Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2016 Volume 35 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2016 Volume 35 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review)

  • Authors:
    • Ioannis S. Vizirianakis
    • George A. Mystridis
    • Konstantinos Avgoustakis
    • Dimitrios G. Fatouros
    • Marios Spanakis
  • View Affiliations / Copyright

    Affiliations: Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece, Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Patras, Patras GR-26504, Greece, Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece, Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Crete, Greece
  • Pages: 1891-1904
    |
    Published online on: January 18, 2016
       https://doi.org/10.3892/or.2016.4575
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Braeckmans K, De Smedt SC, Leblans M, Pauwels R and Demeester J: Encoding microcarriers: Present and future technologies. Nat Rev Drug Discov. 1:447–456. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Ginsburg GS and Willard HF: Genomic and personalized medicine: Foundations and applications. Transl Res. 154:277–287. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Hertz DL and McLeod HL: Use of pharmacogenetics for predicting cancer prognosis and treatment exposure, response and toxicity. J Hum Genet. 58:346–352. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Kaddurah-Daouk R and Weinshilboum RM; Pharmacometabolomics Research Network: Pharmacometabolomics: Implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther. 95:154–167. 2014. View Article : Google Scholar

5 

Roses AD, Saunders AM, Lutz MW, Zhang N, Hariri AR, Asin KE, Crenshaw DG, Budur K, Burns DK and Brannan SK: New applications of disease genetics and pharmacogenetics to drug development. Curr Opin Pharmacol. 14:81–89. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Vizirianakis IS: Challenges in current drug delivery from the potential application of pharmacogenomics and personalized medicine in clinical practice. Curr Drug Deliv. 1:73–80. 2004. View Article : Google Scholar

7 

Vizirianakis IS: Improving pharmacotherapy outcomes by pharmacogenomics: From expectation to reality? Pharmacogenomics. 6:701–711. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Vizirianakis IS: Clinical translation of genotyping and haplotyping data: Implementation of in vivo pharmacology experience leading drug prescription to pharmacotyping. Clin Pharmacokinet. 46:807–824. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Vizirianakis IS: Advancement of pharmacogenomics toward pharmacotyping in drug prescription: Concepts, challenges, and perspectives for personalized medicine. Handbook of Personalized Medicine: Advances in Nanotechnology, Drug Delivery and Therapy. Vizirianakis IS: Pan Stanford Publishing; Singapore: pp. 893–952. 2014, View Article : Google Scholar

10 

Pirmohamed M: Personalized pharmacogenomics: Predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet. 15:349–370. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Ahn K, Luo J, Berg A, Keefe D and Wu R: Functional mapping of drug response with pharmacodynamic-pharmacokinetic principles. Trends Pharmacol Sci. 31:306–311. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Daka A and Peer D: RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev. 64:1508–1521. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Debbage P: Targeted drugs and nanomedicine: Present and future. Curr Pharm Des. 15:153–172. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Huttenhower C and Hofmann O: A quick guide to large-scale genomic data mining. PLOS Comput Biol. 6:e10007792010. View Article : Google Scholar : PubMed/NCBI

15 

Janowski M, Bulte JW and Walczak P: Personalized nano-medicine advancements for stem cell tracking. Adv Drug Deliv Rev. 64:1488–1507. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Mura S and Couvreur P: Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 64:1394–1416. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Petersen AL, Hansen AE, Gabizon A and Andresen TL: Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev. 64:1417–1435. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K and Kwon IC: Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Adv Drug Deliv Rev. 64:1447–1458. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Vizirianakis IS, Chatzopoulou M, Bonovolias ID, Nicolaou I, Demopoulos VJ and Tsiftsoglou AS: Toward the development of innovative bifunctional agents to induce differentiation and to promote apoptosis in leukemia: Clinical candidates and perspectives. J Med Chem. 53:6779–6810. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Wieland M and Fussenegger M: Reprogrammed cell delivery for personalized medicine. Adv Drug Deliv Rev. 64:1477–1487. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G and Pangalos MN: Lessons learned from the fate of Astrazeneca's drug pipeline: A five-dimensional framework. Nat Rev Drug Discov. 13:419–431. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Cree IA: Designing personalised cancer treatments. J Control Release. 172:405–409. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE and Zhang L; International Transporter Consortium: Emerging transporters of clinical importance: An update from the International Transporter Consortium. Clin Pharmacol Ther. 94:52–63. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Huang M, Shen A, Ding J and Geng M: Molecularly targeted cancer therapy: Some lessons from the past decade. Trends Pharmacol Sci. 35:41–50. 2014. View Article : Google Scholar

