Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2017 Volume 37 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2017 Volume 37 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review)

  • Authors:
    • Dai Shimizu
    • Yoshikuni Inokawa
    • Fuminori Sonohara
    • Kenichi Inaoka
    • Shuji Nomoto
  • View Affiliations / Copyright

    Affiliations: Department of Surgery, Aichi Gakuin University School of Dentistry, Chikusa-ku, Nagoya 464-8651, Japan
  • Pages: 2527-2542
    |
    Published online on: March 31, 2017
       https://doi.org/10.3892/or.2017.5541
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocarcinogenesis is a complex and multistep process that involves the accumulation of genetic and epigenetic alterations in regulatory genes. To understand the development of hepatocellular carcinoma (HCC), current research has utilized improved array technologies. The identification of cancer-related molecules could lead to the development of novel molecular targets for treatment and biomarkers for predicting prognosis. However, prognostic prediction is insufficient when considering only tumor factors, since hepatocarcinogenesis is also greatly influenced by the status of the background liver. Clinical background liver factors, such as the presence of chronic active hepatitis or cirrhosis, are well known as risk factors for developing HCC. In contrast, genetic or epigenetic background liver factors remain unknown, albeit those are important to understand the developing process of HCC. Investigating background liver factors could contribute to the development of carcinogenic markers of HCC and to the prevention of the development of HCC. In the present study, we review the currently identified tumor factors and background liver factors from a molecular biological viewpoint and also introduce our combination array analysis.
View Figures
View References

1 

Grunstein M and Hogness DS: Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA. 72:3961–3965. 1975. View Article : Google Scholar : PubMed/NCBI

2 

Taura K, Ikai I, Hatano E, Fujii H, Uyama N and Shimahara Y: Implication of frequent local ablation therapy for intrahepatic recurrence in prolonged survival of patients with hepatocellular carcinoma undergoing hepatic resection: An analysis of 610 patients over 16 years old. Ann Surg. 244:265–273. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Yamamoto T, Kajino K, Kudo M, Sasaki Y, Arakawa Y and Hino O: Determination of the clonal origin of multiple human hepatocellular carcinomas by cloning and polymerase chain reaction of the integrated hepatitis B virus DNA. Hepatology. 29:1446–1452. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Chen YJ, Yeh SH, Chen JT, Wu CC, Hsu MT, Tsai SF, Chen PJ and Lin CH: Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma. Gastroenterology. 119:431–440. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Ochiai T, Urata Y, Yamano T, Yamagishi H and Ashihara T: Clonal expansion in evolution of chronic hepatitis to hepatocellular carcinoma as seen at an X-chromosome locus. Hepatology. 31:615–621. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Nomoto S, Yamashita K, Koshikawa K, Nakao A and Sidransky D: Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res. 8:481–487. 2002.PubMed/NCBI

7 

Nomoto S, Kinoshita T, Kato K, Otani S, Kasuya H, Takeda S, Kanazumi N, Sugimoto H and Nakao A: Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma. Br J Cancer. 97:1260–1265. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Wang B, Xia CY, Lau WY, Lu XY, Dong H, Yu WL, Jin GZ, Cong WM and Wu MC: Determination of clonal origin of recurrent hepatocellular carcinoma for personalized therapy and outcomes evaluation: A new strategy for hepatic surgery. J Am Coll Surg. 217:1054–1062. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Ng IO, Guan XY, Poon RT, Fan ST and Lee JM: Determination of the molecular relationship between multiple tumour nodules in hepatocellular carcinoma differentiates multicentric origin from intrahepatic metastasis. J Pathol. 199:345–353. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Nomoto S, Hishida M, Inokawa Y, Sugimoto H and Kodera Y: Management of hepatocellular carcinoma should consider both tumor factors and background liver factors. Hepatobiliary Surg Nutr. 3:82–85. 2014.PubMed/NCBI

11 

Xie B, Zen Q, Wang X, He X, Xie Y, Zhang Z and Li H: ACK1 promotes hepatocellular carcinoma progression via downregulating WWOX and activating AKT signaling. Int J Oncol. 46:2057–2066. 2015.PubMed/NCBI

12 

Liu S, Zhang W, Liu K, Ji B and Wang G: Silencing ADAM10 inhibits the in vitro and in vivo growth of hepatocellular carcinoma cancer cells. Mol Med Rep. 11:597–602. 2015.PubMed/NCBI

13 

Gao L, Ge C, Fang T, Zhao F, Chen T, Yao M, Li J and Li H: ANGPTL2 promotes tumor metastasis in hepatocellular carcinoma. J Gastroenterol Hepatol. 30:396–404. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Zhang HX, Jiang SS, Zhang XF, Zhou ZQ, Pan QZ, Chen CL, Zhao JJ, Tang Y, Xia JC and Weng DS: Protein kinase CK2α catalytic subunit is overexpressed and serves as an unfavorable prognostic marker in primary hepatocellular carcinoma. Oncotarget. 6:34800–34817. 2015.PubMed/NCBI

15 

Cheng Q, Yuan F, Lu F, Zhang B, Chen T, Chen X, Cheng Y, Li N, Ma L and Tong T: CSIG promotes hepatocellular carcinoma proliferation by activating c-MYC expression. Oncotarget. 6:4733–4744. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, Yuan S, Liu J, Yu S and He S: Overexpression of CTNND1 in hepatocellular carcinoma promotes carcinous characters through activation of Wnt/β-catenin signaling. J Exp Clin Cancer Res. 35:822016. View Article : Google Scholar : PubMed/NCBI

