|
1
|
Gorlick R, Anderson P, Andrulis I, Arndt
C, Beardsley GP, Bernstein M, Bridge J, Cheung NK, Dome JS, Ebb D,
et al: Biology of childhood osteogenic sarcoma and potential
targets for therapeutic development: meeting summary. Clin Cancer
Res. 9:5442–5453. 2003.PubMed/NCBI
|
|
2
|
van Maldegem AM, Bhosale A, Gelderblom HJ,
Hogendoorn PC and Hassan AB: Comprehensive analysis of published
phase I/II clinical trials between 1990–2010 in osteosarcoma and
Ewing sarcoma confirms limited outcomes and need for translational
investment. Clin Sarcoma Res. 2:52012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dickerson ME, Page RL, LaDue TA, Hauck ML,
Thrall DE, Stebbins ME and Price GS: Retrospective analysis of
axial skeleton osteosarcoma in 22 large-breed dogs. J Vet Intern
Med. 15:120–124. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lagmay JP, Krailo MD, Dang H, Kim A,
Hawkins DS, Beaty O III, Widemann BC, Zwerdling T, Bomgaars L,
Langevin AM, et al: Outcome of patients with recurrent osteosarcoma
enrolled in seven phase II trials through children's cancer group,
pediatric oncology group, and children's oncology group: Learning
from the past to move forward. J Clin Oncol. 34:3031–3038. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
MacGabhann F, Qutub AA, Annex BH and Popel
AS: Systems biology of pro-angiogenic therapies targeting the VEGF
system. Wiley Interdiscip Rev Syst Biol Med. 2:694–707. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Versleijen-Jonkers YM, Vlenterie M, van de
Luijtgaarden AC and van der Graaf WT: Anti-angiogenic therapy, a
new player in the field of sarcoma treatment. Crit Rev Oncol
Hematol. 91:172–185. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Quan GM and Choong PF: Anti-angiogenic
therapy for osteosarcoma. Cancer Metastasis Rev. 25:707–713. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
DuBois S and Demetri G: Markers of
angiogenesis and clinical features in patients with sarcoma.
Cancer. 109:813–819. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Segal E, Pan H, Ofek P, Udagawa T,
Kopecková P, Kopecek J and Satchi-Fainaro R: Targeting
angiogenesis-dependent calcified neoplasms using combined polymer
therapeutics. PLoS One. 4:e52332009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
van Cruijsen H, Voest EE, Punt CJ, Hoekman
K, Witteveen PO, Meijerink MR, Puchalski TA, Robertson J, Saunders
O, Jürgensmeier JM, et al: Phase I evaluation of cediranib, a
selective VEGFR signalling inhibitor, in combination with gefitinib
in patients with advanced tumours. Eur J Cancer. 46:901–911. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Schuetze SM, Wathen JK, Lucas DR, Choy E,
Samuels BL, Staddon AP, Ganjoo KN, von Mehren M, Chow WA, Loeb DM,
et al: SARC009: Phase 2 study of dasatinib in patients with
previously treated, high-grade, advanced sarcoma. Cancer.
122:868–874. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Grignani G, Palmerini E, Ferraresi V,
D'Ambrosio L, Bertulli R, Asaftei SD, Tamburini A, Pignochino Y,
Sangiolo D, Marchesi E, et al: Italian Sarcoma Group: Sorafenib and
everolimus for patients with unresectable high-grade osteosarcoma
progressing after standard treatment: A non-randomised phase 2
clinical trial. Lancet Oncol. 16:98–107. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Grignani G, Palmerini E, Dileo P, Asaftei
SD, D'Ambrosio L, Pignochino Y, Mercuri M, Picci P, Fagioli F,
Casali PG, et al: A phase II trial of sorafenib in relapsed and
unresectable high-grade osteosarcoma after failure of standard
multimodal therapy: an Italian Sarcoma Group study. Ann Oncol.
