma: A meta-analysis. Mol Clin Oncol. 2:363–368. 2014.PubMed/NCBI

71 

Lee JM, Lee DJ, Bae SC and Jung HS: Abnormal liver differentiation and excessive angiogenesis in mice lacking Runx3. Histochem Cell Biol. 139:751–758. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Lee JM, Kwon HJ, Lai WF and Jung HS: Requirement of Runx3 in pulmonary vasculogenesis. Cell Tissue Res. 356:445–449. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Semenza GL: Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med. 54:17–28. 2003. View Article : Google Scholar

74 

Harris AL: Hypoxia - a key regulatory factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Lee SH, Bae SC, Kim KW and Lee YM: RUNX3 inhibits hypoxia-inducible factor-1α protein stability by interacting with prolyl hydroxylases in gastric cancer cells. Oncogene. 33:1458–1467. 2014. View Article : Google Scholar

76 

Meng S, Cao J, Zhang X, Fan Y, Fang L, Wang C, Lv Z, Fu D and Li Y: Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3. PLoS One. 8:e686112013. View Article : Google Scholar : PubMed/NCBI

77 

Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF and Groom AC: Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 153:865–873. 1998. View Article : Google Scholar : PubMed/NCBI

78 

Nagasaka A, Kawane K, Yoshida H and Nagata S: Apaf-1-independent programmed cell death in mouse development. Cell Death Differ. 17:931–941. 2010. View Article : Google Scholar

79 

Burgess DJ: Apoptosis: Refined and lethal. Nat Rev Cancer. 13:792013. View Article : Google Scholar : PubMed/NCBI

80 

Nakanishi Y, Shiraha H, Nishina S, Tanaka S, Matsubara M, Horiguchi S, Iwamuro M, Takaoka N, Uemura M, Kuwaki K, et al: Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis. BMC Cancer. 11:32011. View Article : Google Scholar : PubMed/NCBI

81 

Zhai FX, Liu XF, Fan RF, Long ZJ, Fang ZG, Lu Y, Zheng YJ and Lin DJ: RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines. J Cancer Res Clin Oncol. 138:439–449. 2012. View Article : Google Scholar

82 

Liu Z, Zhang X, Xu X, Chen L, Li W, Yu H, Sun Y, Zeng J and Jia J: RUNX3 inhibits survivin expression and induces cell apoptosis in gastric cancer. Eur J Cell Biol. 93:118–126. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Meng X, Franklin DA, Dong J and Zhang Y: MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 74:7161–7167. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Yamada C, Ozaki T, Ando K, Suenaga Y, Inoue K, Ito Y, Okoshi R, Kageyama H, Kimura H, Miyazaki M, et al: RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. J Biol Chem. 285:16693–16703. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Lai CB and Mager DL: Role of runt-related transcription factor 3 (RUNX3) in transcription regulation of natural cytotoxicity receptor 1 (NCR1/NKp46), an activating natural killer (NK) cell receptor. J Biol Chem. 287:7324–7334. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Levanon D, Negreanu V, Lotem J, Bone KR, Brenner O, Leshkowitz D and Groner Y: Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol Cell Biol. 34:1158–1169. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Zhang Y, Lu Q and Cai X: MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 587:3069–3075. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Li Q, Wang JX, He YQ, Feng C, Zhang XJ, Sheng JQ and Li PF: MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis. 5:e11972014. View Article : Google Scholar : PubMed/NCBI

89 

Boya P, Reggiori F and Codogno P: Emerging regulation and functions of autophagy. Nat Cell Biol. 15:713–720. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Kenific CM, Thorburn A and Debnath J: Autophagy and metastasis: Another double-edged sword. Curr Opin Cell Biol. 22:241–245. 2010. View Article : Google Scholar :

91 

Xu Q, Meng S, Liu B, Li MQ, Li Y, Fang L and Li YG: MicroRNA-130a regulates autophagy of endothelial progenitor cells through Runx3. Clin Exp Pharmacol Physiol. 41:351–357. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Denhardt DT, Lopez CA, Rollo EE, Hwang SM, An XR and Walther SE: Osteopontin-induced modifications of cellular functions. Ann NY Acad Sci. 760:127–142. 1995. View Article : Google Scholar : PubMed/NCBI

93 

Anborgh PH, Mutrie JC, Tuck AB and Chambers AF: Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med. 14:2037–2044. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Fong YC, Liu SC, Huang CY, Li TM, Hsu SF, Kao ST, Tsai FJ, Chen WC, Chen CY and Tang CH: Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway. Lung Cancer. 64:263–270. 2009. View Article : Google Scholar

