You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Grunstein M and Hogness DS: Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA. 72:3961–3965. 1975. View Article : Google Scholar : PubMed/NCBI | |
|
Taura K, Ikai I, Hatano E, Fujii H, Uyama N and Shimahara Y: Implication of frequent local ablation therapy for intrahepatic recurrence in prolonged survival of patients with hepatocellular carcinoma undergoing hepatic resection: An analysis of 610 patients over 16 years old. Ann Surg. 244:265–273. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto T, Kajino K, Kudo M, Sasaki Y, Arakawa Y and Hino O: Determination of the clonal origin of multiple human hepatocellular carcinomas by cloning and polymerase chain reaction of the integrated hepatitis B virus DNA. Hepatology. 29:1446–1452. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YJ, Yeh SH, Chen JT, Wu CC, Hsu MT, Tsai SF, Chen PJ and Lin CH: Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma. Gastroenterology. 119:431–440. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ochiai T, Urata Y, Yamano T, Yamagishi H and Ashihara T: Clonal expansion in evolution of chronic hepatitis to hepatocellular carcinoma as seen at an X-chromosome locus. Hepatology. 31:615–621. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Nomoto S, Yamashita K, Koshikawa K, Nakao A and Sidransky D: Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res. 8:481–487. 2002.PubMed/NCBI | |
|
Nomoto S, Kinoshita T, Kato K, Otani S, Kasuya H, Takeda S, Kanazumi N, Sugimoto H and Nakao A: Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma. Br J Cancer. 97:1260–1265. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Xia CY, Lau WY, Lu XY, Dong H, Yu WL, Jin GZ, Cong WM and Wu MC: Determination of clonal origin of recurrent hepatocellular carcinoma for personalized therapy and outcomes evaluation: A new strategy for hepatic surgery. J Am Coll Surg. 217:1054–1062. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ng IO, Guan XY, Poon RT, Fan ST and Lee JM: Determination of the molecular relationship between multiple tumour nodules in hepatocellular carcinoma differentiates multicentric origin from intrahepatic metastasis. J Pathol. 199:345–353. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nomoto S, Hishida M, Inokawa Y, Sugimoto H and Kodera Y: Management of hepatocellular carcinoma should consider both tumor factors and background liver factors. Hepatobiliary Surg Nutr. 3:82–85. 2014.PubMed/NCBI | |
|
Xie B, Zen Q, Wang X, He X, Xie Y, Zhang Z and Li H: ACK1 promotes hepatocellular carcinoma progression via downregulating WWOX and activating AKT signaling. Int J Oncol. 46:2057–2066. 2015.PubMed/NCBI | |
|
Liu S, Zhang W, Liu K, Ji B and Wang G: Silencing ADAM10 inhibits the in vitro and in vivo growth of hepatocellular carcinoma cancer cells. Mol Med Rep. 11:597–602. 2015.PubMed/NCBI | |
|
Gao L, Ge C, Fang T, Zhao F, Chen T, Yao M, Li J and Li H: ANGPTL2 promotes tumor metastasis in hepatocellular carcinoma. J Gastroenterol Hepatol. 30:396–404. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HX, Jiang SS, Zhang XF, Zhou ZQ, Pan QZ, Chen CL, Zhao JJ, Tang Y, Xia JC and Weng DS: Protein kinase CK2α catalytic subunit is overexpressed and serves as an unfavorable prognostic marker in primary hepatocellular carcinoma. Oncotarget. 6:34800–34817. 2015.PubMed/NCBI | |
|
Cheng Q, Yuan F, Lu F, Zhang B, Chen T, Chen X, Cheng Y, Li N, Ma L and Tong T: CSIG promotes hepatocellular carcinoma proliferation by activating c-MYC expression. Oncotarget. 6:4733–4744. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, Yuan S, Liu J, Yu S and He S: Overexpression of CTNND1 in hepatocellular carcinoma promotes carcinous characters through activation of Wnt/β-catenin signaling. J Exp Clin Cancer Res. 35:822016. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan J, Zheng H, Rong X, Rong X, Zhang J, Fang W, Zhao P and Luo R: Over-expression of cathepsin B in hepatocellular carcinomas predicts poor prognosis of HCC patients. Mol Cancer. 15:172016. View Article : Google Scholar : PubMed/NCBI | |
|
Yi HC, Liu YL, You P, Pan JS, Zhou JY, Liu ZJ and Zhang ZY: Overexpression of DEK gene is correlated with poor prognosis in hepatocellular carcinoma. Mol Med Rep. 11:1318–1323. 2015.PubMed/NCBI | |
|
Liu S, Long G, Wei H, Shi L, Yang Z, Liu D, Hu G and Qiu H: DJ-1 knockdown inhibits growth and xenograft-induced tumor generation of human hepatocellular carcinoma cells. Oncol Rep. 33:201–206. 2015.PubMed/NCBI | |
|