23:508–516. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Neul C, Schaeffeler E, Sparreboom A,
Laufer S, Schwab M and Nies AT: Impact of membrane drug
transporters on resistance to small-molecule tyrosine kinase
inhibitors. Trends Pharmacol Sci. 37:904–932. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Carmeliet P: Angiogenesis in life, disease
and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Niu G and Chen X: Vascular endothelial
growth factor as an anti-angiogenic target for cancer therapy. Curr
Drug Targets. 11:1000–1017. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Steeghs N, Nortier JW and Gelderblom H:
Small molecule tyrosine kinase inhibitors in the treatment of solid
tumors: An update of recent developments. Ann Surg Oncol.
14:942–953. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kuhnen C, Lehnhardt M, Tolnay E,
Muehlberger T, Vogt PM and Müller KM: Patterns of expression and
secretion of vascular endothelial growth factor in malignant
soft-tissue tumours. J Cancer Res Clin Oncol. 126:219–225. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Potti A, Ganti AK, Tendulkar K, Sholes K,
Chitajallu S, Koch M and Kargas S: Determination of vascular
endothelial growth factor (VEGF) overexpression in soft tissue
sarcomas and the role of overexpression in leiomyosarcoma. J Cancer
Res Clin Oncol. 130:52–56. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fuchs B, Inwards CY and Janknecht R:
Vascular endothelial growth factor expression is up-regulated by
EWS-ETS oncoproteins and Sp1 and may represent an independent
predictor of survival in Ewing's sarcoma. Clin Cancer Res.
10:1344–1353. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gee MF, Tsuchida R, Eichler-Jonsson C, Das
B, Baruchel S and Malkin D: Vascular endothelial growth factor acts
in an autocrine manner in rhabdomyosarcoma cell lines and can be
inhibited with all-trans-retinoic acid. Oncogene. 24:8025–8037.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Su JL, Yen CJ, Chen PS, Chuang SE, Hong
CC, Kuo IH, Chen HY, Hung MC and Kuo ML: The role of the
VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer. 96:541–545.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Waltenberger J, Claesson-Welsh L, Siegbahn
A, Shibuya M and Heldin CH: Different signal transduction
properties of KDR and Flt1, two receptors for vascular endothelial
growth factor. J Biol Chem. 269:26988–26995. 1994.PubMed/NCBI
|
|
24
|
Agulnik M, Yarber JL, Okuno SH, von Mehren
M, Jovanovic BD, Brockstein BE, Evens AM and Benjamin RS: An
open-label, multicenter, phase II study of bevacizumab for the
treatment of angiosarcoma and epithelioid hemangioendotheliomas.
Ann Oncol. 24:257–263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Watanabe H, Mamelak AJ, Wang B, Howell BG,
Freed I, Esche C, Nakayama M, Nagasaki G, Hicklin DJ, Kerbel RS, et
al: Anti-vascular endothelial growth factor receptor-2 (Flk-1/KDR)
antibody suppresses contact hypersensitivity. Exp Dermatol.
13:671–681. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ciardiello F, Caputo R, Damiano V, Caputo
R, Troiani T, Vitagliano D, Carlomagno F, Veneziani BM, Fontanini
G, Bianco AR, et al: Antitumor effects of ZD6474, a small molecule
vascular endothelial growth factor receptor tyrosine kinase
inhibitor, with additional activity against epidermal growth factor
receptor tyrosine kinase. Clin Cancer Res. 9:1546–1556.
2003.PubMed/NCBI
|
|
27
|
Trippett TM, Herzog C, Whitlock JA, Wolff
J, Kuttesch J, Bagatell R, Hunger SP, Boklan J, Smith AA, Arceci
RJ, et al: Phase I and pharmacokinetic study of cetuximab and
irinotecan in children with refractory solid tumors: A study of the
pediatric oncology experimental therapeutic investigators'
consortium. J Clin Oncol. 27:5102–5108. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Navid F, Baker SD, McCarville MB, Stewart
CF, Billups CA, Wu J, Davidoff AM, Spunt SL, Furman WL, McGregor
LM, et al: Phase I and clinical pharmacology study of bevacizumab,
sorafenib, and low-dose cyclophosphamide in children and young
adults with refractory/recurrent solid tumors. Clin Cancer Res.
