Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2016 Volume 36 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2016 Volume 36 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis

  • Authors:
    • Bin Dai
    • Peng Zhang
    • Yisong Zhang
    • Changcun Pan
    • Guolu Meng
    • Xinru Xiao
    • Zhen Wu
    • Wang Jia
    • Junting Zhang
    • Liwei Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
  • Pages: 173-180
    |
    Published online on: May 10, 2016
       https://doi.org/10.3892/or.2016.4802
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mutations in the RNaseH2A gene are involved in Aicardi‑Goutieres syndrome, an autosomal recessive neurological dysfunction; however, studies assessing RNaseH2A in relation to glioma are scarce. This study aimed to assess the role of RNaseH2A in glioma and to unveil the underlying mechanisms. RNaseH2A was silenced in glioblastoma cell lines U87 and U251. Gene expression was assessed in the cells transfected with RNaseH2A shRNA or scramble shRNA by microarrays, validated by quantitative real time PCR. Protein expression was evaluated by western blot analysis. Cell proliferation was assessed by the MTT assay; cell cycle distribution and apoptosis were analyzed by flow cytometry. Finally, the effects of RNaseH2A on colony formation and tumorigenicity were assessed in vitro and in a mouse xenograft model, respectively. RNaseH2A was successively knocked down in U87 and U251 cells. Notably, RNaseH2A silencing resulted in impaired cell proliferation, with 70.7 and 57.8% reduction in the U87 and U251 cells, respectively, with the cell cycle being blocked in the G0/G1 phase in vitro. Meanwhile, clone formation was significantly reduced by RNaseH2A knockdown, which also increased cell apoptosis by approximately 4.5-fold. In nude mice, tumor size was significantly decreased after RNaseH2A knockdown: 219.29±246.43 vs. 1160.26±222.61 mm3 for the control group; similar findings were obtained for tumor weight (0.261±0.245 and 1.127±0.232 g) in the shRNA and control groups, respectively). In the microarray data, RNaseH2A was shown to modulate several signaling pathways responsible for cell proliferation and apoptosis, such as IL-6 and FAS pathways. RNaseH2A may be involved in human gliomagenesis, likely by regulating signaling pathways responsible for cell proliferation and apoptosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Adamczyk LA, Williams H, Frankow A, Ellis HP, Haynes HR, Perks C, Holly JM and Kurian KM: Current understanding of circulating tumor cells–potential value in malignancies of the central nervous system. Front Neurol. 6:1742015. View Article : Google Scholar

2 

Aparicio-Blanco J and Torres-Suárez AI: Glioblastoma multiforme and lipid nanocapsules: a review. J Biomed Nanotechnol. 11:1283–1311. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Cuddapah VA, Robel S, Watkins S and Sontheimer H: A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 15:455–465. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Errico A: CNS cancer: new options for glioblastoma. Nat Rev Clin Oncol. 11:1242014.PubMed/NCBI

5 

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Westphal M and Lamszus K: Circulating biomarkers for gliomas. Nat Rev Neurol. 11:556–566. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Zhang ZZ, Shields LB, Sun DA, Zhang YP, Hunt MA and Shields CB: The art of intraoperative glioma identification. Front Oncol. 5:1752015. View Article : Google Scholar : PubMed/NCBI

8 

Samdani AF, Torre-Healy A, Khalessi A, McGirt M, Jallo GI and Carson B: Intraventricular ganglioglioma: a short illustrated review. Acta Neurochir (Wien). 151:635–640. 2009. View Article : Google Scholar

9 

Gautschi OP, van Leyen K, Cadosch D, Hildebrandt G and Fournier JY: Fluorescence guided resection of malignant brain tumors-breakthrough in the surgery of brain tumors. Praxis Bern (1994). 98:643–647. 2009.In German. View Article : Google Scholar

10 

Signorelli F, Guyotat J, Elisevich K and Barbagallo GM: Review of current microsurgical management of insular gliomas. Acta Neurochir (Wien). 152:19–26. 2010. View Article : Google Scholar

11 

Bello L, Fava E, Carrabba G, Papagno C and Gaini SM: Present day's standards in microsurgery of low-grade gliomas. Adv Tech Stand Neurosurg. 35:113–157. 2010.PubMed/NCBI

12 

Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, et al: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 95:190–198. 2001. View Article : Google Scholar