25 

Ingelman-Sundberg M: Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol Sci. 25:193–200. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Jain KK: Innovative diagnostic technologies and their significance for personalized medicine. Mol Diagn Ther. 14:141–147. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Lee JW, Aminkeng F, Bhavsar AP, Shaw K, Carleton BC, Hayden MR and Ross CJ: The emerging era of pharmacogenomics: Current successes, future potential, and challenges. Clin Genet. 86:21–28. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Ntziachristos V and Razansky D: Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev. 110:2783–2794. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A Jr, Josephson L and Weissleder R: Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA. 101:12294–12299. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Pirmohamed M: Pharmacogenetics: Past, present and future. Drug Discov Today. 16:852–861. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Sadee W: Pharmacogenomic biomarkers: Validation needed for both the molecular genetic mechanism and clinical effect. Pharmacogenomics. 12:675–680. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Vizirianakis IS: Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine. 7:11–17. 2011. View Article : Google Scholar

33 

Flowers CR and Veenstra D: The role of cost-effectiveness analysis in the era of pharmacogenomics. Pharmacoeconomics. 22:481–493. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Payne K and Shabaruddin FH: Cost-effectiveness analysis in pharmacogenomics. Pharmacogenomics. 11:643–646. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Sorich MJ, Wiese MD and Pekarsky B: Cost-effectiveness of geno-typing to guide treatment. Pharmacogenomics. 15:727–729. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Wong WB, Carlson JJ, Thariani R and Veenstra DL: Cost effectiveness of pharmacogenomics: A critical and systematic review. Pharmacoeconomics. 28:1001–1013. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Wu AHB, Babic N and Yeo KT: Implementation of pharmacogenomics into the clinical practice of therapeutics: Issues for the clinician and the laboratorian. Per Med. 6:315–327. 2009. View Article : Google Scholar

38 

Fleeman N, McLeod C, Bagust A, Beale S, Boland A, Dundar Y, Jorgensen A, Payne K, Pirmohamed M, Pushpakom S, et al: The clinical effectiveness and cost-effectiveness of testing for cytochrome P450 polymorphisms in patients with schizophrenia treated with antipsychotics: A systematic review and economic evaluation. Health Technol Assess. 14:1–157. iii2010. View Article : Google Scholar

39 

Gurwitz D, Rodríguez-Antona C, Payne K, Newman W, Gisbert JP, de Mesa EG and Ibarreta D: Improving pharmacovigilance in Europe: TPMT genotyping and phenotyping in the uk and spain. Eur J Hum Genet. 17:991–998. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Thompson AJ, Newman WG, Elliott RA, Roberts SA, Tricker K and Payne K: The cost-effectiveness of a pharmacogenetic test: A trial-based evaluation of TPMT genotyping for azathioprine. Value Health. 17:22–33. 2014. View Article : Google Scholar : PubMed/NCBI

41 

van den Akker-van Marle ME, Gurwitz D, Detmar SB, Enzing CM, Hopkins MM, Gutierrez de Mesa E and Ibarreta D: Cost-effectiveness of pharmacogenomics in clinical practice: A case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe. Pharmacogenomics. 7:783–792. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Phillips KA, Ann Sakowski J, Trosman J, Douglas MP, Liang SY and Neumann P: The economic value of personalized medicine tests. Genet Med. 16:251–257. 2014. View Article : Google Scholar :

43 

Shabaruddin FH and Payne K: Evaluating the cost-effectiveness of pharmacogenomics in clinical practice. Handbook of personalized Medicine: Advances in nanotechnology, Drug Delivery and Therapy. Vizirianakis IS: Pan stanford publishing; Singapore: pp. 779–812. 2014, View Article : Google Scholar