17 

Ruan J, Zheng H, Rong X, Rong X, Zhang J, Fang W, Zhao P and Luo R: Over-expression of cathepsin B in hepatocellular carcinomas predicts poor prognosis of HCC patients. Mol Cancer. 15:172016. View Article : Google Scholar : PubMed/NCBI

18 

Yi HC, Liu YL, You P, Pan JS, Zhou JY, Liu ZJ and Zhang ZY: Overexpression of DEK gene is correlated with poor prognosis in hepatocellular carcinoma. Mol Med Rep. 11:1318–1323. 2015.PubMed/NCBI

19 

Liu S, Long G, Wei H, Shi L, Yang Z, Liu D, Hu G and Qiu H: DJ-1 knockdown inhibits growth and xenograft-induced tumor generation of human hepatocellular carcinoma cells. Oncol Rep. 33:201–206. 2015.PubMed/NCBI

20 

Liao W, Liu W, Liu X, Yuan Q, Ou Y, Qi Y, Huang W, Wang Y and Huang J: Upregulation of FAM83D affects the proliferation and invasion of hepatocellular carcinoma. Oncotarget. 6:24132–24147. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Lin CH, Lin YW, Chen YC, Liao CC, Jou YS, Hsu MT and Chen CF: FNDC3B promotes cell migration and tumor metastasis in hepatocellular carcinoma. Oncotarget. 7:49498–49508. 2016.PubMed/NCBI

22 

Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, et al: Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis. 7:e22012016. View Article : Google Scholar : PubMed/NCBI

23 

Gao K, Xu C, Jin X, Wumaier R, Ma J, Peng J, Wang Y, Tang Y, Yu L and Zhang P: HDGF-related protein-2 (HRP-2) acts as an oncogene to promote cell growth in hepatocellular carcinoma. Biochem Biophys Res Commun. 458:849–855. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Li Y, Yang XH, Fang SJ, Qin CF, Sun RL, Liu ZY, Jiang BY, Wu X and Li G: HOXA7 stimulates human hepatocellular carcinoma proliferation through cyclin E1/CDK2. Oncol Rep. 33:990–996. 2015.PubMed/NCBI

25 

Lv X, Li L, Lv L, Qu X, Jin S, Li K, Deng X, Cheng L, He H and Dong L: HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1332015. View Article : Google Scholar : PubMed/NCBI

26 

Zhang Y, Tao X, Jin G, Jin H, Wang N, Hu F, Luo Q, Shu H, Zhao F, Yao M, et al: A targetable molecular chaperone Hsp27 confers aggressiveness in hepatocellular carcinoma. Theranostics. 6:558–570. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Tang B, Qi G, Tang F, Yuan S, Wang Z, Liang X, Li B, Yu S, Liu J, Huang Q, et al: JARID1B promotes metastasis and epithelial-mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells. Oncotarget. 6:12723–12739. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Wang D, Han S, Peng R, Jiao C, Wang X, Yang X, Yang R and Li X: Depletion of histone demethylase KDM5B inhibits cell proliferation of hepatocellular carcinoma by regulation of cell cycle checkpoint proteins p15 and p27. J Exp Clin Cancer Res. 35:372016. View Article : Google Scholar : PubMed/NCBI

29 

Jin H, Zhang Y, You H, Tao X, Wang C, Jin G, Wang N, Ruan H, Gu D, Huo X, et al: Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma. Sci Rep. 5:104662015. View Article : Google Scholar : PubMed/NCBI

30 

Wang CH, Li M, Liu LL, Zhou RY, Fu J, Zhang CZ and Yun JP: LRG1 expression indicates unfavorable clinical outcome in hepatocellular carcinoma. Oncotarget. 6:42118–42129. 2015.PubMed/NCBI

31 

Yao Y, Dou C, Lu Z, Zheng X and Liu Q: MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cell Physiol Biochem. 35:983–996. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Hashimoto R, Kanda M, Takami H, Shimizu D, Oya H, Hibino S, Okamura Y, Yamada S, Fujii T, Nakayama G, et al: Aberrant expression of melanoma-associated antigen-D2 serves as a prognostic indicator of hepatocellular carcinoma outcome following curative hepatectomy. Oncol Lett. 9:1201–1206. 2015.PubMed/NCBI

33 

Takami H, Kanda M, Oya H, Hibino S, Sugimoto H, Suenaga M, Yamada S, Nishikawa Y, Asai M, Fujii T, et al: Evaluation of MAGE-D4 expression in hepatocellular carcinoma in Japanese patients. J Surg Oncol. 108:557–562. 2013. View Article : Google Scholar : PubMed/NCBI

34 

OuYang HY, Xu J, Luo J, Zou RH, Chen K, Le Y, Zhang YF, Wei W, Guo RP and Shi M: MEP1A contributes to tumor progression and predicts poor clinical outcome in human hepatocellular carcinoma. Hepatology. 63:1227–1239. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Shimizu D, Kanda M, Sugimoto H, Sueoka S, Takami H, Ezaka K, Tanaka Y, Hashimoto R, Okamura Y, Iwata N, et al: NRAGE promotes the malignant phenotype of hepatocellular carcinoma. Oncol Lett. 11:1847–1854. 2016.PubMed/NCBI

