|
1
|
Mirzaei H, Sahebkar A, Avan A, Jaafari MR,
Salehi R, Salehi H, Baharvand H, Rezaei A, Hadjati J, Pawelek JM,
et al: Application of mesenchymal stem cells in melanoma: A
potential therapeutic strategy for delivery of targeted agents.
Curr Med Chem. 23:455–463. 2016. View Article : Google Scholar
|
|
2
|
Maverakis E, Cornelius LA, Bowen GM, Phan
T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, et
al: Metastatic melanoma - a review of current and future treatment
options. Acta Derm Venereol. 95:516–524. 2015. View Article : Google Scholar
|
|
3
|
Younes R, Abrao FC and Gross J: Pulmonary
metastasectomy for malignant melanoma: Prognostic factors for
long-term survival. Melanoma Res. 23:307–311. 2013.PubMed/NCBI
|
|
4
|
Wong JH, Skinner KA, Kim KA, Foshag LJ and
Morton DL: The role of surgery in the treatment of nonregionally
recurrent melanoma. Surgery. 113:389–394. 1993.PubMed/NCBI
|
|
5
|
Sosman JA, Moon J, Tuthill RJ, Warneke JA,
Vetto JT, Redman BG, Liu PY, Unger JM, Flaherty LE and Sondak VK: A
phase 2 trial of complete resection for stage IV melanoma: Results
of Southwest Oncology Group Clinical Trial S9430. Cancer.
117:4740–4706. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
National Cancer Institute of Canada
Melanoma Group: Vinblastine, bleomycin, and cis-platinum for the
treatment of metastatic malignant melanoma. J Clin Oncol.
2:131–134. 1984.
|
|
7
|
Kim T, Amaria RN, Spencer C, Reuben A,
Cooper ZA and Wargo JA: Combining targeted therapy and immune
checkpoint inhibitors in the treatment of metastatic melanoma.
Cancer Biol Med. 11:237–246. 2014.
|
|
8
|
Eggermont AM and Kirkwood JM:
Re-evaluating the role of dacarbazine in metastatic melanoma: What
have we learned in 30 years? Eur J Cancer. 40:1825–1836. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Huncharek M, Caubet JF and McGarry R:
Single-agent DTIC versus combination chemotherapy with or without
immunotherapy in metastatic melanoma: A meta-analysis of 3273
patients from 20 randomized trials. Melanoma Res. 11:75–81. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Middleton MR, Grob JJ, Aaronson N,
Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates
A, et al: Randomized phase III study of temozolomide versus
dacarbazine in the treatment of patients with advanced metastatic
malignant melanoma. J Clin Oncol. 18:158–166. 2000.PubMed/NCBI
|
|
11
|
Chapman PB, Einhorn LH, Meyers ML, Saxman
S, Destro AN, Panageas KS, Begg CB, Agarwala SS, Schuchter LM,
Ernstoff MS, et al: Phase III multicenter randomized trial of the
Dartmouth regimen versus dacarbazine in patients with metastatic
melanoma. J Clin Oncol. 17:2745–2751. 1999.PubMed/NCBI
|
|
12
|
Legha SS, Ring S, Papadopoulos N, Plager
C, Chawla S and Benjamin R: A prospective evaluation of a
triple-drug regimen containing cisplatin, vinblastine, and
dacarbazine (CVD) for metastatic melanoma. Cancer. 64:2024–2029.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
A Schindler K and Postow MA: Current
options and future directions in the systemic treatment of
metastatic melanoma. J Community Support Oncol. 12:20–26. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Robert C, Thomas L, Bondarenko I, O'Day S,
Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al:
Ipilimumab plus dacarbazine for previously untreated metastatic
melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hersh EM, O'Day SJ, Powderly J, Khan KD,
Pavlick AC, Cranmer LD, Samlowski WE, Nichol GM, Yellin MJ and
Weber JS: A phase II multicenter study of ipilimumab with or
without dacarbazine in chemotherapy-naïve patients with advanced
melanoma. Invest New Drugs. 29:489–498. 2011. View Article : Google Scholar
|
|
16
|
Kaplan MG: Ipilimumab plus dacarbazine in
melanoma. N Engl J Med. 365:1256–1257; author reply 1257–1258.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Luke JJ, Callahan MK, Postow MA, Romano E,
Ramaiya N, Bluth M, Giobbie-Hurder A, Lawrence DP, Ibrahim N, Ott
PA, et al: Clinical activity of ipilimumab for metastatic uveal
melanoma: A retrospective review of the Dana-Farber Cancer
Institute, Massachusetts General Hospital, Memorial Sloan-Kettering
Cancer Center, and University Hospital of Lausanne experience.