95 

Wang Y, Yan W, Lu X, Qian C, Zhang J, Li P, Shi L, Zhao P, Fu Z, Pu P, et al: Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells. Eur J Cell Biol. 90:642–648. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Singhal H, Bautista DS, Tonkin KS, O'Malley FP, Tuck AB, Chambers AF and Harris JF: Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res. 3:605–611. 1997.PubMed/NCBI

97 

Schneider S, Yochim J, Brabender J, Uchida K, Danenberg KD, Metzger R, Schneider PM, Salonga D, Hölscher AH and Danenberg PV: Osteopontin but not osteonectin messenger RNA expression is a prognostic marker in curatively resected non-small cell lung cancer. Clin Cancer Res. 10:1588–1596. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Ue T, Yokozaki H, Kitadai Y, Yamamoto S, Yasui W, Ishikawa T and Tahara E: Co-expression of osteopontin and CD44v9 in gastric cancer. Int J Cancer. 79:127–132. 1998. View Article : Google Scholar : PubMed/NCBI

99 

Cheng HC, Liu YP, Shan YS, Huang CY, Lin FC, Lin LC, Lee L, Tsai CH, Hsiao M and Lu PJ: Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer. Carcinogenesis. 34:2452–2459. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Min KW, Kim DH, Do SI, Kim K, Lee HJ, Chae SW, Sohn JH, Pyo JS, Oh YH, Kim WS, et al: Expression patterns of stromal MMP-2 and tumoural MMP-2 and -9 are significant prognostic factors in invasive ductal carcinoma of the breast. APMIS. 122:1196–1206. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Stellas D and Patsavoudi E: Inhibiting matrix metalloproteinases, an old story with new potentials for cancer treatment. Anticancer Agents Med Chem. 12:707–717. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Galis ZS and Khatri JJ: Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res. 90:251–262. 2002.PubMed/NCBI

103 

Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, Wan XX, He QY, Li JH, Qu JQ, et al: Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem. 112:2508–2517. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Murphy DA and Courtneidge SA: The 'ins' and 'outs' of podosomes and invadopodia: Characteristics, formation and function. Nat Rev Mol Cell Biol. 12:413–426. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Bai ZK, Guo B, Tian XC, Li DD, Wang ST, Cao H, Wang QY and Yue ZP: Expression and regulation of Runx3 in mouse uterus during the peri-implantation period. J Mol Histol. 44:519–526. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Jinga DC, Blidaru A, Condrea I, Ardeleanu C, Dragomir C, Szegli G, Stefanescu M and Matache C: MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: Correlations with prognostic factors. J Cell Mol Med. 10:499–510. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen F, Liu X, Bai J, Pei D and Zheng J: The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep 35: 1227-1236, 2016.
APA
Chen, F., Liu, X., Bai, J., Pei, D., & Zheng, J. (2016). The emerging role of RUNX3 in cancer metastasis (Review). Oncology Reports, 35, 1227-1236. https://doi.org/10.3892/or.2015.4515
MLA
Chen, F., Liu, X., Bai, J., Pei, D., Zheng, J."The emerging role of RUNX3 in cancer metastasis (Review)". Oncology Reports 35.3 (2016): 1227-1236.
Chicago
Chen, F., Liu, X., Bai, J., Pei, D., Zheng, J."The emerging role of RUNX3 in cancer metastasis (Review)". Oncology Reports 35, no. 3 (2016): 1227-1236. https://doi.org/10.3892/or.2015.4515
Copy and paste a formatted citation
x
Spandidos Publications style
Chen F, Liu X, Bai J, Pei D and Zheng J: The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep 35: 1227-1236, 2016.
APA
Chen, F., Liu, X., Bai, J., Pei, D., & Zheng, J. (2016). The emerging role of RUNX3 in cancer metastasis (Review). Oncology Reports, 35, 1227-1236. https://doi.org/10.3892/or.2015.4515
MLA
Chen, F., Liu, X., Bai, J., Pei, D., Zheng, J."The emerging role of RUNX3 in cancer metastasis (Review)". Oncology Reports 35.3 (2016): 1227-1236.
Chicago
Chen, F., Liu, X., Bai, J., Pei, D., Zheng, J."The emerging role of RUNX3 in cancer metastasis (Review)". Oncology Reports 35, no. 3 (2016): 1227-1236. https://doi.org/10.3892/or.2015.4515
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team