36 

Leung CO, Wong CC, Fan DN, Kai AK, Tung EK, Xu IM, Ng IO and Lo RC: PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget. 6:10880–10892. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Liu Y, Ye X, Zhang JB, Ouyang H, Shen Z, Wu Y, Wang W, Wu J, Tao S, Yang X, et al: PROX1 promotes hepatocellular carcinoma proliferation and sorafenib resistance by enhancing β-catenin expression and nuclear translocation. Oncogene. 34:5524–5535. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Wong CM, Wei L, Law CT, Ho DW, Tsang FH, Au SL, Sze KM, Lee JM, Wong CC and Ng IO: Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology. 63:474–487. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Yang T, Song B, Zhang J, Yang GS, Zhang H, Yu WF, Wu MC, Lu JH and Shen F: STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut. 65:124–133. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Guo Y, Pan Q, Zhang J, Xu X, Liu X, Wang Q, Yi R, Xie X, Yao L, Liu W, et al: Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J Cell Biochem. 116:2465–2475. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Liu X, Liao W, Yuan Q, Ou Y and Huang J: TTK activates Akt and promotes proliferation and migration of hepatocellular carcinoma cells. Oncotarget. 6:34309–34320. 2015.PubMed/NCBI

42 

Zhang XF, Pan QZ, Pan K, Weng DS, Wang QJ, Zhao JJ, He J, Liu Q, Wang DD, Jiang SS, et al: Expression and prognostic role of ubiquitination factor E4B in primary hepatocellular carcinoma. Mol Carcinog. 55:64–76. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Zhang XF, Chao J, Pan QZ, Pan K, Weng DS, Wang QJ, Zhao JJ, He J, Liu Q, Jiang SS, et al: Overexpression of WWP1 promotes tumorigenesis and predicts unfavorable prognosis in patients with hepatocellular carcinoma. Oncotarget. 6:40920–40933. 2015.PubMed/NCBI

44 

Chai JY, Modak C, Mouazzen W, Narvaez R and Pham J: Epithelial or mesenchymal: Where to draw the line? Biosci Trends. 4:130–142. 2010.PubMed/NCBI

45 

Lu Q: δ-Catenin dysregulation in cancer: Interactions with E-cadherin and beyond. J Pathol. 222:119–123. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Schackmann RC, Tenhagen M, van de Ven RA and Derksen PW: p120-catenin in cancer - mechanisms, models and opportunities for intervention. J Cell Sci. 126:3515–3525. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Zhang L, Liu YL, Chen GX, Cui B, Wang JS, Shi YL, Li LP and Guo XB: Heme oxygenase-1 promotes Caco-2 cell proliferation and migration by targeting CTNND1. Chin Med J. 126:3057–3063. 2013.PubMed/NCBI

48 

Li T, Lai Q, Wang S, Cai J, Xiao Z, Deng D, He L, Jiao H, Ye Y, Liang L, et al: MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res. 35:212016. View Article : Google Scholar : PubMed/NCBI

49 

Castillo SD, Angulo B, Suarez-Gauthier A, Melchor L, Medina PP, Sanchez-Verde L, Torres-Lanzas J, Pita G, Benitez J and Sanchez-Cespedes M: Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer. J Pathol. 222:89–98. 2010.PubMed/NCBI

50 

Noordhuis MG, Fehrmann RS, Wisman GB, Nijhuis ER, van Zanden JJ, Moerland PD, Ver Loren van Themaat E, Volders HH, Kok M, ten Hoor KA, et al: Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 17:1317–1330. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Mann KM, Ward JM, Yew CC, Kovochich A, Dawson DW, Black MA, Brett BT, Sheetz TE, Dupuy AJ, Chang DK, et al: Australian Pancreatic Cancer Genome Initiative: Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 109:5934–5941. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Xing AY, Wang YW, Su ZX, Shi DB, Wang B and Gao P: Catenin-δ1, negatively regulated by miR-145, promotes tumour aggressiveness in gastric cancer. J Pathol. 236:53–64. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, Blanchard H and Ralph SJ: Galectin-1 as a potent target for cancer therapy: Role in the tumor microenvironment. Cancer Metastasis Rev. 31:763–778. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Zhang P, Zhang P, Shi B, Zhou M, Jiang H, Zhang H, Pan X, Gao H, Sun H and Li Z: Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer. Cell Death Dis. 5:e9912014. View Article : Google Scholar : PubMed/NCBI

55 

Broder C and Becker-Pauly C: The metalloproteases meprin α and meprin β: Unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem J. 450:253–264. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Lottaz D, Maurer CA, Hahn D, Büchler MW and Sterchi EE: Nonpolarized secretion of human meprin alpha in colorectal cancer generates an increased proteolytic potential in the stroma. Cancer Res. 59:1127–1133. 1999.PubMed/NCBI

57 

Mujica AO, Brauksiepe B, Saaler-Reinhardt S, Reuss S and Schmidt ER: Differential expression pattern of the novel serine/threonine kinase, STK33, in mice and men. FEBS J. 272:4884–4898. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gößele U, Koch B, Faber K, Genze F, Schrader M, et al: Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 209:697–711. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, et al: Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 137:821–834. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Jelluma N, Brenkman AB, van den Broek NJ, Cruijsen CW, van Osch MH, Lens SM, Medema RH and Kops GJ: Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell. 132:233–246. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Zhang L, Shi R, He C, Cheng C, Song B, Cui H, Zhang Y, Zhao Z, Bi Y, Yang X, et al: Oncogenic B-RafV600E abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells. Cancer Lett. 337:125–132. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, Miccoli P, Basolo F, Castellone MD, Cirafici AM, et al: A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 67:10148–10158. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E, Marty-Prouvost B, De Koning L, Rigaill G, Dumont A, et al: TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One. 8:e637122013. View Article : Google Scholar : PubMed/NCBI