19:236–246. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Malempati S, Weigel B, Ingle AM, Ahern CH,
Carroll JM, Roberts CT, Reid JM, Schmechel S, Voss SD, Cho SY, et
al: Phase I/II trial and pharmacokinetic study of cixutumumab in
pediatric patients with refractory solid tumors and Ewing sarcoma:
A report from the Children's Oncology Group. J Clin Oncol.
30:256–262. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kerklaan BM, Lolkema MP, Devriese LA,
Voest EE, Nol-Boekel A, Mergui-Roelvink M, Langenberg M, Mykulowycz
K, Stoebenau J, Lane S, et al: Phase I and pharmacological study of
pazopanib in combination with oral topotecan in patients with
advanced solid tumours. Br J Cancer. 113:706–715. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Inada-Inoue M, Ando Y, Kawada K, Mitsuma
A, Sawaki M, Yokoyama T, Sunakawa Y, Ishida H, Araki K, Yamashita
K, et al: Phase 1 study of pazopanib alone or combined with
lapatinib in Japanese patients with solid tumors. Cancer Chemother
Pharmacol. 73:673–683. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bender Glade JL, Lee A, Reid JM, Baruchel
S, Roberts T, Voss SD, Wu B, Ahern CH, Ingle AM, Harris P, et al:
Phase I pharmacokinetic and pharmacodynamic study of pazopanib in
children with soft tissue sarcoma and other refractory solid
tumors: A children's oncology group phase I consortium report. J
Clin Oncol. 31:3034–3043. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bender Glade JL, Adamson PC, Reid JM, Xu
L, Baruchel S, Shaked Y, Kerbel RS, Cooney-Qualter EM, Stempak D,
Chen HX, et al: Children's Oncology Group Study: Phase I trial and
pharmacokinetic study of bevacizumab in pediatric patients with
refractory solid tumors: A Children's Oncology Group Study. J Clin
Oncol. 26:399–405. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Freeman BB III, Daw NC, Geyer JR, Furman
WL and Stewart CF: Evaluation of gefitinib for treatment of
refractory solid tumors and central nervous system malignancies in
pediatric patients. Cancer Invest. 24:310–317. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fox E, Aplenc R, Bagatell R, Chuk MK,
Dombi E, Goodspeed W, Goodwin A, Kromplewski M, Jayaprakash N,
Marotti M, et al: A phase 1 trial and pharmacokinetic study of
cediranib, an orally bioavailable pan-vascular endothelial growth
factor receptor inhibitor, in children and adolescents with
refractory solid tumors. J Clin Oncol. 28:5174–5181. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Dubois SG, Shusterman S, Ingle AM, Ahern
CH, Reid JM, Wu B, Baruchel S, Glade-Bender J, Ivy P, Grier HE, et
al: Phase I and pharmacokinetic study of sunitinib in pediatric
patients with refractory solid tumors: a children's oncology group
study. Clin Cancer Res. 17:5113–5122. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Daw NC, Furman WL, Stewart CF, Iacono LC,
Krailo M, Bernstein ML, Dancey JE, Speights RA, Blaney SM, Croop
JM, et al: Children's Oncology Group: Phase I and pharmacokinetic
study of gefitinib in children with refractory solid tumors: A
Children's Oncology Group Study. J Clin Oncol. 23:6172–6180. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Brell JM, Krishnamurthi SS, Rath L, Bokar
JA, Savvides P, Gibbons J, Cooney MM, Meropol NJ, Ivy P and Dowlati
A: Phase I trial of sunitinib and gemcitabine in patients with
advanced solid tumors. Cancer Chemother Pharmacol. 70:547–553.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bagatell R, Herzog CE, Trippett TM, Grippo