Cancer. 119:3687–3695. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schadendorf D, Hodi FS, Robert C, Weber
JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM and Wolchok JD:
Pooled analysis of long-term survival data from phase II and phase
III trials of ipilimumab in unresectable or metastatic melanoma. J
Clin Oncol. 33:1889–1894. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Weber JS, Kähler KC and Hauschild A:
Management of immune-related adverse events and kinetics of
response with ipilimumab. J Clin Oncol. 30:2691–2697. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zou W and Chen L: Inhibitory B7-family
molecules in the tumour microenvironment. Nat Rev Immunol.
8:467–477. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Keir ME, Liang SC, Guleria I, Latchman YE,
Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH and Sharpe
AH: Tissue expression of PD-L1 mediates peripheral T cell
tolerance. J Exp Med. 203:883–895. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hamid O, Robert C, Daud A, Hodi FS, Hwu
WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al:
Safety and tumor responses with lambrolizumab (anti-PD-1) in
melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Weber JS, D'Angelo SP, Minor D, Hodi FS,
Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD,
et al: Nivolumab versus chemotherapy in patients with advanced
melanoma who progressed after anti-CTLA-4 treatment (CheckMate
037): A randomised, controlled, open-label, phase 3 trial. Lancet
Oncol. 16:375–384. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wolchok JD, Kluger H, Callahan MK, Postow
MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K,
et al: Nivolumab plus ipilimumab in advanced melanoma. N Engl J
Med. 369:122–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Postow MA, Chesney J, Pavlick AC, Robert
C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK,
Agarwala SS, et al: Nivolumab and ipilimumab versus ipilimumab in
untreated melanoma. N Engl J Med. 372:2006–2017. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Larkin J, Hodi FS and Wolchok JD: Combined
nivolumab and ipilimumab or monotherapy in untreated melanoma. N
Engl J Med. 373:1270–1271. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Davies MA, Stemke-Hale K, Lin E, Tellez C,
Deng W, Gopal YN, Woodman SE, Calderone TC, Ju Z, Lazar AJ, et al:
Integrated molecular and clinical analysis of AKT activation in
metastatic melanoma. Clin Cancer Res. 15:7538–7546. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Davey RJ, van der Westhuizen A and Bowden
NA: Metastatic melanoma treatment: Combining old and new therapies.
Crit Rev Oncol Hematol. 98:242–253. 2016. View Article : Google Scholar
|
|
32
|
Flaherty KT, Puzanov I, Kim KB, Ribas A,
McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, et
al: Inhibition of mutated, activated BRAF in metastatic melanoma. N
Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ribas A and Flaherty KT: BRAF targeted
therapy changes the treatment paradigm in melanoma. Nat Rev Clin
Oncol. 8:426–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hauschild A, Grob JJ, Demidov LV, Jouary
T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr,
Kaempgen E, et al: Dabrafenib in BRAF-mutated metastatic melanoma:
A multicentre, open-label, phase 3 randomised controlled trial.
Lancet. 380:358–365. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bollag G, Hirth P, Tsai J, Zhang J,
Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, et al:
Clinical efficacy of a RAF inhibitor needs broad target blockade in
BRAF-mutant melanoma. Nature. 467:596–599. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sosman JA, Kim KB, Schuchter L, Gonzalez
R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ,
Flaherty KT, et al: Survival in BRAF V600-mutant advanced melanoma
treated with vemurafenib. N Engl J Med. 366:707–714. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Long GV, Trefzer U, Davies MA, Kefford RF,
Ascierto PA, Chapman PB, Puzanov I, Hauschild A, Robert C, Algazi
A, et al: Dabrafenib in patients with Val600Glu or Val600Lys
BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A
multicentre, open-label, phase 2 trial. Lancet Oncol. 13:1087–1095.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Heakal Y, Kester M and Savage S:
Vemurafenib (PLX4032): An orally available inhibitor of mutated
BRAF for the treatment of metastatic melanoma. Ann Pharmacother.
45:1399–1405. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Luke JJ and Hodi FS: Vemurafenib and BRAF
inhibition: A new class of treatment for metastatic melanoma. Clin
Cancer Res. 18:9–14. 2012. View Article : Google Scholar
|
|
40
|
Lo RS and Shi H: Detecting mechanisms of
acquired BRAF inhibitor resistance in melanoma. Methods Mol Biol.