44 

Poulin P, Jones RD, Jones HM, Gibson CR, Rowland M, Chien JY, Ring BJ, Adkison KK, Ku MS, He H, et al: PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: Prediction of plasma concentration-time profiles in human using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. 100:4127–4157. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Ring BJ, Chien JY, Adkison KK, Jones HM, Rowland M, Jones RD, Yates JW, Ku MS, Gibson CR, He H, et al: PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: Comparative assessment of prediction methods of human clearance. J Pharm Sci. 100:4090–4110. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Bates S: Progress towards personalized medicine. Drug Discov Today. 15:115–120. 2010. View Article : Google Scholar

47 

Fu G, Liu J, Luo J, Zhong W, Wang Y, Wang N and Wu R: Systems mapping: A computational tool for personalized medicine. Handbook of personalized Medicine: Advances in nanotechnology, Drug Delivery and Therapy. Vizirianakis IS: Pan Stanford Publishing; Singapore: pp. 321–340. 2014, View Article : Google Scholar

48 

Wu R, Tong C, Wang Z, Mauger D, Tantisira K, Szefler SJ, Chinchilli VM and Israel E: A conceptual framework for pharmacodynamic genome-wide association studies in pharmacogenomics. Drug Discov Today. 16:884–890. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Hong H, Perkins R, Shi L, Fang H, Mendrick DL and Tong W: Molecular biomarkers for personalized medicine. Handbook of personalized Medicine: Advances in nanotechnology, Drug Delivery and Therspy. Vizirianakis IS: Pan stanford publishing; Singapore: pp. 607–644. 2014, View Article : Google Scholar

50 

Gonzalez de Castro D, Clarke PA, Al-Lazikani B and Workman P: Personalized cancer medicine: Molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther. 93:252–259. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Yap TA, Sandhu SK, Workman P and de Bono JS: Envisioning the future of early anticancer drug development. Nat Rev Cancer. 10:514–523. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Rubin EH and Gilliland DG: Drug development and clinical trials - the path to an approved cancer drug. Nat Rev Clin Oncol. 9:215–222. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Vizirianakis IS and Fatouros DG: Personalized nanomedicine: Paving the way to the practical clinical utility of genomics and nanotechnology advancements. Adv Drug Deliv Rev. 64:1359–1362. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Vizirianakis IS: Handbook of personalized Medicine: Advances in Nanotechnology, Drug Delivery, and Therapy. Pan Stanford Publishing; Singapore: 2014, View Article : Google Scholar

55 

Swanson TW, Akkari PA, Arbuckle JB, Grossman I, Sundseth SS and Roses AD: Methodology to enable integration of genomic knowledge into drug development. Handbook of Personalized Medicine: Advances in nanotechnology, Drug Delivery and Therpy. Vizirianakis IS: Pan stanford publishing; Singapore: pp. 645–684. 2014, View Article : Google Scholar

56 

Jamei M, Rowland YK and Rostami-Hodjegan A: Framework, organization, and applications of the Simcyp population-based simulator to support new drug development. Handbook of personalized Medicine: Advances in nanotechnology, Drug Delivery and Therapy. Vizirianakis IS: Pan stanford publishing; Singapore: pp. 685–726. Pan stanford publishing; Singapore: 2014, View Article : Google Scholar

57 

Amstutz U and Carleton BC: Pharmacogenetic testing: Time for clinical practice guidelines. Clin Pharmacol Ther. 89:924–927. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, Anderson JL, Kimmel SE, Lee MT, Pirmohamed M, et al Clinical pharmacogenetics Implementation Consortium: Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 90:625–629. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE and Klein TE; Clinical Pharmacogenetics Implementation Consortium: Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 89:387–391. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Relling MV and klein TE: CPIC: Clinical pharmacogenetics Implementation Consortium of the Pharmacogenomics Research network. Clin Pharmacol Ther. 89:464–467. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Scott SA, Sangkuhl K, Gardner EE, Stein CM, Hulot JS, Johnson JA, Roden DM, Klein TE and Shuldiner AR; Clinical Pharmacogenetics Implementation Consortium: Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 90:328–332. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der zee AH, Mulder H, Rongen GA, van Schaik RH, Schalekamp T, Touw DJ, et al: Pharmacogenetics: From bench to byte - an update of guidelines. Clin Pharmacol Ther. 89:662–673. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Workman P: The opportunities and challenges of personalized genome-based molecular therapies for cancer: Targets, technologies, and molecular chaperones. Cancer Chemother. 52(Suppl 1): S45–S56. 2003. View Article : Google Scholar