14 

Ohgaki H and Kleihues P: Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 100:2235–2241. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Marumoto T and Saya H: Molecular biology of glioma. Adv Exp Med Biol. 746:2–11. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Patel M, Vogelbaum MA, Barnett GH, Jalali R and Ahluwalia MS: Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs. 21:1247–1266. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Spasic M, Chow F, Tu C, Nagasawa DT and Yang I: Molecular characteristics and pathways of Avastin for the treatment of glioblastoma multiforme. Neurosurg Clin N Am. 23:417–427. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Zhu JJ and Wong ET: Personalized medicine for glioblastoma: current challenges and future opportunities. Curr Mol Med. 13:358–367. 2013.PubMed/NCBI

19 

Goodenberger ML and Jenkins RB: Genetics of adult glioma. Cancer Genet. 205:613–621. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Assi H, Candolfi M, Baker G, Mineharu Y, Lowenstein PR and Castro MG: Gene therapy for brain tumors: basic developments and clinical implementation. Neurosci Lett. 527:71–77. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Carén H, Pollard SM and Beck S: The good, the bad and the ugly: epigenetic mechanisms in glioblastoma. Mol Aspects Med. 34:849–862. 2013. View Article : Google Scholar :

22 

Rizzo D, Ruggiero A, Martini M, Rizzo V, Maurizi P and Riccardi R: Molecular biology in pediatric high-grade glioma: impact on prognosis and treatment. BioMed Res Int. 2015:2151352015. View Article : Google Scholar : PubMed/NCBI

23 

Mischel PS and Cloughesy TF: Targeted molecular therapy of GBM. Brain Pathol. 13:52–61. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Zhang L, Chen LH, Wan H, Yang R, Wang Z, Feng J, Yang S, Jones S, Wang S, Zhou W, et al: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 46:726–730. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Wan W, Xu X, Jia G, Li W, Wang J, Ren T, Wu Z, Zhang J, Zhang L and Lu Y: Differential expression of p42.3 in low- and high-grade gliomas. World J Surg Oncol. 12:1852014. View Article : Google Scholar : PubMed/NCBI

26 

Melton C, Reuter JA, Spacek DV and Snyder M: Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat Genet. 47:710–716. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Peters I, Tezval H, Kramer MW, Wolters M, Grünwald V, Kuczyk MA and Serth J: Implications of TCGA network data on 2nd generation immunotherapy concepts based on PD-L1 and PD-1 target structures. Aktuelle Urol. 46:481–485. 2015.In German. PubMed/NCBI

28 

Chen X, Shi K, Wang Y, Song M, Zhou W, Tu H and Lin Z: Clinical value of integrated-signature miRNAs in colorectal cancer: miRNA expression profiling analysis and experimental validation. Oncotarget. 6:37544–37556. 2015.PubMed/NCBI

29 

Moelling K and Broecker F: The reverse transcriptase-RNase H: from viruses to antiviral defense. Ann NY Acad Sci. 1341:126–135. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Natiq A, Elalaoui SC, Miesch S, Bonnet C, Jonveaux P, Amzazi S and Sefiani A: A new case of de novo 19p13.2p13.12 deletion in a girl with overgrowth and severe developmental delay. Mol Cytogenet. 7:402014. View Article : Google Scholar : PubMed/NCBI

31 

Flanagan JM, Funes JM, Henderson S, Wild L, Carey N and Boshoff C: Genomics screen in transformed stem cells reveals RNASEH2A, PPAP2C, and ADARB1 as putative anticancer drug targets. Mol Cancer Ther. 8:249–260. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Feng S and Cao Z: Is the role of human RNase H2 restricted to its enzyme activity? Prog Biophys Mol Biol. Nov 19–2015.Epub ahead of print. PubMed/NCBI

33 

Reijns MA, Bubeck D, Gibson LC, Graham SC, Baillie GS, Jones EY and Jackson AP: The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J Biol Chem. 286:10530–10539. 2011. View Article : Google Scholar :

34 

Hausen P and Stein H: Ribonuclease H. An enzyme degrading the RNA moiety of DNA-RNA hybrids. Eur J Biochem. 14:278–283. 1970. View Article : Google Scholar : PubMed/NCBI

35 

Stein H and Hausen P: Enzyme from calf thymus degrading the RNA moiety of DNA-RNA hybrids: effect on DNA-dependent RNA polymerase. Science. 166:393–395. 1969. View Article : Google Scholar : PubMed/NCBI