Liao W, Liu W, Liu X, Yuan Q, Ou Y, Qi Y, Huang W, Wang Y and Huang J: Upregulation of FAM83D affects the proliferation and invasion of hepatocellular carcinoma. Oncotarget. 6:24132–24147. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lin CH, Lin YW, Chen YC, Liao CC, Jou YS, Hsu MT and Chen CF: FNDC3B promotes cell migration and tumor metastasis in hepatocellular carcinoma. Oncotarget. 7:49498–49508. 2016.PubMed/NCBI | |
|
Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, et al: Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis. 7:e22012016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao K, Xu C, Jin X, Wumaier R, Ma J, Peng J, Wang Y, Tang Y, Yu L and Zhang P: HDGF-related protein-2 (HRP-2) acts as an oncogene to promote cell growth in hepatocellular carcinoma. Biochem Biophys Res Commun. 458:849–855. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yang XH, Fang SJ, Qin CF, Sun RL, Liu ZY, Jiang BY, Wu X and Li G: HOXA7 stimulates human hepatocellular carcinoma proliferation through cyclin E1/CDK2. Oncol Rep. 33:990–996. 2015.PubMed/NCBI | |
|
Lv X, Li L, Lv L, Qu X, Jin S, Li K, Deng X, Cheng L, He H and Dong L: HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1332015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Tao X, Jin G, Jin H, Wang N, Hu F, Luo Q, Shu H, Zhao F, Yao M, et al: A targetable molecular chaperone Hsp27 confers aggressiveness in hepatocellular carcinoma. Theranostics. 6:558–570. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tang B, Qi G, Tang F, Yuan S, Wang Z, Liang X, Li B, Yu S, Liu J, Huang Q, et al: JARID1B promotes metastasis and epithelial-mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells. Oncotarget. 6:12723–12739. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Han S, Peng R, Jiao C, Wang X, Yang X, Yang R and Li X: Depletion of histone demethylase KDM5B inhibits cell proliferation of hepatocellular carcinoma by regulation of cell cycle checkpoint proteins p15 and p27. J Exp Clin Cancer Res. 35:372016. View Article : Google Scholar : PubMed/NCBI | |
|
Jin H, Zhang Y, You H, Tao X, Wang C, Jin G, Wang N, Ruan H, Gu D, Huo X, et al: Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma. Sci Rep. 5:104662015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang CH, Li M, Liu LL, Zhou RY, Fu J, Zhang CZ and Yun JP: LRG1 expression indicates unfavorable clinical outcome in hepatocellular carcinoma. Oncotarget. 6:42118–42129. 2015.PubMed/NCBI | |
|
Yao Y, Dou C, Lu Z, Zheng X and Liu Q: MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cell Physiol Biochem. 35:983–996. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto R, Kanda M, Takami H, Shimizu D, Oya H, Hibino S, Okamura Y, Yamada S, Fujii T, Nakayama G, et al: Aberrant expression of melanoma-associated antigen-D2 serves as a prognostic indicator of hepatocellular carcinoma outcome following curative hepatectomy. Oncol Lett. 9:1201–1206. 2015.PubMed/NCBI | |
|
Takami H, Kanda M, Oya H, Hibino S, Sugimoto H, Suenaga M, Yamada S, Nishikawa Y, Asai M, Fujii T, et al: Evaluation of MAGE-D4 expression in hepatocellular carcinoma in Japanese patients. J Surg Oncol. 108:557–562. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
OuYang HY, Xu J, Luo J, Zou RH, Chen K, Le Y, Zhang YF, Wei W, Guo RP and Shi M: MEP1A contributes to tumor progression and predicts poor clinical outcome in human hepatocellular carcinoma. Hepatology. 63:1227–1239. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shimizu D, Kanda M, Sugimoto H, Sueoka S, Takami H, Ezaka K, Tanaka Y, Hashimoto R, Okamura Y, Iwata N, et al: NRAGE promotes the malignant phenotype of hepatocellular carcinoma. Oncol Lett. 11:1847–1854. 2016.PubMed/NCBI | |
|
Leung CO, Wong CC, Fan DN, Kai AK, Tung EK, Xu IM, Ng IO and Lo RC: PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget. 6:10880–10892. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ye X, Zhang JB, Ouyang H, Shen Z, Wu Y, Wang W, Wu J, Tao S, Yang X, et al: PROX1 promotes hepatocellular carcinoma proliferation and sorafenib resistance by enhancing β-catenin expression and nuclear translocation. Oncogene. 34:5524–5535. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wong CM, Wei L, Law CT, Ho DW, Tsang FH, Au SL, Sze KM, Lee JM, Wong CC and Ng IO: Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology. 63:474–487. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Song B, Zhang J, Yang GS, Zhang H, Yu WF, Wu MC, Lu JH and Shen F: STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut. 65:124–133. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Pan Q, Zhang J, Xu X, Liu X, Wang Q, Yi R, Xie X, Yao L, Liu W, et al: Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J Cell Biochem. 116:2465–2475. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Liao W, Yuan Q, Ou Y and Huang J: TTK activates Akt and promotes proliferation and migration of hepatocellular carcinoma cells. Oncotarget. 6:34309–34320. 2015.PubMed/NCBI | |