64 

Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et al: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 3:e16512008. View Article : Google Scholar : PubMed/NCBI

65 

Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, et al: Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 92:1805–1811. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Gu D, Jin H, Jin G, Wang C, Wang N, Hu F, Luo Q, Chu W, Yao M and Qin W: The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett. 379:107–116. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Jiang CF, Wen LZ, Yin C, Xu WP, Shi B, Zhang X and Xie WF: Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget. 7:27408–27421. 2016.PubMed/NCBI

68 

Kanda M, Sugimoto H, Nomoto S, Oya H, Hibino S, Shimizu D, Takami H, Hashimoto R, Okamura Y, Yamada S, et al: B-cell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol. 46:641–648. 2015.PubMed/NCBI

69 

Kanda M, Nomoto S, Oya H, Takami H, Hibino S, Hishida M, Suenaga M, Yamada S, Inokawa Y, Nishikawa Y, et al: Downregulation of DENND2D by promoter hypermethylation is associated with early recurrence of hepatocellular carcinoma. Int J Oncol. 44:44–52. 2014.PubMed/NCBI

70 

Hirata H, Sugimachi K, Komatsu H, Ueda M, Masuda T, Uchi R, Sakimura S, Nambara S, Saito T, Shinden Y, et al: Decreased expression of fructose-1,6-bisphosphatase associates with glucose metabolism and tumor progression in hepatocellular carcinoma. Cancer Res. 76:3265–3276. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Sun J, Li H, Huo Q, Cui M, Ge C, Zhao F, Tian H, Chen T, Yao M and Li J: The transcription factor FOXN3 inhibits cell proliferation by downregulating E2F5 expression in hepatocellular carcinoma cells. Oncotarget. 7:43534–43545. 2016.PubMed/NCBI

72 

Zhang Y, Liu Y, Duan J, Yan H, Zhang J, Zhang H, Fan Q, Luo F, Yan G, Qiao K, et al: Hippocalcin-like 1 suppresses hepatocellular carcinoma progression by promoting p21Waf/Cip1 stabilization by activating the ERK1/2-MAPK pathway. Hepatology. 63:880–897. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Wu BH, Chen H, Cai CM, Fang JZ, Wu CC, Huang LY, Wang L and Han ZG: Epigenetic silencing of JMJD5 promotes the proliferation of hepatocellular carcinoma cells by down-regulating the transcription of CDKN1A 686. Oncotarget. 7:6847–6863. 2016.PubMed/NCBI

74 

Tanaka Y, Kanda M, Sugimoto H, Shimizu D, Sueoka S, Takami H, Ezaka K, Hashimoto R, Okamura Y, Iwata N, et al: Translational implication of Kallmann syndrome-1 gene expression in hepatocellular carcinoma. Int J Oncol. 46:2546–2554. 2015.PubMed/NCBI

75 

Zhuo H, Tang J, Lin Z, Jiang R, Zhang X, Ji J, Wang P and Sun B: The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. Mol Carcinog. 55:209–219. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Li A, Yan Q, Zhao X, Zhong J, Yang H, Feng Z, Du Y, Wang Y, Wang Z, Wang H, et al: Decreased expression of PBLD correlates with poor prognosis and functions as a tumor suppressor in human hepatocellular carcinoma. Oncotarget. 7:524–537. 2016.PubMed/NCBI

77 

Ding X, Cheng X, Gong M, Chen X, Yin F and Lai K: Hypermethylation and expression silencing of PDCD4 gene in hepatocellular carcinoma: A consort study. Medicine. 95:e27292016. View Article : Google Scholar : PubMed/NCBI

78 

Kanda M, Sugimoto H, Nomoto S, Oya H, Shimizu D, Takami H, Hashimoto R, Sonohara F, Okamura Y, Yamada S, et al: Clinical utility of PDSS2 expression to stratify patients at risk for recurrence of hepatocellular carcinoma. Int J Oncol. 45:2005–2012. 2014.PubMed/NCBI

79 

Richter AM, Walesch SK, Würl P, Taubert H and Dammann RH: The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis. 1:e182012. View Article : Google Scholar : PubMed/NCBI

80 

Liu XR, Cai CX, Luo LM, Zheng WL, Shi R, Zeng J, Xu YQ, Wei M and Ma WL: Decreased expression of Sushi Domain Containing 2 correlates to progressive features in patients with hepatocellular carcinoma. Cancer Cell Int. 16:152016. View Article : Google Scholar : PubMed/NCBI

81 

Liu X, Zhou J, Zhou N, Zhu J, Feng Y and Miao X: SYNJ2BP inhibits tumor growth and metastasis by activating DLL4 pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 35:1152016. View Article : Google Scholar : PubMed/NCBI

82 

Zhang X, Lv L, Ouyang X, Zhang S, Fang J, Cai L and Li D: Association of TIP30 expression and prognosis of hepatocellular carcinoma in patients with HBV infection. Cancer Med. 5:2180–2189. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Wang Y, Chen CL, Pan QZ, Wu YY, Zhao JJ, Jiang SS, Chao J, Zhang XF, Zhang HX, Zhou ZQ, et al: Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget. 7:6323–6334. 2016.PubMed/NCBI