65 

Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Khawar IA, Kim JH and Kuh HJ: Improving drug delivery to solid tumors. J Control Release. 201:78–89. 2015. View Article : Google Scholar

67 

Scott JG, Hjelmeland AB, Chinnaiyan P, Anderson AR and Basanta D: Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLOS Comput Biol. 10:e10034332014. View Article : Google Scholar : PubMed/NCBI

68 

Watnick RS: The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb Perspect Med. 2:a0066762012. View Article : Google Scholar : PubMed/NCBI

69 

Kirtane AR, Siegel RA and Panyam J: A pharmacokinetic model for quantifying the effect of vascular permeability on the choice of drug carrier: A framework for personalized nanomedicine. J Pharm Sci. 104:1174–1186. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Moss DM and siccardi M: Optimizing nanomedicine phar-macokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 171:3963–3979. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Andre F, Mardis E, Salm M, Soria JC, Siu LL and Swanton C: Prioritizing targets for precision cancer medicine. Ann Oncol. 25:2295–2303. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Collins FS and Varmus H: A new initiative on precision medicine. N Engl J Med. 372:793–795. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Doudican NA, Kumar A, Singh NK, Nair PR, Lala DA, Basu K, Talawdekar AA, Sultana Z, Tiwari KK, Tyagi A, et al: Personalization of cancer treatment using predictive simulation. J Transl Med. 13:432015. View Article : Google Scholar : PubMed/NCBI

74 

Roychowdhury S and Chinnaiyan AM: Translating genomics for precision cancer medicine. Annu Rev Genomics Hum Genet. 15:395–415. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Binkhorst L, Mathijssen RH, Jager A and van Gelder T: Individualization of tamoxifen therapy: Much more than just CYP2D6 genotyping. Cancer Treat Rev. 41:289–299. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Smith GL: The long and short of tamoxifen therapy: A review of the ATLAs trial. J Adv Pract Oncol. 5:57–60. 2014.PubMed/NCBI

77 

Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L, et al: Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: Implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 80:61–74. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Flockhart D: CYP2D6 genotyping and the pharmacogenetics of tamoxifen. Clin Adv Hematol Oncol. 6:493–494. 2008.PubMed/NCBI

79 

Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, et al: CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 97:30–39. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Stearns V, Johnson MD, Rae JM, Morocho A, Novielli A, Bhargava P, Hayes DF, Desta Z and Flockhart DA: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst. 95:1758–1764. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Dickschen K, Willmann S, Thelen K, Lippert J, Hempel G and Eissing T: Physiologically based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance. Front Pharmacol. 3:922012. View Article : Google Scholar : PubMed/NCBI

82 

Drbohlavova J, Chomoucka J, Adam V, Ryvolova M, Eckschlager T, Hubalek J and Kizek R: Nanocarriers for anti-cancer drugs - new trends in nanomedicine. Curr Drug Metab. 14:547–564. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Ballesta A, Zhou Q, Zhang X, Lv H and Gallo JM: Multiscale design of cell-type-specific pharmacokinetic/pharmacodynamic models for personalized medicine: Application to temozolomide in brain tumors. CPT Pharmacometrics Syst Pharmacol. 3:e1122014. View Article : Google Scholar : PubMed/NCBI

84 

Block M: Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: Status, potential and gaps. Expert Opin Drug Metab Toxicol. 11:743–756. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Upreti M, Jyoti A and Sethi P: Tumor microenvironment and nanotherapeutics. Transl Cancer Res. 2:309–319. 2013.

86 

Maji R, Dey NS, Satapathy BS, Mukherjee B and Mondal S: Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine. 9:3107–3118. 2014.PubMed/NCBI

87 

Pandey SK, Ghosh S, Maiti P and Haldar C: Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. Int J Biol Macromol. 72:309–319. 2015. View Article : Google Scholar

88 

Hersh EM, O'Day SJ, Ribas A, Samlowski WE, Gordon MS, Shechter DE, Clawson AA and Gonzalez R: A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer. 116:155–163. 2010.