|
Zhang XF, Pan QZ, Pan K, Weng DS, Wang QJ, Zhao JJ, He J, Liu Q, Wang DD, Jiang SS, et al: Expression and prognostic role of ubiquitination factor E4B in primary hepatocellular carcinoma. Mol Carcinog. 55:64–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XF, Chao J, Pan QZ, Pan K, Weng DS, Wang QJ, Zhao JJ, He J, Liu Q, Jiang SS, et al: Overexpression of WWP1 promotes tumorigenesis and predicts unfavorable prognosis in patients with hepatocellular carcinoma. Oncotarget. 6:40920–40933. 2015.PubMed/NCBI | |
|
Chai JY, Modak C, Mouazzen W, Narvaez R and Pham J: Epithelial or mesenchymal: Where to draw the line? Biosci Trends. 4:130–142. 2010.PubMed/NCBI | |
|
Lu Q: δ-Catenin dysregulation in cancer: Interactions with E-cadherin and beyond. J Pathol. 222:119–123. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Schackmann RC, Tenhagen M, van de Ven RA and Derksen PW: p120-catenin in cancer - mechanisms, models and opportunities for intervention. J Cell Sci. 126:3515–3525. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Liu YL, Chen GX, Cui B, Wang JS, Shi YL, Li LP and Guo XB: Heme oxygenase-1 promotes Caco-2 cell proliferation and migration by targeting CTNND1. Chin Med J. 126:3057–3063. 2013.PubMed/NCBI | |
|
Li T, Lai Q, Wang S, Cai J, Xiao Z, Deng D, He L, Jiao H, Ye Y, Liang L, et al: MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res. 35:212016. View Article : Google Scholar : PubMed/NCBI | |
|
Castillo SD, Angulo B, Suarez-Gauthier A, Melchor L, Medina PP, Sanchez-Verde L, Torres-Lanzas J, Pita G, Benitez J and Sanchez-Cespedes M: Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer. J Pathol. 222:89–98. 2010.PubMed/NCBI | |
|
Noordhuis MG, Fehrmann RS, Wisman GB, Nijhuis ER, van Zanden JJ, Moerland PD, Ver Loren van Themaat E, Volders HH, Kok M, ten Hoor KA, et al: Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 17:1317–1330. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mann KM, Ward JM, Yew CC, Kovochich A, Dawson DW, Black MA, Brett BT, Sheetz TE, Dupuy AJ, Chang DK, et al: Australian Pancreatic Cancer Genome Initiative: Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 109:5934–5941. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xing AY, Wang YW, Su ZX, Shi DB, Wang B and Gao P: Catenin-δ1, negatively regulated by miR-145, promotes tumour aggressiveness in gastric cancer. J Pathol. 236:53–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, Blanchard H and Ralph SJ: Galectin-1 as a potent target for cancer therapy: Role in the tumor microenvironment. Cancer Metastasis Rev. 31:763–778. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Zhang P, Shi B, Zhou M, Jiang H, Zhang H, Pan X, Gao H, Sun H and Li Z: Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer. Cell Death Dis. 5:e9912014. View Article : Google Scholar : PubMed/NCBI | |
|
Broder C and Becker-Pauly C: The metalloproteases meprin α and meprin β: Unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem J. 450:253–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lottaz D, Maurer CA, Hahn D, Büchler MW and Sterchi EE: Nonpolarized secretion of human meprin alpha in colorectal cancer generates an increased proteolytic potential in the stroma. Cancer Res. 59:1127–1133. 1999.PubMed/NCBI | |
|
Mujica AO, Brauksiepe B, Saaler-Reinhardt S, Reuss S and Schmidt ER: Differential expression pattern of the novel serine/threonine kinase, STK33, in mice and men. FEBS J. 272:4884–4898. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gößele U, Koch B, Faber K, Genze F, Schrader M, et al: Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 209:697–711. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, et al: Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 137:821–834. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jelluma N, Brenkman AB, van den Broek NJ, Cruijsen CW, van Osch MH, Lens SM, Medema RH and Kops GJ: Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell. 132:233–246. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Shi R, He C, Cheng C, Song B, Cui H, Zhang Y, Zhao Z, Bi Y, Yang X, et al: Oncogenic B-RafV600E abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells. Cancer Lett. 337:125–132. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, Miccoli P, Basolo F, Castellone MD, Cirafici AM, et al: A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 67:10148–10158. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E, Marty-Prouvost B, De Koning L, Rigaill G, Dumont A, et al: TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One. 8:e637122013. View Article : Google Scholar : PubMed/NCBI | |