JF, Cirrincione-Dall G, Fox E, Macy M, Bish J, Whitcomb P, Aikin A,
et al: Pharmacokinetically guided phase 1 trial of the IGF-1
receptor antagonist RG1507 in children with recurrent or refractory
solid tumors. Clin Cancer Res. 17:611–619. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Broadhead ML, Choong PF and Dass CR:
Efficacy of continuously administered PEDF-derived synthetic
peptides against osteosarcoma growth and metastasis. J Biomed
Biotechnol. 2012:2302982012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Takenaka K, Yamagishi S, Jinnouchi Y,
Nakamura K, Matsui T and Imaizumi T: Pigment epithelium-derived
factor (PEDF)-induced apoptosis and inhibition of vascular
endothelial growth factor (VEGF) expression in MG63 human
osteosarcoma cells. Life Sci. 77:3231–3241. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ek ET, Dass CR, Contreras KG and Choong
PF: PEDF-derived synthetic peptides exhibit antitumor activity in
an orthotopic model of human osteosarcoma. J Orthop Res.
25:1671–1680. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dass CR, Ek ET and Choong PF: PEDF as an
emerging therapeutic candidate for osteosarcoma. Curr Cancer Drug
Targets. 8:683–690. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Geller DS and Gorlick R: HER-2 targeted
treatment of osteosarcoma: The challenges of developing targeted
therapy and prognostic factors for rare malignancies. Expert Opin
Pharmacother. 11:51–61. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Abdeen A, Chou AJ, Healey JH, Khanna C,
Osborne TS, Hewitt SM, Kim M, Wang D, Moody K and Gorlick R:
Correlation between clinical outcome and growth factor pathway
expression in osteogenic sarcoma. Cancer. 115:5243–5250. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang J, Yang D, Sun Y, Sun B, Wang G,
Trent JC, Araujo DM, Chen K and Zhang W: Genetic amplification of
the vascular endothelial growth factor (VEGF) pathway genes,
including VEGFA, in human osteosarcoma. Cancer. 117:4925–4938.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lammli J, Fan M, Rosenthal HG, Patni M,
Rinehart E, Vergara G, Ablah E, Wooley PH, Lucas G and Yang SY:
Expression of vascular endothelial growth factor correlates with
the advance of clinical osteosarcoma. Int Orthop. 36:2307–2313.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen D, Zhang YJ, Zhu KW and Wang WC: A
systematic review of vascular endothelial growth factor expression
as a biomarker of prognosis in patients with osteosarcoma. Tumour
Biol. 34:1895–1899. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kampmann E, Altendorf-Hofmann A, Gibis S,
Lindner LH, Issels R, Kirchner T and Knösel T: VEGFR2 predicts
decreased patients survival in soft tissue sarcomas. Pathol Res
Pract. 211:726–730. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Aubry K, Barriere G, Chable-Rabinovitch H,
Dutour A, Paraf F, Monteil J and Rigaud M: Molecular mechanisms
regulating the angiogenic phenotype in tumors: Clinical impact in
the future. Anticancer Res. 27:3111–3119. 2007.PubMed/NCBI
|
|
51
|
O'Reilly MS, Boehm T, Shing Y, Fukai N,
Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR and Folkman J:
Endostatin: An endogenous inhibitor of angiogenesis and tumor
growth. Cell. 88:277–285. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nalluri SR, Chu D, Keresztes R, Zhu X and
Wu S: Risk of venous thromboembolism with the angiogenesis
inhibitor bevacizumab in cancer patients: A meta-analysis. JAMA.