36 

Coté ML and Roth MJ: Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase. Virus Res. 134:186–202. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Mizuno M, Yasukawa K and Inouye K: Insight into the mechanism of the stabilization of moloney murine leukaemia virus reverse transcriptase by eliminating RNase H activity. Biosci Biotechnol Biochem. 74:440–442. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Schultz SJ and Champoux JJ: RNase H activity: structure, specificity, and function in reverse transcription. Virus Res. 134:86–103. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, Ackroyd S, Allcock R, Bailey KM, Balottin U, et al: Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12:1159–1169. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Orcesi S, La Piana R and Fazzi E: Aicardi-Goutieres syndrome. Br Med Bull. 89:183–201. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Crow YJ: Aicardi-Goutières syndrome. Handb Clin Neurol. 113:1629–1635. 2013. View Article : Google Scholar

42 

Crow YJ and Manel N: Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol. 15:429–440. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Williams KA, Lee M, Hu Y, Andreas J, Patel SJ, Zhang S, Chines P, Elkahloun A, Chandrasekharappa S, Gutkind JS, et al: A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes. PLoS Genet. 10:e10048092014. View Article : Google Scholar : PubMed/NCBI

44 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 25:402–408. 2001. View Article : Google Scholar

45 

Dai B, Wan W, Zhang P, Zhang Y, Pan C, Meng G, Xiao X, Wu Z, Jia W, Zhang J, et al: SET and MYND domain-containing protein 3 is overexpressed in human glioma and contributes to tumorigenicity. Oncol Rep. 34:2722–2730. 2015.PubMed/NCBI

46 

Yun K, Fidler AE, Eccles MR and Reeve AE: Insulin-like growth factor II and WT1 transcript localization in human fetal kidney and Wilms' tumor. Cancer Res. 53:5166–5171. 1993.PubMed/NCBI

47 

Pritchard-Jones RO, Dunn DB, Qiu Y, Varey AH, Orlando A, Rigby H, Harper SJ and Bates DO: Expression of VEGFxxxb, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer. 97:223–230. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Ismail PM, Lu T and Sawadogo M: Loss of USF transcriptional activity in breast cancer cell lines. Oncogene. 18:5582–5591. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Macé K, Aguilar F, Wang JS, Vautravers P, Gómez-Lechón M, Gonzalez FJ, Groopman J, Harris CC and Pfeifer AM: Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis. 18:1291–1297. 1997. View Article : Google Scholar

50 

Cox C, Bignell G, Greenman C, Stabenau A, Warren W, Stephens P, Davies H, Watt S, Teague J, Edkins S, et al: A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci USA. 102:4542–4547. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Doyle GA, Bourdeau-Heller JM, Coulthard S, Meisner LF and Ross J: Amplification in human breast cancer of a gene encoding a c-myc mRNA-binding protein. Cancer Res. 60:2756–2759. 2000.PubMed/NCBI

52 

Suswam E, Li Y, Zhang X, Gillespie GY, Li X, Shacka JJ, Lu L, Zheng L and King PH: Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res. 68:674–682. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Lai WS, Kennington EA and Blackshear PJ: Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol. 23:3798–3812. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Zhang K, Dion N, Fuchs B, Damron T, Gitelis S, Irwin R, O'Connor M, Schwartz H, Scully SP, Rock MG, et al: The human homolog of yeast SEP1 is a novel candidate tumor suppressor gene in osteogenic sarcoma. Gene. 298:121–127. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Rökman A, Ikonen T, Seppälä EH, Nupponen N, Autio V, Mononen N, Bailey-Wilson J, Trent J, Carpten J, Matikainen MP, et al: Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet. 70:1299–1304. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Krüger S, Silber AS, Engel C, Görgens H, Mangold E, Pagenstecher C, Holinski-Feder E, von Knebel Doeberitz M, Moeslein G, Dietmaier W, et al German Hereditary Non-Polyposis Colorectal Cancer Consortium: Arg462Gln sequence variation in the prostate-cancer-susceptibility gene RNASEL and age of onset of hereditary non-polyposis colorectal cancer: a case-control study. Lancet Oncol. 6:566–572. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Bartsch DK, Fendrich V, Slater EP, Sina-Frey M, Rieder H, Greenhalf W, Chaloupka B, Hahn SA, Neoptolemos JP and Kress R: RNASEL germline variants are associated with pancreatic cancer. Int J Cancer. 117:718–722. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Shook SJ, Beuten J, Torkko KC, Johnson-Pais TL, Troyer DA, Thompson IM and Leach RJ: Association of RNASEL variants with prostate cancer risk in Hispanic Caucasians and African Americans. Clin Cancer Res. 13:5959–5964. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Rennert H, Zeigler-Johnson CM, Addya K, Finley MJ, Walker AH, Spangler E, Leonard DG, Wein A, Malkowicz SB and Rebbeck TR: Association of susceptibility alleles in ELAC2/HPC2, RNASEL/HPC1, and MSR1 with prostate cancer severity in European American and African American men. Cancer Epidemiol Biomarkers Prev. 14:949–957. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Sidrauski C and Walter P: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 90:1031–1039. 1997. View Article : Google Scholar : PubMed/NCBI