89 

Jehn CF, Boulikas T, Kourvetaris A, Kofla G, Possinger K and Lüftner D: First safety and response results of a randomized phase III study with liposomal platin in the treatment of advanced squamous cell carcinoma of the head and neck (SCCHN). Anticancer Res. 28:3961–3964. 2008.

90 

Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R and Rochlitz C: Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet oncol. 13:1234–1241. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Zhao P and Astruc D: Docetaxel nanotechnology in anticancer therapy. ChemMedChem. 7:952–972. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Baish JW, Stylianopoulos T, Lanning RM, Kamoun WS, Fukumura D, Munn LL and Jain RK: Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci USA. 108:1799–1803. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Bachler G, von Goetz N and Hungerbühler K: A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine. 8:3365–3382. 2013.PubMed/NCBI

94 

Bachler G, von Goetz N and Hungerbuhler K: Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 9:373–380. 2015. View Article : Google Scholar

95 

Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, Wang L, Liu Y, Hu Z, Gu Z, et al: Bismuth sulfide nanorods as a precision nano-medicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano. 9:696–707. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Mouffouk F, Simão T, Dornelles DF, Lopes AD, Sau P, Martins J, Abu-salah KM, Alrokayan SA, Rosa da Costa AM and dos Santos NR: Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging. Int J Nanomedicine. 10:63–76. 2015.PubMed/NCBI

97 

Perera RH, Hernandez C, Zhou H, Kota P, Burke A and Exner AA: Ultrasound imaging beyond the vasculature with new generation contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 7:593–608. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Torchilin VP: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 13:813–827. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Barrett JS, Della Casa Alberighi O, Läer S and Meibohm B: Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 92:40–49. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Chetty M, Li L, Rose R, Machavaram K, Jamei M, Rostami-Hodjegan A and Gardner I: Prediction of the pharmacokinetics, pharmacodynamics, and efficacy of a monoclonal antibody, using a physiologically based pharmacokinetic FcRn model. Front Immunol. 5:6702014.

101 

Diao L and Meibohm B: Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 52:855–868. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Dostalek M, Gardner I, Gurbaxani BM, Rose RH and Chetty M: Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 52:83–124. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, Snoeys J, Upreti VV, Zheng M and Hall SD: Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective. Clin pharmacol Ther. 97:247–262. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Dranitsaris G, Amir E and Dorward K: Biosimilars of biological drug therapies: Regulatory, clinical and commercial considerations. Drugs. 71:1527–1536. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Wang J, Iyer S, Fielder PJ, Davis JD and Deng R: Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: Comparative evaluation of prediction approaches in early drug development. Biopharm Drug Dispos. Apr 13–2015.Epub ahead of print. View Article : Google Scholar

106 

Bouzom F, Ball K, Perdaems N and Walther B: Physiologically based pharmacokinetic (PBPK) modelling tools: How to fit with our needs? Biopharm Drug Dispos. 33:55–71. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Nyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, Hooker AC and Mentré F: Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol. 79:6–17. 2015. View Article : Google Scholar :

108 

Rowland M, Peck C and Tucker G: Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 51:45–73. 2011. View Article : Google Scholar

109 

Moghimi SM, Hunter AC and Andresen TL: Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 52:481–503. 2012. View Article : Google Scholar

110 

Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A and Farokhzad OC: Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev. 64:1363–1384. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD and Ribas A: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 464:1067–1070. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Gao W, Xiao Z, Radovic-Moreno A, Shi J, Langer R and Farokhzad OC: Progress in siRNA delivery using multifunctional nanoparticles. Methods Mol Biol. 629:53–67. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Zhou J, Shum KT, Burnett JC and Rossi JJ: Nanoparticle-based delivery of RNAi therapeutics: Progress and challenges. Pharmaceuticals. 6:85–107. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, et al: VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine. 11:825–833. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Yohan D and Chithrani BD: Applications of nanoparticles in nanomedicine. J Biomed nanotechnol. 10:2371–2392. 2014. View Article : Google Scholar