84 

Shimizu D, Kanda M, Nomoto S, Oya H, Takami H, Hibino S, Suenaga M, Inokawa Y, Hishida M, Takano N, et al: Identification of intragenic methylation in the TUSC1 gene as a novel prognostic marker of hepatocellular carcinoma. Oncol Rep. 31:1305–1313. 2014.PubMed/NCBI

85 

Wu D, Liu G, Liu Y, Saiyin H, Wang C, Wei Z, Zen W, Liu D, Chen Q, Zhao Z, et al: Zinc finger protein 191 inhibits hepatocellular carcinoma metastasis through discs large 1-mediated yes-associated protein inactivation. Hepatology. 64:1148–1162. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811–816. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Zhang R, Huang Q and Li Y, Song Y and Li Y: JMJD5 is a potential oncogene for colon carcinogenesis. Int J Clin Exp Pathol. 8:6482–6489. 2015.PubMed/NCBI

88 

Zhao Z, Sun C, Li F, Han J, Li X and Song Z: Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. Int J Clin Exp Pathol. 8:10325–10334. 2015.PubMed/NCBI

89 

Huang X, Zhang S, Qi H, Wang Z, Chen HW, Shao J and Shen J: JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta. 1853:2286–2295. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chédotal A and Petit C: Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell. 109:217–228. 2002. View Article : Google Scholar : PubMed/NCBI

91 

González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J and Bouloux PM: Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci. 24:10384–10392. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Jian B, Nagineni CN, Meleth S, Grizzle W, Bland K, Chaudry I and Raju R: Anosmin-1 involved in neuronal cell migration is hypoxia inducible and cancer regulated. Cell Cycle. 8:3770–3776. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Choy CT, Kim H, Lee JY, Williams DM, Palethorpe D, Fellows G, Wright AJ, Laing K, Bridges LR, Howe FA, et al: Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways. Endocr Relat Cancer. 21:85–99. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Kang YK, Hong SW, Lee H and Kim WH: Prognostic implications of ezrin expression in human hepatocellular carcinoma. Mol Carcinog. 49:798–804. 2010.PubMed/NCBI

95 

Wang F, Feng Y, Li P, Wang K, Feng L, Liu YF, Huang H, Guo YB, Mao QS and Xue WJ: RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 7:4279–4297. 2016.PubMed/NCBI

96 

Matsuzaki T, Hanai S, Kishi H, Liu Z, Bao Y, Kikuchi A, Tsuchida K and Sugino H: Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent pathway. J Biol Chem. 277:19008–19018. 2002. View Article : Google Scholar : PubMed/NCBI

97 

Adam MG, Berger C, Feldner A, Yang WJ, Wüstehube-Lausch J, Herberich SE, Pinder M, Gesierich S, Hammes HP, Augustin HG, et al: Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res. 113:1206–1218. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Wang J, Sullenger BA and Rich JN: Notch signaling in cancer stem cells. Adv Exp Med Biol. 727:174–185. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Brito GC, Fachel AA, Vettore AL, Vignal GM, Gimba ER, Campos FS, Barcinski MA, Verjovski-Almeida S and Reis EM: Identification of protein-coding and intronic noncoding RNAs down-regulated in clear cell renal carcinoma. Mol Carcinog. 47:757–767. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Okamura Y, Nomoto S, Kanda M, Hayashi M, Nishikawa Y, Fujii T, Sugimoto H, Takeda S and Nakao A: Reduced expression of reelin (RELN) gene is associated with high recurrence rate of hepatocellular carcinoma. Ann Surg Oncol. 18:572–579. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Kanda M, Nomoto S, Okamura Y, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S and Nakao A: Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. Int J Oncol. 35:477–483. 2009.PubMed/NCBI

102 

Nomoto S, Kanda M, Okamura Y, Nishikawa Y, Qiyong L, Fujii T, Sugimoto H, Takeda S and Nakao A: Epidermal growth factor-containing fibulin-like extracellular matrix protein 1, EFEMP1, a novel tumor-suppressor gene detected in hepatocellular carcinoma using double combination array analysis. Ann Surg Oncol. 17:923–932. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Okamura Y, Nomoto S, Kanda M, Li Q, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S and Nakao A: Leukemia inhibitory factor receptor (LIFR) is detected as a novel suppressor gene of hepatocellular carcinoma using double-combination array. Cancer Lett. 289:170–177. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Kanda M, Nomoto S, Okamura Y, Hayashi M, Hishida M, Fujii T, Nishikawa Y, Sugimoto H, Takeda S and Nakao A: Promoter hypermethylation of fibulin 1 gene is associated with tumor progression in hepatocellular carcinoma. Mol Carcinog. 50:571–579. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Hayashi M, Nomoto S, Kanda M, Okamura Y, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Takeda S and Kodera Y: Identification of the A kinase anchor protein 12 (AKAP12) gene as a candidate tumor suppressor of hepatocellular carcinoma. J Surg Oncol. 105:381–386. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Okamura Y, Nomoto S, Hayashi M, Hishida M, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Takeda S, Kodera Y, et al: Identification of the bleomycin hydrolase gene as a methylated tumor suppressor gene in hepatocellular carcinoma using a novel triple-combination array method. Cancer Lett. 312:150–157. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Hishida M, Nomoto S, Inokawa Y, Hayashi M, Kanda M, Okamura Y, Nishikawa Y, Tanaka C, Kobayashi D, Yamada S, et al: Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular carcinoma detected by triple-combination array analysis. Int J Oncol. 43:88–94. 2013.PubMed/NCBI