|
Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et al: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 3:e16512008. View Article : Google Scholar : PubMed/NCBI | |
|
Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, et al: Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 92:1805–1811. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Gu D, Jin H, Jin G, Wang C, Wang N, Hu F, Luo Q, Chu W, Yao M and Qin W: The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett. 379:107–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang CF, Wen LZ, Yin C, Xu WP, Shi B, Zhang X and Xie WF: Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget. 7:27408–27421. 2016.PubMed/NCBI | |
|
Kanda M, Sugimoto H, Nomoto S, Oya H, Hibino S, Shimizu D, Takami H, Hashimoto R, Okamura Y, Yamada S, et al: B-cell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol. 46:641–648. 2015.PubMed/NCBI | |
|
Kanda M, Nomoto S, Oya H, Takami H, Hibino S, Hishida M, Suenaga M, Yamada S, Inokawa Y, Nishikawa Y, et al: Downregulation of DENND2D by promoter hypermethylation is associated with early recurrence of hepatocellular carcinoma. Int J Oncol. 44:44–52. 2014.PubMed/NCBI | |
|
Hirata H, Sugimachi K, Komatsu H, Ueda M, Masuda T, Uchi R, Sakimura S, Nambara S, Saito T, Shinden Y, et al: Decreased expression of fructose-1,6-bisphosphatase associates with glucose metabolism and tumor progression in hepatocellular carcinoma. Cancer Res. 76:3265–3276. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Li H, Huo Q, Cui M, Ge C, Zhao F, Tian H, Chen T, Yao M and Li J: The transcription factor FOXN3 inhibits cell proliferation by downregulating E2F5 expression in hepatocellular carcinoma cells. Oncotarget. 7:43534–43545. 2016.PubMed/NCBI | |
|
Zhang Y, Liu Y, Duan J, Yan H, Zhang J, Zhang H, Fan Q, Luo F, Yan G, Qiao K, et al: Hippocalcin-like 1 suppresses hepatocellular carcinoma progression by promoting p21Waf/Cip1 stabilization by activating the ERK1/2-MAPK pathway. Hepatology. 63:880–897. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu BH, Chen H, Cai CM, Fang JZ, Wu CC, Huang LY, Wang L and Han ZG: Epigenetic silencing of JMJD5 promotes the proliferation of hepatocellular carcinoma cells by down-regulating the transcription of CDKN1A 686. Oncotarget. 7:6847–6863. 2016.PubMed/NCBI | |
|
Tanaka Y, Kanda M, Sugimoto H, Shimizu D, Sueoka S, Takami H, Ezaka K, Hashimoto R, Okamura Y, Iwata N, et al: Translational implication of Kallmann syndrome-1 gene expression in hepatocellular carcinoma. Int J Oncol. 46:2546–2554. 2015.PubMed/NCBI | |
|
Zhuo H, Tang J, Lin Z, Jiang R, Zhang X, Ji J, Wang P and Sun B: The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. Mol Carcinog. 55:209–219. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li A, Yan Q, Zhao X, Zhong J, Yang H, Feng Z, Du Y, Wang Y, Wang Z, Wang H, et al: Decreased expression of PBLD correlates with poor prognosis and functions as a tumor suppressor in human hepatocellular carcinoma. Oncotarget. 7:524–537. 2016.PubMed/NCBI | |
|
Ding X, Cheng X, Gong M, Chen X, Yin F and Lai K: Hypermethylation and expression silencing of PDCD4 gene in hepatocellular carcinoma: A consort study. Medicine. 95:e27292016. View Article : Google Scholar : PubMed/NCBI | |
|
Kanda M, Sugimoto H, Nomoto S, Oya H, Shimizu D, Takami H, Hashimoto R, Sonohara F, Okamura Y, Yamada S, et al: Clinical utility of PDSS2 expression to stratify patients at risk for recurrence of hepatocellular carcinoma. Int J Oncol. 45:2005–2012. 2014.PubMed/NCBI | |
|
Richter AM, Walesch SK, Würl P, Taubert H and Dammann RH: The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis. 1:e182012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XR, Cai CX, Luo LM, Zheng WL, Shi R, Zeng J, Xu YQ, Wei M and Ma WL: Decreased expression of Sushi Domain Containing 2 correlates to progressive features in patients with hepatocellular carcinoma. Cancer Cell Int. 16:152016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zhou J, Zhou N, Zhu J, Feng Y and Miao X: SYNJ2BP inhibits tumor growth and metastasis by activating DLL4 pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 35:1152016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Lv L, Ouyang X, Zhang S, Fang J, Cai L and Li D: Association of TIP30 expression and prognosis of hepatocellular carcinoma in patients with HBV infection. Cancer Med. 5:2180–2189. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Chen CL, Pan QZ, Wu YY, Zhao JJ, Jiang SS, Chao J, Zhang XF, Zhang HX, Zhou ZQ, et al: Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget. 7:6323–6334. 2016.PubMed/NCBI | |
|