116 

Pridgen EM, Alexis F and Farokhzad OC: Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol. 12:1605–1610. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Wright J: Deliver on a promise. Sci Am. 311:S12–S13. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS and Farokhzad OC: Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther. 83:761–769. 2008. View Article : Google Scholar

119 

Aoyama T, Omori T, Watabe S, Shioya A, Ueno T, Fukuda N and Matsumoto Y: Pharmacokinetic/pharmacodynamic modeling and simulation of rosuvastatin using an extension of the indirect response model by incorporating a circadian rhythm. Biol Pharm Bull. 33:1082–1087. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Chetty M, Rose RH, Abduljalil K, Patel N, Lu G, Cain T, Jamei M and Rostami-Hodjegan A: Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability. Front Pharmacol. 5:2582014. View Article : Google Scholar : PubMed/NCBI

121 

Rose RH, Neuhoff S, Abduljalil K, Chetty M, Rostami-Hodjegan A and Jamei M: Application of a physiologically based pharmacokinetic model to predict OATP1B1-related variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst Pharmacol. 3:e1242014. View Article : Google Scholar : PubMed/NCBI

122 

Abbad S, Wang C, Waddad AY, LV H and Zhou J: Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alphatocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate. Int J Nanomedicine. 10:305–320. 2015.

123 

Abouzeid AH, Patel NR, Sarisozen C and Torchilin VP: Transferrin-targeted polymeric micelles co-loaded with curcumin and paclitaxel: Efficient killing of paclitaxel-resistant cancer cells. Pharm Res. 31:1938–1945. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Acharya S and Sahoo SK: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 63:170–183. 2011. View Article : Google Scholar

125 

Chapman VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D and Jain RK: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 7:383–388. 2012. View Article : Google Scholar

126 

Jain RK and Stylianopoulos T: Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 7:653–664. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Olivares-Morales A, Kamiyama Y, Darwich AS, Aarons L and Rostami-Hodjegan A: Analysis of the impact of controlled release formulations on oral drug absorption, gut wall metabolism and relative bioavailability of CYP3A substrates using a physiologically-based pharmacokinetic model. Eur J Pharm Sci. 67:32–44. 2015. View Article : Google Scholar

128 

Kyrodimou M, Andreadis D, Drougou A, Amanatiadou EP, Angelis L, Barbatis C, Epivatianos A and Vizirianakis IS: Desmoglein-3/γ-catenin and E-cadherin/β-catenin differential expression in oral leukoplakia and squamous cell carcinoma. Clin Oral Investig. 18:199–210. 2014. View Article : Google Scholar

129 

Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, et al: Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 4:128ra392012. View Article : Google Scholar : PubMed/NCBI

130 

Hudachek SF and Gustafson DL: Physiologically based pharmacokinetic model of lapatinib developed in mice and scaled to humans. J pharmacokinet pharmacodyn. 40:157–176. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Poulin P, Hop CE, Salphati L and Liederer BM: Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors. J Pharm Sci. 102:1355–1369. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Zhou Q, Guo P, Kruh GD, Vicini P, Wang X and Gallo JM: Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clin Cancer Res. 13:4271–4279. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Castorina P, Carcò D, Guiot C and Deisboeck TS: Tumor growth instability and its implications for chemotherapy. Cancer Res. 69:8507–8515. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Ganguly R and Puri IK: Mathematical model for chemotherapeutic drug efficacy in arresting tumour growth based on the cancer stem cell hypothesis. Cell Prolif. 40:338–354. 2007. View Article : Google Scholar : PubMed/NCBI

135 

Hubbard ME and Byrne HM: Multiphase modelling of vascular tumour growth in two spatial dimensions. J Theor Biol. 316:70–89. 2013. View Article : Google Scholar

136 

Johnson D, McKeever S, Stamatakos G, Dionysiou D, Graf N, Sakkalis V, Marias K, Wang Z, Deisboeck TS, Johnson D, et al: Dealing with diversity in computational cancer modeling. Cancer Inform. 12:115–124. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Loessner D, Flegg JA, Byrne HM, Clements JA and Hutmacher DW: Growth of confined cancer spheroids: A combined experimental and mathematical modelling approach. Integr Biol. 5:597–605. 2013. View Article : Google Scholar