108 

Inokawa Y, Nomoto S, Hishida M, Hayashi M, Kanda M, Nishikawa Y, Takeda S, Fujiwara M, Koike M, Sugimoto H, et al: Dynamin 3: A new candidate tumor suppressor gene in hepatocellular carcinoma detected by triple combination array analysis. Onco Targets Ther. 6:1417–1424. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Inokawa Y, Nomoto S, Hishida M, Hayashi M, Kanda M, Nishikawa Y, Takeda S, Sugimoto H, Fujii T, Yamada S, et al: Detection of doublecortin domain-containing 2 (DCDC2), a new candidate tumor suppressor gene of hepatocellular carcinoma, by triple combination array analysis. J Exp Clin Cancer Res. 32:652013. View Article : Google Scholar : PubMed/NCBI

110 

Hayashi M, Nomoto S, Hishida M, Inokawa Y, Kanda M, Okamura Y, Nishikawa Y, Tanaka C, Kobayashi D, Yamada S, et al: Identification of the collagen type 1 α 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer. 14:1082014. View Article : Google Scholar : PubMed/NCBI

111 

Hishida M, Inokawa Y, Takano N, Nishikawa Y, Iwata N, Kanda M, Tanaka C, Kobayashi D, Yamada S, Nakayama G, et al: Protein tyrosine kinase 7: A hepatocellular carcinoma-related gene detected by triple-combination array. J Surg Res. 195:444–453. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Takano N, Hishida M, Inokawa Y, Hayashi M, Kanda M, Nishikawa Y, Iwata N, Kobayashi D, Tanaka C, Yamada S, et al: CCNJ detected by triple combination array analysis as a tumor-related gene of hepatocellular carcinoma. Int J Oncol. 46:1963–1970. 2015.PubMed/NCBI

113 

Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, Takezaki Y, Hanazaki K, Miwa T, Lai S, et al: Suppression of microRNA-7 (miR-7) biogenesis by nuclear factor 90-nuclear factor 45 complex (NF90-NF45) controls cell proliferation in hepatocellular carcinoma. J Biol Chem. 291:21074–21084. 2016. View Article : Google Scholar : PubMed/NCBI

114 

You Y, Tan JX, Dai HS, Chen HW, Xu XJ, Yang AG, Zhang YJ, Bai LH and Bie P: MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget. 7:57099–57116. 2016.PubMed/NCBI

115 

Wang Y, Sun B, Zhao X, Zhao N, Sun R, Zhu D, Zhang Y, Li Y, Gu Q, Dong X, et al: Twist1-related miR-26b-5p suppresses epithelial-mesenchymal transition, migration and invasion by targeting SMAD1 in hepatocellular carcinoma. Oncotarget. 7:24383–24401. 2016.PubMed/NCBI

116 

Liu Z, Wang J, Mao Y, Zou B and Fan X: MicroRNA-101 suppresses migration and invasion via targeting vascular endothelial growth factor-C in hepatocellular carcinoma cells. Oncol Lett. 11:433–438. 2016.PubMed/NCBI

117 

Yen CS, Su ZR, Lee YP, Liu IT and Yen CJ: miR-106b promotes cancer progression in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 22:5183–5192. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Huan L, Bao C, Chen D, Li Y, Lian J, Ding J, Huang S, Liang L and He X: MicroRNA-127-5p targets the biliverdin reductase B/nuclear factor-κB pathway to suppress cell growth in hepatocellular carcinoma cells. Cancer Sci. 107:258–266. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Tian Z, Jiang H, Liu Y, Huang Y, Xiong X, Wu H and Dai X: MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp Cell Res. 343:135–147. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Zeng YB, Liang XH, Zhang GX, Jiang N, Zhang T, Huang JY, Zhang L and Zeng XC: miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1. Cancer Cell Int. 16:632016. View Article : Google Scholar : PubMed/NCBI

121 

Sakabe T, Azumi J, Umekita Y, Toriguchi K, Hatano E, Hirooka Y and Shiota G: Prognostic relevance of miR-137 in patients with hepatocellular carcinoma. Liver Int. 37:271–279. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Yu M, Lin Y, Zhou Y, Jin H, Hou B, Wu Z, Li Z, Jian Z and Sun J: MiR-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SMAD4. Onco Targets Ther. 9:4705–4714. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Tang B, Lei B, Qi G, Liang X, Tang F, Yuan S, Wang Z, Yu S and He S: MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J Exp Clin Cancer Res. 35:932016. View Article : Google Scholar : PubMed/NCBI

124 

Ruan T, He X, Yu J and Hang Z: MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncol Lett. 11:2941–2945. 2016.PubMed/NCBI

125 

Lian J, Jing Y, Dong Q, Huan L, Chen D, Bao C, Wang Q, Zhao F, Li J, Yao M, et al: miR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma. Oncotarget. 7:2672–2683. 2016.PubMed/NCBI

126 

Deng B, Qu L, Li J, Fang J, Yang S, Cao Z, Mei Z and Sun X: MiRNA-211 suppresses cell proliferation, migration and invasion by targeting SPARC in human hepatocellular carcinoma. Sci Rep. 6:266792016. View Article : Google Scholar : PubMed/NCBI