1102:163–174. 2014. View Article : Google Scholar
|
|
41
|
Sullivan RJ and Flaherty KT: Resistance to
BRAF-targeted therapy in melanoma. Eur J Cancer. 49:1297–1304.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Poulikakos PI, Persaud Y, Janakiraman M,
Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, et al:
RAF inhibitor resistance is mediated by dimerization of aberrantly
spliced BRAF(V600E). Nature. 480:387–390. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shi H, Hugo W, Kong X, Hong A, Koya RC,
Moriceau G, Chodon T, Guo R, Johnson DB, Dahlman KB, et al:
Acquired resistance and clonal evolution in melanoma during BRAF
inhibitor therapy. Cancer Discov. 4:80–93. 2014. View Article : Google Scholar :
|
|
44
|
Villanueva J, Vultur A, Lee JT,
Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu
X, Gimotty PA, Kee D, et al: Acquired resistance to BRAF inhibitors
mediated by a RAF kinase switch in melanoma can be overcome by
cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18:683–695. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Koefinger P, Wels C, Joshi S, Damm S,
Steinbauer E, Beham-Schmid C, Frank S, Bergler H and Schaider H:
The cadherin switch in melanoma instigated by HGF is mediated
through epithelial-mesenchymal transition regulators. Pigment Cell
Melanoma Res. 24:382–385. 2011. View Article : Google Scholar :
|
|
46
|
Topcu-Yilmaz P, Kiratli H, Saglam A,
Söylemezoglu F and Hascelik G: Correlation of clinicopathological
parameters with HGF, c-Met, EGFR, and IGF-1R expression in uveal
melanoma. Melanoma Res. 20:126–132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gajewski TF: Identifying and overcoming
immune resistance mechanisms in the melanoma tumor
microenvironment. Clin Cancer Res. 12:2326s–2330s. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wagle N, Emery C, Berger MF, Davis MJ,
Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE,
Hahn WC, et al: Dissecting therapeutic resistance to RAF inhibition
in melanoma by tumor genomic profiling. J Clin Oncol. 29:3085–3096.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kim KB, Kefford R, Pavlick AC, Infante JR,
Ribas A, Sosman JA, Fecher LA, Millward M, McArthur GA, Hwu P, et
al: Phase II study of the MEK1/MEK2 inhibitor Trametinib in
patients with metastatic BRAF-mutant cutaneous melanoma previously
treated with or without a BRAF inhibitor. J Clin Oncol. 31:482–489.
2013. View Article : Google Scholar
|
|
50
|
Menzies AM and Long GV: Dabrafenib and
trametinib, alone and in combination for BRAF-mutant metastatic
melanoma. Clin Cancer Res. 20:2035–2043. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim MO, Kim SH, Oi N, Lee MH, Yu DH, Kim
DJ, Cho EJ, Bode AM, Cho YY, Bowden TG, et al: Embryonic
stem-cell-preconditioned microenvironment induces loss of cancer
cell properties in human melanoma cells. Pigment Cell Melanoma Res.
24:922–931. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kirkwood JM, Bastholt L, Robert C, Sosman
J, Larkin J, Hersey P, Middleton M, Cantarini M, Zazulina V,
Kemsley K, et al: Phase II, open-label, randomized trial of the
MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in
patients with advanced melanoma. Clin Cancer Res. 18:555–567. 2012.
View Article : Google Scholar
|
|
53
|
Flaherty KT, Infante JR, Daud A, Gonzalez
R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N,
et al: Combined BRAF and MEK inhibition in melanoma with BRAF V600
mutations. N Engl J Med. 367:1694–1703. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Long GV, Stroyakovskiy D, Gogas H,
Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A,
Grob JJ, et al: Dabrafenib and trametinib versus dabrafenib and
placebo for Val600 BRAF-mutant melanoma: A multicentre,
double-blind, phase 3 randomised controlled trial. Lancet.
386:444–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Müller FJ, Snyder EY and Loring JF: Gene
therapy: Can neural stem cells deliver? Nat Rev Neurosci. 7:75–84.
2006. View Article : Google Scholar
|
|
56
|
Bago JR, Sheets KT and Hingtgen SD: Neural
stem cell therapy for cancer. Methods. 99:37–43. 2016. View Article : Google Scholar
|
|
57
|
Gage FH: Mammalian neural stem cells.
Science. 287:1433–1438. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Benedetti S, Pirola B, Pollo B, Magrassi
L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De
Fraja C, et al: Gene therapy of experimental brain tumors using
neural progenitor cells. Nat Med. 6:447–450. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Herrlinger U, Woiciechowski C,
Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY and
Breakefield XO: Neural precursor cells for delivery of
replication-conditional HSV-1 vectors to intracerebral gliomas. Mol
Ther. 1:347–357. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Aboody KS, Brown A, Rainov NG, Bower KA,
Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al:
Neural stem cells display extensive tropism for pathology in adult
brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA.