138 

Molina-Peña R and Álvarez MM: A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PLoS One. 7:e262332012. View Article : Google Scholar : PubMed/NCBI

139 

Sakkalis V, Sfakianakis S, Tzamali E, Marias K, Stamatakos G, Misichroni F, Ouzounoglou E, Kolokotroni E, Dionysiou D, Johnson D, et al: Web-based workflow planning platform supporting the design and execution of complex multiscale cancer models. IEEE J Biomed Health Inform. 18:824–831. 2014. View Article : Google Scholar : PubMed/NCBI

140 

Sturrock M, Hao W, schwartzbaum J and rempala GA: A mathematical model of pre-diagnostic glioma growth. J Theor Biol. 380:299–308. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Tzamali E, Grekas G, Marias K and Sakkalis V: Exploring the competition between proliferative and invasive cancer phenotypes in a continuous spatial model. PLoS One. 9:e1031912014. View Article : Google Scholar : PubMed/NCBI

142 

He Q, Guo S, Qian Z and Chen X: Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev. 44:6258–6286. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Hu C, Niestroj M, Yuan D, Chang S and Chen J: Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J nanomedicine. 10:2065–2077. 2015.PubMed/NCBI

144 

Landesman-Milo D, Ramishetti S and Peer D: Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev. 34:291–301. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Patil R, Ljubimov AV, Gangalum PR, Ding H, Portilla-Arias J, Wagner S, Inoue S, Konda B, Rekechenetskiy A, Chesnokova A, et al: MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: Nanoclinic in the brain. ACS Nano. 9:5594–5608. 2015. View Article : Google Scholar : PubMed/NCBI

146 

Rychahou P, Shu Y, Haque F, Hu J, Guo P and Evers BM: Methods and assays for specific targeting and delivery of RNA nanoparticles to cancer metastases. Methods Mol Biol. 1297:121–135. 2015. View Article : Google Scholar : PubMed/NCBI

147 

Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, et al: Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA. 111:10287–10292. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, Abrahamsson B and Tannergren C: In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: Application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 49:679–698. 2013. View Article : Google Scholar : PubMed/NCBI

149 

Jayachandran D, Ramkrishna U, Skiles J, Renbarger J and Ramkrishna D: Revitalizing personalized medicine: Respecting biomolecular complexities beyond gene expression. CPT Pharmacometrics Syst Pharmacol. 3:e1102014. View Article : Google Scholar : PubMed/NCBI

150 

Xie L, Ge X, Tan H, Xie L, Zhang Y, Hart T, Yang X and Bourne PE: Towards structural systems pharmacology to study complex diseases and personalized medicine. PLOS Comput Biol. 10:e10035542014. View Article : Google Scholar : PubMed/NCBI

151 

Gröning R, Remmerbach S and Jansen AC: Telemedicine: Insulin pump controlled via the Global System for Mobile Communications (GSM). Int J Pharm. 339:61–65. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Alomari M, Mohamed FH, Basit AW and Gaisford S: Personalised dosing: Printing a dose of one's own medicine. Int J pharm. 494:568–577. 2015. View Article : Google Scholar

153 

Khaled SA, Burley JC, Alexander MR and Roberts CJ: Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 461:105–111. 2014. View Article : Google Scholar

154 

Xitian P, Hongying L, Kang W, Yulin L, Xiaolin Z and Zhiyu W: A novel remote controlled capsule for site-specific drug delivery in human GI tract. Int J Pharm. 382:160–164. 2009. View Article : Google Scholar : PubMed/NCBI

155 

Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR and Yun SH: Contact lens sensors in ocular diagnostics. Adv Healthc Mater. 4:792–810. 2015. View Article : Google Scholar

156 

Wening K and Breitkreutz J: Oral drug delivery in personalized medicine: Unmet needs and novel approaches. Int J pharm. 404:1–9. 2011. View Article : Google Scholar

157 

Vizirianakis IS: Harnessing pharmacological knowledge for personalized medicine and pharmacotyping: Challenges and lessons learned. World J Pharmacol. 3:110–119. 2014. View Article : Google Scholar