Shimizu D, Kanda M, Nomoto S, Oya H, Takami H, Hibino S, Suenaga M, Inokawa Y, Hishida M, Takano N, et al: Identification of intragenic methylation in the TUSC1 gene as a novel prognostic marker of hepatocellular carcinoma. Oncol Rep. 31:1305–1313. 2014.PubMed/NCBI | |
|
Wu D, Liu G, Liu Y, Saiyin H, Wang C, Wei Z, Zen W, Liu D, Chen Q, Zhao Z, et al: Zinc finger protein 191 inhibits hepatocellular carcinoma metastasis through discs large 1-mediated yes-associated protein inactivation. Hepatology. 64:1148–1162. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811–816. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Huang Q and Li Y, Song Y and Li Y: JMJD5 is a potential oncogene for colon carcinogenesis. Int J Clin Exp Pathol. 8:6482–6489. 2015.PubMed/NCBI | |
|
Zhao Z, Sun C, Li F, Han J, Li X and Song Z: Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. Int J Clin Exp Pathol. 8:10325–10334. 2015.PubMed/NCBI | |
|
Huang X, Zhang S, Qi H, Wang Z, Chen HW, Shao J and Shen J: JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta. 1853:2286–2295. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chédotal A and Petit C: Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell. 109:217–228. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J and Bouloux PM: Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci. 24:10384–10392. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Jian B, Nagineni CN, Meleth S, Grizzle W, Bland K, Chaudry I and Raju R: Anosmin-1 involved in neuronal cell migration is hypoxia inducible and cancer regulated. Cell Cycle. 8:3770–3776. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Choy CT, Kim H, Lee JY, Williams DM, Palethorpe D, Fellows G, Wright AJ, Laing K, Bridges LR, Howe FA, et al: Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways. Endocr Relat Cancer. 21:85–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kang YK, Hong SW, Lee H and Kim WH: Prognostic implications of ezrin expression in human hepatocellular carcinoma. Mol Carcinog. 49:798–804. 2010.PubMed/NCBI | |
|
Wang F, Feng Y, Li P, Wang K, Feng L, Liu YF, Huang H, Guo YB, Mao QS and Xue WJ: RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 7:4279–4297. 2016.PubMed/NCBI | |
|
Matsuzaki T, Hanai S, Kishi H, Liu Z, Bao Y, Kikuchi A, Tsuchida K and Sugino H: Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent pathway. J Biol Chem. 277:19008–19018. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Adam MG, Berger C, Feldner A, Yang WJ, Wüstehube-Lausch J, Herberich SE, Pinder M, Gesierich S, Hammes HP, Augustin HG, et al: Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res. 113:1206–1218. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Sullenger BA and Rich JN: Notch signaling in cancer stem cells. Adv Exp Med Biol. 727:174–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Brito GC, Fachel AA, Vettore AL, Vignal GM, Gimba ER, Campos FS, Barcinski MA, Verjovski-Almeida S and Reis EM: Identification of protein-coding and intronic noncoding RNAs down-regulated in clear cell renal carcinoma. Mol Carcinog. 47:757–767. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Okamura Y, Nomoto S, Kanda M, Hayashi M, Nishikawa Y, Fujii T, Sugimoto H, Takeda S and Nakao A: Reduced expression of reelin (RELN) gene is associated with high recurrence rate of hepatocellular carcinoma. Ann Surg Oncol. 18:572–579. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kanda M, Nomoto S, Okamura Y, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S and Nakao A: Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. Int J Oncol. 35:477–483. 2009.PubMed/NCBI | |
|
Nomoto S, Kanda M, Okamura Y, Nishikawa Y, Qiyong L, Fujii T, Sugimoto H, Takeda S and Nakao A: Epidermal growth factor-containing fibulin-like extracellular matrix protein 1, EFEMP1, a novel tumor-suppressor gene detected in hepatocellular carcinoma using double combination array analysis. Ann Surg Oncol. 17:923–932. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Okamura Y, Nomoto S, Kanda M, Li Q, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S and Nakao A: Leukemia inhibitory factor receptor (LIFR) is detected as a novel suppressor gene of hepatocellular carcinoma using double-combination array. Cancer Lett. 289:170–177. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kanda M, Nomoto S, Okamura Y, Hayashi M, Hishida M, Fujii T, Nishikawa Y, Sugimoto H, Takeda S and Nakao A: Promoter hypermethylation of fibulin 1 gene is associated with tumor progression in hepatocellular carcinoma. Mol Carcinog. 50:571–579. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hayashi M, Nomoto S, Kanda M, Okamura Y, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Takeda S and Kodera Y: Identification of the A kinase anchor protein 12 (AKAP12) gene as a candidate tumor suppressor of hepatocellular carcinoma. J Surg Oncol. 