61 

Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R, Rudland PS and Sibson DR: Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer. 123:85–88. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, Ando T, Mori R, Takashima N, Ogawa R, et al: RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res. 12:7322–7328. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL, Barbosa-Morais NL, Mukherjee G, Thorne NP, Roberts I, et al: Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol. 212:368–377. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Kaul D and Sikand K: Defective RNA-mediated c-myc gene silencing pathway in Burkitt's lymphoma. Biochem Biophys Res Commun. 313:552–554. 2004. View Article : Google Scholar

65 

Flavin RJ, Smyth PC, Finn SP, Laios A, O'Toole SA, Barrett C, Ring M, Denning KM, Li J, Aherne ST, et al: Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod Pathol. 21:676–684. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW and Dhir R: Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol. 169:1812–1820. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW and Dacic S: Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 67:2345–2350. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Chiosea SI, Barnes EL, Lai SY, Egloff AM, Sargent RL, Hunt JL and Seethala RR: Mucoepidermoid carcinoma of upper aerodigestive tract: clinicopathologic study of 78 cases with immunohistochemical analysis of Dicer expression. Virchows Arch. 452:629–635. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, Eyler CE, Elderbroom J, Gallagher J, Schuschu J, et al: Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells. 27:2393–2404. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Chang CY, Li MC, Liao SL, Huang YL, Shen CC and Pan HC: Prognostic and clinical implication of IL-6 expression in glioblastoma multiforme. J Clin Neurosci. 12:930–933. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Goswami S, Gupta A and Sharma SK: Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. J Neurochem. 71:1837–1845. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Green DR and Llambi F: Cell Death Signaling. Cold Spring Harb Perspect Biol. 7:2015.pii: a006080. View Article : Google Scholar : PubMed/NCBI

73 

Frei K, Ambar B, Adachi N, Yonekawa Y and Fontana A: Ex vivo malignant glioma cells are sensitive to Fas (CD95/APO-1) ligand-mediated apoptosis. J Neuroimmunol. 87:105–113. 1998. View Article : Google Scholar : PubMed/NCBI

74 

Gratas C, Tohma Y, Van Meir EG, Klein M, Tenan M, Ishii N, Tachibana O, Kleihues P and Ohgaki H: Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7:863–869. 1997. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai B, Zhang P, Zhang Y, Pan C, Meng G, Xiao X, Wu Z, Jia W, Zhang J, Zhang L, Zhang L, et al: RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Oncol Rep 36: 173-180, 2016.
APA
Dai, B., Zhang, P., Zhang, Y., Pan, C., Meng, G., Xiao, X. ... Zhang, L. (2016). RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Oncology Reports, 36, 173-180. https://doi.org/10.3892/or.2016.4802
MLA
Dai, B., Zhang, P., Zhang, Y., Pan, C., Meng, G., Xiao, X., Wu, Z., Jia, W., Zhang, J., Zhang, L."RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis". Oncology Reports 36.1 (2016): 173-180.
Chicago
Dai, B., Zhang, P., Zhang, Y., Pan, C., Meng, G., Xiao, X., Wu, Z., Jia, W., Zhang, J., Zhang, L."RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis". Oncology Reports 36, no. 1 (2016): 173-180. https://doi.org/10.3892/or.2016.4802
Copy and paste a formatted citation
x
Spandidos Publications style
Dai B, Zhang P, Zhang Y, Pan C, Meng G, Xiao X, Wu Z, Jia W, Zhang J, Zhang L, Zhang L, et al: RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Oncol Rep 36: 173-180, 2016.
APA
Dai, B., Zhang, P., Zhang, Y., Pan, C., Meng, G., Xiao, X. ... Zhang, L. (2016). RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Oncology Reports, 36, 173-180. https://doi.org/10.3892/or.2016.4802
MLA
Dai, B., Zhang, P., Zhang, Y., Pan, C., Meng, G., Xiao, X., Wu, Z., Jia, W., Zhang, J., Zhang, L."RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis". Oncology Reports 36.1 (2016): 173-180.
Chicago
Dai, B., Zhang, P., Zhang, Y., Pan, C., Meng, G., Xiao, X., Wu, Z., Jia, W., Zhang, J., Zhang, L."RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis". Oncology Reports 36, no. 1 (2016): 173-180. https://doi.org/10.3892/or.2016.4802
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team