97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Consiglio A, Gritti A, Dolcetta D,
Follenzi A, Bordignon C, Gage FH, Vescovi AL and Naldini L: Robust
in vivo gene transfer into adult mammalian neural stem cells by
lentiviral vectors. Proc Natl Acad Sci USA. 101:14835–14840. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao D, Najbauer J, Garcia E, Metz MZ,
Gutova M, Glackin CA, Kim SU and Aboody KS: Neural stem cell
tropism to glioma: Critical role of tumor hypoxia. Mol Cancer Res.
6:1819–1829. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang S, Luo X, Wan F and Lei T: The roles
of hypoxia-inducible factors in regulating neural stem cells
migration to glioma stem cells and determinating their fates.
Neurochem Res. 37:2659–2666. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sun L, Lee J and Fine HA: Neuronally
expressed stem cell factor induces neural stem cell migration to
areas of brain injury. J Clin Invest. 113:1364–1374. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Magge SN, Malik SZ, Royo NC, Chen HI, Yu
L, Snyder EY, O'Rourke DM and Watson DJ: Role of monocyte
chemoattractant protein-1 (MCP-1/CCL2) in migration of neural
progenitor cells toward glial tumors. J Neurosci Res. 87:1547–1555.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
An JH, Lee SY, Jeon JY, Cho KG, Kim SU and
Lee MA: Identification of gliotropic factors that induce human stem
cell migration to malignant tumor. J Proteome Res. 8:2873–2881.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Heese O, Disko A, Zirkel D, Westphal M and
Lamszus K: Neural stem cell migration toward gliomas in vitro.
Neuro Oncol. 7:476–484. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schmidt NO, Przylecki W, Yang W, Ziu M,
Teng Y, Kim SU, Black PM, Aboody KS and Carroll RS: Brain tumor
tropism of transplanted human neural stem cells is induced by
vascular endothelial growth factor. Neoplasia. 7:623–629. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kim SK, Kim SU, Park IH, Bang JH, Aboody
KS, Wang KC, Cho BK, Kim M, Menon LG, Black PM, et al: Human neural
stem cells target experimental intracranial medulloblastoma and
deliver a therapeutic gene leading to tumor regression. Clin Cancer
Res. 12:5550–5556. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Joo KM, Park IH, Shin JY, Jin J, Kang BG,
Kim MH, Lee SJ, Jo MY, Kim SU and Nam DH: Human neural stem cells
can target and deliver therapeutic genes to breast cancer brain
metastases. Mol Ther. 17:570–575. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Aboody KS, Bush RA, Garcia E, Metz MZ,
Najbauer J, Justus KA, Phelps DA, Remack JS, Yoon KJ, Gillespie S,
et al: Development of a tumor-selective approach to treat
metastatic cancer. PLoS One. 1:e232006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Schepelmann S, Ogilvie LM, Hedley D,
Friedlos F, Martin J, Scanlon I, Chen P, Marais R and Springer CJ:
Suicide gene therapy of human colon carcinoma xenografts using an
armed oncolytic adenovirus expressing carboxypeptidase G2. Cancer
Res. 67:4949–4955. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Schepelmann S and Springer CJ: Viral
vectors for gene-directed enzyme prodrug therapy. Curr Gene Ther.
6:647–670. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kim SU, Jeung EB, Kim YB, Cho MH and Choi
KC: Potential tumor-tropic effect of genetically engineered stem
cells expressing suicide enzymes to selectively target invasive
cancer in animal models. Anticancer Res. 31:1249–1258.
2011.PubMed/NCBI
|
|
75
|
Hiraoka K, Kimura T, Logg CR, Tai CK, Haga
K, Lawson GW and Kasahara N: Therapeutic efficacy of
replication-competent retrovirus vector-mediated suicide gene
therapy in a multifocal colorectal cancer metastasis model. Cancer
Res. 67:5345–5353. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pastorakova A, Hlubinova K, Jakubikova J
and Altaner C: Combine cancer gene therapy harnessing plasmids
expressing human tumor necrosis factor alpha and Herpes simplex
thymidine kinase suicide gene. Neoplasma. 53:353–362.