105:381–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Okamura Y, Nomoto S, Hayashi M, Hishida M, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Takeda S, Kodera Y, et al: Identification of the bleomycin hydrolase gene as a methylated tumor suppressor gene in hepatocellular carcinoma using a novel triple-combination array method. Cancer Lett. 312:150–157. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hishida M, Nomoto S, Inokawa Y, Hayashi M, Kanda M, Okamura Y, Nishikawa Y, Tanaka C, Kobayashi D, Yamada S, et al: Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular carcinoma detected by triple-combination array analysis. Int J Oncol. 43:88–94. 2013.PubMed/NCBI | |
|
Inokawa Y, Nomoto S, Hishida M, Hayashi M, Kanda M, Nishikawa Y, Takeda S, Fujiwara M, Koike M, Sugimoto H, et al: Dynamin 3: A new candidate tumor suppressor gene in hepatocellular carcinoma detected by triple combination array analysis. Onco Targets Ther. 6:1417–1424. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Inokawa Y, Nomoto S, Hishida M, Hayashi M, Kanda M, Nishikawa Y, Takeda S, Sugimoto H, Fujii T, Yamada S, et al: Detection of doublecortin domain-containing 2 (DCDC2), a new candidate tumor suppressor gene of hepatocellular carcinoma, by triple combination array analysis. J Exp Clin Cancer Res. 32:652013. View Article : Google Scholar : PubMed/NCBI | |
|
Hayashi M, Nomoto S, Hishida M, Inokawa Y, Kanda M, Okamura Y, Nishikawa Y, Tanaka C, Kobayashi D, Yamada S, et al: Identification of the collagen type 1 α 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer. 14:1082014. View Article : Google Scholar : PubMed/NCBI | |
|
Hishida M, Inokawa Y, Takano N, Nishikawa Y, Iwata N, Kanda M, Tanaka C, Kobayashi D, Yamada S, Nakayama G, et al: Protein tyrosine kinase 7: A hepatocellular carcinoma-related gene detected by triple-combination array. J Surg Res. 195:444–453. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Takano N, Hishida M, Inokawa Y, Hayashi M, Kanda M, Nishikawa Y, Iwata N, Kobayashi D, Tanaka C, Yamada S, et al: CCNJ detected by triple combination array analysis as a tumor-related gene of hepatocellular carcinoma. Int J Oncol. 46:1963–1970. 2015.PubMed/NCBI | |
|
Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, Takezaki Y, Hanazaki K, Miwa T, Lai S, et al: Suppression of microRNA-7 (miR-7) biogenesis by nuclear factor 90-nuclear factor 45 complex (NF90-NF45) controls cell proliferation in hepatocellular carcinoma. J Biol Chem. 291:21074–21084. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
You Y, Tan JX, Dai HS, Chen HW, Xu XJ, Yang AG, Zhang YJ, Bai LH and Bie P: MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget. 7:57099–57116. 2016.PubMed/NCBI | |
|
Wang Y, Sun B, Zhao X, Zhao N, Sun R, Zhu D, Zhang Y, Li Y, Gu Q, Dong X, et al: Twist1-related miR-26b-5p suppresses epithelial-mesenchymal transition, migration and invasion by targeting SMAD1 in hepatocellular carcinoma. Oncotarget. 7:24383–24401. 2016.PubMed/NCBI | |
|
Liu Z, Wang J, Mao Y, Zou B and Fan X: MicroRNA-101 suppresses migration and invasion via targeting vascular endothelial growth factor-C in hepatocellular carcinoma cells. Oncol Lett. 11:433–438. 2016.PubMed/NCBI | |
|
Yen CS, Su ZR, Lee YP, Liu IT and Yen CJ: miR-106b promotes cancer progression in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 22:5183–5192. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huan L, Bao C, Chen D, Li Y, Lian J, Ding J, Huang S, Liang L and He X: MicroRNA-127-5p targets the biliverdin reductase B/nuclear factor-κB pathway to suppress cell growth in hepatocellular carcinoma cells. Cancer Sci. 107:258–266. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Z, Jiang H, Liu Y, Huang Y, Xiong X, Wu H and Dai X: MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp Cell Res. 343:135–147. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng YB, Liang XH, Zhang GX, Jiang N, Zhang T, Huang JY, Zhang L and Zeng XC: miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1. Cancer Cell Int. 16:632016. View Article : Google Scholar : PubMed/NCBI | |
|
Sakabe T, Azumi J, Umekita Y, Toriguchi K, Hatano E, Hirooka Y and Shiota G: Prognostic relevance of miR-137 in patients with hepatocellular carcinoma. Liver Int. 37:271–279. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu M, Lin Y, Zhou Y, Jin H, Hou B, Wu Z, Li Z, Jian Z and Sun J: MiR-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SMAD4. Onco Targets Ther. 9:4705–4714. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tang B, Lei B, Qi G, Liang X, Tang F, Yuan S, Wang Z, Yu S and He S: MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J Exp Clin Cancer Res. 35:932016. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan T, He X, Yu J and Hang Z: MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncol Lett. 11:2941–2945. 2016.PubMed/NCBI | |