127 

Yu G, Wang J, Xu K and Dong J: Dynamic regulation of uncoupling protein 2 expression by microRNA-214 in hepatocellular carcinoma. Biosci Rep. 36:362016. View Article : Google Scholar

128 

Okajima W, Komatsu S, Ichikawa D, Miyamae M, Kawaguchi T, Hirajima S, Ohashi T, Imamura T, Kiuchi J, Arita T, et al: Circulating microRNA profiles in plasma: Identification of miR-224 as a novel diagnostic biomarker in hepatocellular carcinoma independent of hepatic function. Oncotarget. 7:53820–53836. 2016.PubMed/NCBI

129 

Meng X, Lu P and Fan Q: miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN. Biochem Biophys Res Commun. 470:187–191. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Chen JS, Li HS, Huang JQ, Dong SH, Huang ZJ, Yi W, Zhan GF, Feng JT, Sun JC and Huang XH: MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Lett. 375:73–83. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Liu S, Liu K, Zhang W, Wang Y, Jin Z, Jia B and Liu Y: miR-449a inhibits proliferation and invasion by regulating ADAM10 in hepatocellular carcinoma. Am J Transl Res. 8:2609–2619. 2016.PubMed/NCBI

132 

Zhang L, Yu Z, Xian Y and Lin X: microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma. FEBS Open Bio. 6:155–164. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Jin H, Yu M, Lin Y, Hou B, Wu Z, Li Z and Sun J: MiR-502-3P suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SET. Onco Targets The. 9:3281–3289. 2016.

134 

Xiao Y, Tian Q, He J, Huang M, Yang C and Gong L: MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor. Onco Targets Ther. 9:3535–3544. 2016.PubMed/NCBI

135 

Tu K, Liu Z, Yao B, Han S and Yang W: MicroRNA-519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Int J Oncol. 48:965–974. 2016.PubMed/NCBI

136 

Wang W, Zhang H, Wang L, Zhang S and Tang M: miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1. Biochem Biophys Res Commun. 473:987–992. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Wu G, Zheng K, Xia S, Wang Y, Meng X, Qin X and Cheng Y: MicroRNA-655-3p functions as a tumor suppressor by regulating ADAM10 and β-catenin pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 35:892016. View Article : Google Scholar : PubMed/NCBI

138 

Zhou X, Zhang L, Zheng B, Yan Y, Zhang Y, Xie H, Zhou L, Zheng S and Wang W: MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci. 107:424–432. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Tan G, Wu L, Tan J, Zhang B, Tai WC, Xiong S, Chen W, Yang J and Li H: MiR-1180 promotes apoptotic resistance to human hepatocellular carcinoma via activation of NF-κB signaling pathway. Sci Rep. 6:223282016. View Article : Google Scholar : PubMed/NCBI

140 

Yang J, Zhou F, Xu T, Deng H, Ge YY, Zhang C, Li J and Zhuang SM: Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res. 638:205–209. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, Han S, Yuan Q and Yang M: MiRNA-192 [corrected] and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. PLoS Genet. 11:e10057262015. View Article : Google Scholar : PubMed/NCBI

142 

Cai C, Ashktorab H, Pang X, Zhao Y, Sha W, Liu Y and Gu X: MicroRNA-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor CHD5. PLoS One. 7:e297502012. View Article : Google Scholar : PubMed/NCBI

143 

Chen YF, Yang CC, Kao SY, Liu CJ, Lin SC and Chang KW: MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res. 76:4872–4886. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Lee H, Lee S, Bae H, Kang HS and Kim SJ: Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells. Sci Rep. 6:252872016. View Article : Google Scholar : PubMed/NCBI

145 

Ye L, Wang H and Liu B: miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol. 37:1151–1157. 2016. View Article : Google Scholar : PubMed/NCBI

146 

Asuthkar S, Velpula KK, Chetty C, Gorantla B and Rao JS: Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget. 3:1439–1454. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, et al: Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 40:841–849. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Xia B, Yang S, Liu T and Lou G: miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 14:572015. View Article : Google Scholar : PubMed/NCBI

149 

Ward A, Shukla K, Balwierz A, Soons Z, König R, Sahin O and Wiemann S: MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol. 233:368–379. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G and An HJ: Deregulation of miR-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology. 57:734–743. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Hong L, Ya-Wei L, Hai W, Qiang Z, Jun-Jie L, Huang A, Song-Tao Q and Yun-Tao L: MiR-519a functions as a tumor suppressor in glioma by targeting the oncogenic STAT3 pathway. J Neurooncol. 128:35–45. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Shao J, Cao J, Liu Y, Mei H, Zhang Y and Xu W: MicroRNA-519a promotes proliferation and inhibits apoptosis of hepatocellular carcinoma cells by targeting FOXF2. FEBS Open Bio. 5:893–899. 2015. View Article : Google Scholar : PubMed/NCBI

153 

Ge YZ, Xu LW, Xu Z, Wu R, Xin H, Zhu M, Lu TZ, Geng LG, Liu H, Zhou CC, et al: Expression profiles and clinical significance of microRNAs in papillary renal cell carcinoma: A STROBE-compliant observational study. Medicine. 94:e7672015. View Article : Google Scholar : PubMed/NCBI

154 

Zhou X, Zhu HQ, Ma CQ, Li HG, Liu FF, Chang H and Lu J: MiR-1180 promoted the proliferation of hepatocellular carcinoma cells by repressing TNIP2 expression. Biomed Pharmacother. 79:315–320. 2016. View Article : Google Scholar : PubMed/NCBI