2006.PubMed/NCBI
|
|
77
|
Brown AB, Yang W, Schmidt NO, Carroll R,
Leishear KK, Rainov NG, Black PM, Breakefield XO and Aboody KS:
Intravascular delivery of neural stem cell lines to target
intracranial and extracranial tumors of neural and non-neural
origin. Hum Gene Ther. 14:1777–1785. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yip S, Aboody KS, Burns M, Imitola J,
Boockvar JA, Allport J, Park KI, Teng YD, Lachyankar M, McIntosh T,
et al: Neural stem cell biology may be well suited for improving
brain tumor therapies. Cancer J. 9:189–204. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ehtesham M, Yuan X, Kabos P, Chung NH, Liu
G, Akasaki Y, Black KL and Yu JS: Glioma tropic neural stem cells
consist of astrocytic precursors and their migratory capacity is
mediated by CXCR4. Neoplasia. 6:287–293. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sun L, Hui AM, Su Q, Vortmeyer A,
Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey
R, et al: Neuronal and glioma-derived stem cell factor induces
angiogenesis within the brain. Cancer Cell. 9:287–300. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Beppu K, Jaboine J, Merchant MS, Mackall
CL and Thiele CJ: Effect of imatinib mesylate on neuroblastoma
tumorigenesis and vascular endothelial growth factor expression. J
Natl Cancer Inst. 96:46–55. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Geminder H, Sagi-Assif O, Goldberg L,
Meshel T, Rechavi G, Witz IP and Ben-Baruch A: A possible role for
CXCR4 and its ligand, the CXC chemokine stromal cell-derived
factor-1, in the development of bone marrow metastases in
neuroblastoma. J Immunol. 167:4747–4757. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vicari AP and Caux C: Chemokines in
cancer. Cytokine Growth Factor Rev. 13:143–154. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lazennec G and Richmond A: Chemokines and
chemokine receptors: New insights into cancer-related inflammation.
Trends Mol Med. 16:133–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Loebinger MR and Janes SM: Stem cells as
vectors for antitumour therapy. Thorax. 65:362–369. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Spaeth E, Klopp A, Dembinski J, Andreeff M
and Marini F: Inflammation and tumor microenvironments: Defining
the migratory itinerary of mesenchymal stem cells. Gene Ther.
15:730–738. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W
and Fang Q: Targeted delivery of CYP2E1 recombinant adenovirus to
malignant melanoma by bone marrow-derived mesenchymal stem cells as
vehicles. Anticancer Drugs. 25:303–314. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jing HX, Duan J, Zhou H, Hu QM and Lei TC:
Adipose derived mesenchymal stem cell facilitated TRAIL expression
in melanoma treatment in vitro. Mol Med Rep. 14:195–201.
2016.PubMed/NCBI
|
|
90
|
Seo KW, Lee HW, Oh YI, Ahn JO, Koh YR, Oh
SH, Kang SK and Youn HY: Anti-tumor effects of canine adipose
tissue-derived mesenchymal stromal cell-based interferon-β gene
therapy and cisplatin in a mouse melanoma model. Cytotherapy.
13:944–955. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tyciakova S, Matuskova M, Bohovic R,
Polakova K, Toro L, Skolekova S and Kucerova L: Genetically
engineered mesenchymal stromal cells producing TNFα have tumour
suppressing effect on human melanoma xenograft. J Gene Med.
17:54–67. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yi BR, Hwang KA, Aboody KS, Jeung EB, Kim
SU and Choi KC: Selective antitumor effect of neural stem cells
expressing cytosine deaminase and interferon-beta against ductal
breast cancer cells in cellular and xenograft models. Stem Cell Res
(Amst). 12:36–48. 2014. View Article : Google Scholar
|
|
93
|
Yi BR, Kim SU and Choi KC: Additional
effects of engineered stem cells expressing a therapeutic gene and
interferon-β in a xenograft mouse model of endometrial cancer. Int
J Oncol. 47:171–178. 2015.PubMed/NCBI
|
|
94
|
Yi BR, Park MA, Lee HR, Kang NH, Choi KJ,
Kim SU and Choi KC: Suppression of the growth of human colorectal
cancer cells by therapeutic stem cells expressing cytosine
deaminase and interferon-β via their tumor-tropic effect in
cellular and xenograft mouse models. Mol Oncol. 7:543–554. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kim DJ, Yi BR, Lee HR, Kim SU and Choi KC:
Pancreatic tumor mass in a xenograft mouse model is decreased by
treatment with therapeutic stem cells following introduction of
therapeutic genes. Oncol Rep. 30:1129–1136. 2013.PubMed/NCBI
|
|
96
|
Yi BR, Kim SU and Choi KC: Co-treatment
with therapeutic neural stem cells expressing carboxyl esterase and
CPT-11 inhibit growth of primary and metastatic lung cancers in
mice. Oncotarget. 5:12835–12848. 2014. View Article : Google Scholar : PubMed/NCBI
|