158 

Li M, Panagi Z, Avgoustakis K and Reineke J: Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J nanomedicine. 7:1345–1356. 2012.PubMed/NCBI

159 

Shelley ML, Wagner AJ, Hussain SM and Bleckmann C: Modeling the in vivo case with in vitro nanotoxicity data. Int J Toxicol. 27:359–367. 2008. View Article : Google Scholar : PubMed/NCBI

160 

Lin P, Chen JW, Chang LW, Wu JP, Redding L, Chang H, Yeh TK, Yang CS, Tsai MH, Wang HJ, et al: Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ Sci Technol. 42:6264–6270. 2008. View Article : Google Scholar : PubMed/NCBI

161 

Péry AR, Brochot C, Hoet PH, Nemmar A and Bois FY: Development of a physiologically based kinetic model for 99m-technetium-labelled carbon nanoparticles inhaled by humans. Inhal Toxicol. 21:1099–1107. 2009. View Article : Google Scholar : PubMed/NCBI

162 

Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JC, Geertsma RE and De Jong WH: The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. 31:8350–8361. 2010. View Article : Google Scholar : PubMed/NCBI

163 

Mager DE, Mody V, Xu C, Forrest A, Lesniak WG, Nigavekar SS, Kariapper MT, Minc L, Khan MK and Balogh LP: Physiologically based pharmacokinetic model for composite nanodevices: Effect of charge and size on in vivo disposition. Pharm Res. 29:2534–2542. 2012. View Article : Google Scholar : PubMed/NCBI

164 

Pascal J, Ashley CE, Wang Z, Brocato TA, Butner JD, Carnes EC, Koay EJ, Brinker CJ and Cristini V: Mechanistic modeling identifes drug-uptake history as predictor of tumor drug resistance and nano-carrier-mediated response. ACS Nano. 7:11174–11182. 2013. View Article : Google Scholar : PubMed/NCBI

165 

Li D, Johanson G, Emond C, Carlander U, Philbert M and Jolliet O: Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats. nanotoxicology. 8(suppl 1): S128–S137. 2014. View Article : Google Scholar

166 

Sweeney LM, MacCalman L, Haber LT, Kuempel ED and Tran CL: Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Regul Toxicol Pharmacol. 73:151–163. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B and Hungerbuehler K: Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol. 12:182015. View Article : Google Scholar : PubMed/NCBI

168 

Lin Z, Monteiro-Riviere NA and Riviere JE: A physiolo gically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology. 11:1–11. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG and Spanakis M: Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol Rep 35: 1891-1904, 2016.
APA
Vizirianakis, I.S., Mystridis, G.A., Avgoustakis, K., Fatouros, D.G., & Spanakis, M. (2016). Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncology Reports, 35, 1891-1904. https://doi.org/10.3892/or.2016.4575
MLA
Vizirianakis, I. S., Mystridis, G. A., Avgoustakis, K., Fatouros, D. G., Spanakis, M."Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review)". Oncology Reports 35.4 (2016): 1891-1904.
Chicago
Vizirianakis, I. S., Mystridis, G. A., Avgoustakis, K., Fatouros, D. G., Spanakis, M."Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review)". Oncology Reports 35, no. 4 (2016): 1891-1904. https://doi.org/10.3892/or.2016.4575
Copy and paste a formatted citation
x
Spandidos Publications style
Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG and Spanakis M: Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol Rep 35: 1891-1904, 2016.
APA
Vizirianakis, I.S., Mystridis, G.A., Avgoustakis, K., Fatouros, D.G., & Spanakis, M. (2016). Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncology Reports, 35, 1891-1904. https://doi.org/10.3892/or.2016.4575
MLA
Vizirianakis, I. S., Mystridis, G. A., Avgoustakis, K., Fatouros, D. G., Spanakis, M."Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review)". Oncology Reports 35.4 (2016): 1891-1904.
Chicago
Vizirianakis, I. S., Mystridis, G. A., Avgoustakis, K., Fatouros, D. G., Spanakis, M."Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review)". Oncology Reports 35, no. 4 (2016): 1891-1904. https://doi.org/10.3892/or.2016.4575
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team