|
Lian J, Jing Y, Dong Q, Huan L, Chen D, Bao C, Wang Q, Zhao F, Li J, Yao M, et al: miR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma. Oncotarget. 7:2672–2683. 2016.PubMed/NCBI | |
|
Deng B, Qu L, Li J, Fang J, Yang S, Cao Z, Mei Z and Sun X: MiRNA-211 suppresses cell proliferation, migration and invasion by targeting SPARC in human hepatocellular carcinoma. Sci Rep. 6:266792016. View Article : Google Scholar : PubMed/NCBI | |
|
Yu G, Wang J, Xu K and Dong J: Dynamic regulation of uncoupling protein 2 expression by microRNA-214 in hepatocellular carcinoma. Biosci Rep. 36:362016. View Article : Google Scholar | |
|
Okajima W, Komatsu S, Ichikawa D, Miyamae M, Kawaguchi T, Hirajima S, Ohashi T, Imamura T, Kiuchi J, Arita T, et al: Circulating microRNA profiles in plasma: Identification of miR-224 as a novel diagnostic biomarker in hepatocellular carcinoma independent of hepatic function. Oncotarget. 7:53820–53836. 2016.PubMed/NCBI | |
|
Meng X, Lu P and Fan Q: miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN. Biochem Biophys Res Commun. 470:187–191. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JS, Li HS, Huang JQ, Dong SH, Huang ZJ, Yi W, Zhan GF, Feng JT, Sun JC and Huang XH: MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Lett. 375:73–83. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Liu K, Zhang W, Wang Y, Jin Z, Jia B and Liu Y: miR-449a inhibits proliferation and invasion by regulating ADAM10 in hepatocellular carcinoma. Am J Transl Res. 8:2609–2619. 2016.PubMed/NCBI | |
|
Zhang L, Yu Z, Xian Y and Lin X: microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma. FEBS Open Bio. 6:155–164. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jin H, Yu M, Lin Y, Hou B, Wu Z, Li Z and Sun J: MiR-502-3P suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SET. Onco Targets The. 9:3281–3289. 2016. | |
|
Xiao Y, Tian Q, He J, Huang M, Yang C and Gong L: MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor. Onco Targets Ther. 9:3535–3544. 2016.PubMed/NCBI | |
|
Tu K, Liu Z, Yao B, Han S and Yang W: MicroRNA-519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Int J Oncol. 48:965–974. 2016.PubMed/NCBI | |
|
Wang W, Zhang H, Wang L, Zhang S and Tang M: miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1. Biochem Biophys Res Commun. 473:987–992. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu G, Zheng K, Xia S, Wang Y, Meng X, Qin X and Cheng Y: MicroRNA-655-3p functions as a tumor suppressor by regulating ADAM10 and β-catenin pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 35:892016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Zhang L, Zheng B, Yan Y, Zhang Y, Xie H, Zhou L, Zheng S and Wang W: MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci. 107:424–432. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tan G, Wu L, Tan J, Zhang B, Tai WC, Xiong S, Chen W, Yang J and Li H: MiR-1180 promotes apoptotic resistance to human hepatocellular carcinoma via activation of NF-κB signaling pathway. Sci Rep. 6:223282016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Zhou F, Xu T, Deng H, Ge YY, Zhang C, Li J and Zhuang SM: Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res. 638:205–209. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, Han S, Yuan Q and Yang M: MiRNA-192 [corrected] and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. PLoS Genet. 11:e10057262015. View Article : Google Scholar : PubMed/NCBI | |
|
Cai C, Ashktorab H, Pang X, Zhao Y, Sha W, Liu Y and Gu X: MicroRNA-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor CHD5. PLoS One. 7:e297502012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YF, Yang CC, Kao SY, Liu CJ, Lin SC and Chang KW: MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res. 76:4872–4886. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Lee S, Bae H, Kang HS and Kim SJ: Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells. Sci Rep. 6:252872016. View Article : Google Scholar : PubMed/NCBI | |
|
Ye L, Wang H and Liu B: miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol. 37:1151–1157. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Asuthkar S, Velpula KK, Chetty C, Gorantla B and Rao JS: Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget. 3:1439–1454. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, et al: Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 40:841–849. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xia B, Yang S, Liu T and Lou G: miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 14:572015. View Article : Google Scholar : PubMed/NCBI | |