155 

Chen PJ, Chen DS, Lai MY, Chang MH, Huang GT, Yang PM, Sheu JC, Lee SC, Hsu HC and Sung JL: Clonal origin of recurrent hepatocellular carcinomas. Gastroenterology. 96:527–529. 1989. View Article : Google Scholar : PubMed/NCBI

156 

Cucchetti A, Piscaglia F, Caturelli E, Benvegnù L, Vivarelli M, Ercolani G, Cescon M, Ravaioli M, Grazi GL, Bolondi L, et al: Comparison of recurrence of hepatocellular carcinoma after resection in patients with cirrhosis to its occurrence in a surveilled cirrhotic population. Ann Surg Oncol. 16:413–422. 2009. View Article : Google Scholar : PubMed/NCBI

157 

Okamoto M, Utsunomiya T, Wakiyama S, Hashimoto M, Fukuzawa K, Ezaki T, Hanai T, Inoue H and Mori M: Specific gene-expression profiles of non-cancerous liver tissue predict the risk for multicentric occurrence of hepatocellular carcinoma in hepatitis C virus-positive patients. Ann Surg Oncol. 13:947–954. 2006. View Article : Google Scholar : PubMed/NCBI

158 

Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, et al: Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 359:1995–2004. 2008. View Article : Google Scholar : PubMed/NCBI

159 

Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T and Mori M: Molecular signatures of non-cancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol. 45:146–152. 2010. View Article : Google Scholar : PubMed/NCBI

160 

Utsunomiya T, Ishikawa D, Asanoma M, Yamada S, Iwahashi S, Kanamoto M, Arakawa Y, Ikemoto T, Morine Y, Imura S, et al: Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res. 44:631–638. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Utsunomiya T, Shimada M, Morine Y, Tajima A and Imoto I: Specific molecular signatures of non-tumor liver tissue may predict a risk of hepatocarcinogenesis. Cancer Sci. 105:749–754. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Meckelein B, de Silva HA, Roses AD, Rao PN, Pettenati MJ, Xu PT, Hodge R, Glucksman MJ and Abraham CR: Human endopeptidase (THOP1) is localized on chromosome 19 within the linkage region for the late-onset Alzheimer disease AD2 locus. Genomics. 31:246–249. 1996. View Article : Google Scholar : PubMed/NCBI

163 

Qi L, Li SH, Si LB, Lu M and Tian H: Expression of THOP1 and its relationship to prognosis in non-small cell lung cancer. PLoS One. 9:e1066652014. View Article : Google Scholar : PubMed/NCBI

164 

Nomoto S, Hishida M, Inokawa Y, Takano N, Kanda M, Nishikawa Y, Fujii T, Koike M, Sugimoto H and Kodera Y: Expression analysis of THOP1 in background liver, a prognostic predictive factor in hepatocellular carcinoma, extracted by multiarray analysis. Ann Surg Oncol. 21:(Suppl 3). S443–S450. 2014. View Article : Google Scholar : PubMed/NCBI

165 

Cressman DE, Diamond RH and Taub R: Rapid activation of the Stat3 transcription complex in liver regeneration. Hepatology. 21:1443–1449. 1995. View Article : Google Scholar : PubMed/NCBI

166 

Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM and Thorgeirsson SS: Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 130:1117–1128. 2006. View Article : Google Scholar : PubMed/NCBI

167 

Sonohara F, Nomoto S, Inokawa Y, Hishida M, Takano N, Kanda M, Nishikawa Y, Fujii T, Koike M, Sugimoto H, et al: High expression of Janus kinase 2 in background normal liver tissue of resected hepatocellular carcinoma is associated with worse prognosis. Oncol Rep. 33:767–773. 2015.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shimizu D, Inokawa Y, Sonohara F, Inaoka K and Nomoto S: Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review). Oncol Rep 37: 2527-2542, 2017.
APA
Shimizu, D., Inokawa, Y., Sonohara, F., Inaoka, K., & Nomoto, S. (2017). Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review). Oncology Reports, 37, 2527-2542. https://doi.org/10.3892/or.2017.5541
MLA
Shimizu, D., Inokawa, Y., Sonohara, F., Inaoka, K., Nomoto, S."Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review)". Oncology Reports 37.5 (2017): 2527-2542.
Chicago
Shimizu, D., Inokawa, Y., Sonohara, F., Inaoka, K., Nomoto, S."Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review)". Oncology Reports 37, no. 5 (2017): 2527-2542. https://doi.org/10.3892/or.2017.5541
Copy and paste a formatted citation
x
Spandidos Publications style
Shimizu D, Inokawa Y, Sonohara F, Inaoka K and Nomoto S: Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review). Oncol Rep 37: 2527-2542, 2017.
APA
Shimizu, D., Inokawa, Y., Sonohara, F., Inaoka, K., & Nomoto, S. (2017). Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review). Oncology Reports, 37, 2527-2542. https://doi.org/10.3892/or.2017.5541
MLA
Shimizu, D., Inokawa, Y., Sonohara, F., Inaoka, K., Nomoto, S."Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review)". Oncology Reports 37.5 (2017): 2527-2542.
Chicago
Shimizu, D., Inokawa, Y., Sonohara, F., Inaoka, K., Nomoto, S."Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors (Review)". Oncology Reports 37, no. 5 (2017): 2527-2542. https://doi.org/10.3892/or.2017.5541
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team