|
Ward A, Shukla K, Balwierz A, Soons Z, König R, Sahin O and Wiemann S: MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol. 233:368–379. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G and An HJ: Deregulation of miR-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology. 57:734–743. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hong L, Ya-Wei L, Hai W, Qiang Z, Jun-Jie L, Huang A, Song-Tao Q and Yun-Tao L: MiR-519a functions as a tumor suppressor in glioma by targeting the oncogenic STAT3 pathway. J Neurooncol. 128:35–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shao J, Cao J, Liu Y, Mei H, Zhang Y and Xu W: MicroRNA-519a promotes proliferation and inhibits apoptosis of hepatocellular carcinoma cells by targeting FOXF2. FEBS Open Bio. 5:893–899. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ge YZ, Xu LW, Xu Z, Wu R, Xin H, Zhu M, Lu TZ, Geng LG, Liu H, Zhou CC, et al: Expression profiles and clinical significance of microRNAs in papillary renal cell carcinoma: A STROBE-compliant observational study. Medicine. 94:e7672015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Zhu HQ, Ma CQ, Li HG, Liu FF, Chang H and Lu J: MiR-1180 promoted the proliferation of hepatocellular carcinoma cells by repressing TNIP2 expression. Biomed Pharmacother. 79:315–320. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen PJ, Chen DS, Lai MY, Chang MH, Huang GT, Yang PM, Sheu JC, Lee SC, Hsu HC and Sung JL: Clonal origin of recurrent hepatocellular carcinomas. Gastroenterology. 96:527–529. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Cucchetti A, Piscaglia F, Caturelli E, Benvegnù L, Vivarelli M, Ercolani G, Cescon M, Ravaioli M, Grazi GL, Bolondi L, et al: Comparison of recurrence of hepatocellular carcinoma after resection in patients with cirrhosis to its occurrence in a surveilled cirrhotic population. Ann Surg Oncol. 16:413–422. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Okamoto M, Utsunomiya T, Wakiyama S, Hashimoto M, Fukuzawa K, Ezaki T, Hanai T, Inoue H and Mori M: Specific gene-expression profiles of non-cancerous liver tissue predict the risk for multicentric occurrence of hepatocellular carcinoma in hepatitis C virus-positive patients. Ann Surg Oncol. 13:947–954. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, et al: Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 359:1995–2004. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T and Mori M: Molecular signatures of non-cancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol. 45:146–152. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Utsunomiya T, Ishikawa D, Asanoma M, Yamada S, Iwahashi S, Kanamoto M, Arakawa Y, Ikemoto T, Morine Y, Imura S, et al: Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res. 44:631–638. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Utsunomiya T, Shimada M, Morine Y, Tajima A and Imoto I: Specific molecular signatures of non-tumor liver tissue may predict a risk of hepatocarcinogenesis. Cancer Sci. 105:749–754. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Meckelein B, de Silva HA, Roses AD, Rao PN, Pettenati MJ, Xu PT, Hodge R, Glucksman MJ and Abraham CR: Human endopeptidase (THOP1) is localized on chromosome 19 within the linkage region for the late-onset Alzheimer disease AD2 locus. Genomics. 31:246–249. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Qi L, Li SH, Si LB, Lu M and Tian H: Expression of THOP1 and its relationship to prognosis in non-small cell lung cancer. PLoS One. 9:e1066652014. View Article : Google Scholar : PubMed/NCBI | |
|
Nomoto S, Hishida M, Inokawa Y, Takano N, Kanda M, Nishikawa Y, Fujii T, Koike M, Sugimoto H and Kodera Y: Expression analysis of THOP1 in background liver, a prognostic predictive factor in hepatocellular carcinoma, extracted by multiarray analysis. Ann Surg Oncol. 21:(Suppl 3). S443–S450. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cressman DE, Diamond RH and Taub R: Rapid activation of the Stat3 transcription complex in liver regeneration. Hepatology. 21:1443–1449. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM and Thorgeirsson SS: Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 130:1117–1128. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sonohara F, Nomoto S, Inokawa Y, Hishida M, Takano N, Kanda M, Nishikawa Y, Fujii T, Koike M, Sugimoto H, et al: High expression of Janus kinase 2 in background normal liver tissue of resected hepatocellular carcinoma is associated with worse prognosis. Oncol Rep. 33:767–773. 2015.PubMed/NCBI |