300:2277–2285. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ebb D, Meyers P, Grier H, Bernstein M,
Gorlick R, Lipshultz SE, Krailo M, Devidas M, Barkauskas DA, Siegal
GP, et al: Phase II trial of trastuzumab in combination with
cytotoxic chemotherapy for treatment of metastatic osteosarcoma
with human epidermal growth factor receptor 2 overexpression: A
report from the Children's Oncology Group. J Clin Oncol.
30:2545–2551. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wildiers H, Guetens G, De Boeck G,
Verbeken E, Landuyt B, Landuyt W, de Bruijn EA and van Oosterom AT:
Effect of antivascular endothelial growth factor treatment on the
intratumoral uptake of CPT-11. Br J Cancer. 88:1979–1986. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
White RR, Sullenger BA and Rusconi CP:
Developing aptamers into therapeutics. J Clin Invest. 106:929–934.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Holash J, Davis S, Papadopoulos N, Croll
SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, et
al: VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc
Natl Acad Sci USA. 99:11393–11398. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Blume-Jensen P and Hunter T: Oncogenic
kinase signalling. Nature. 411:355–365. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ségaliny AI, Tellez-Gabriel M, Heymann MF
and Heymann D: Receptor tyrosine kinases: Characterisation,
mechanism of action and therapeutic interests for bone cancers. J
Bone Oncol. 4:1–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pignochino Y, Grignani G, Cavalloni G,
Motta M, Tapparo M, Bruno S, Bottos A, Gammaitoni L, Migliardi G,
Camussi G, et al: Sorafenib blocks tumour growth, angiogenesis and
metastatic potential in preclinical models of osteosarcoma through
a mechanism potentially involving the inhibition of ERK1/2, MCL-1
and ezrin pathways. Mol Cancer. 8:1182009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wolfesberger B, Tonar Z, Gerner W,
Skalicky M, Heiduschka G, Egerbacher M, Thalhammer JG and Walter I:
The tyrosine kinase inhibitor sorafenib decreases cell number and
induces apoptosis in a canine osteosarcoma cell line. Res Vet Sci.
88:94–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Safwat A, Boysen A, Lücke A and Rossen P:
Pazopanib in metastatic osteosarcoma: Significant clinical response
in three consecutive patients. Acta Oncol. 53:1451–1454. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lu D, Jimenez X, Zhang H, Bohlen P, Witte
L and Zhu Z: Selection of high affinity human neutralizing
antibodies to VEGFR2 from a large antibody phage display library
for antiangiogenesis therapy. Int J Cancer. 97:393–399. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
O'Day K and Gorlick R: Novel therapeutic
agents for osteosarcoma. Expert Rev Anticancer Ther. 9:511–523.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chandhanayingyong C, Kim Y, Staples JR,
Hahn C and Lee FY: MAPK/ERK Signaling in osteosarcomas, ewing
sarcomas and chondrosarcomas: Therapeutic implications and future
directions. Sarcoma. 2012:4048102012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Allen E, Miéville P, Warren CM, Saghafinia
S, Li L, Peng MW and Hanahan D: Metabolic symbiosis enables
adaptive resistance to anti-angiogenic therapy that is dependent on
mTOR signaling. Cell Rep. 15:1144–1160. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Weigel B, Malempati S, Reid JM, Voss SD,
Cho SY, Chen HX, Krailo M, Villaluna D, Adamson PC and Blaney SM:
Phase 2 trial of cixutumumab in children, adolescents, and young
adults with refractory solid tumors: A report from the Children's
Oncology Group. Pediatr Blood Cancer. 61:452–456. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wagner LM, Fouladi M, Ahmed A, Krailo MD,
Weigel B, DuBois SG, Doyle LA, Chen H and Blaney SM: Phase II study
of cixutumumab in combination with temsirolimus in pediatric
patients and young adults with recurrent or refractory sarcoma: A
report from the Children's Oncology Group. Pediatr Blood Cancer.
62:440–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kempf-Bielack B, Bielack SS, Jürgens H,
Branscheid D, Berdel WE, Exner GU, Göbel U, Helmke K, Jundt G,
Kabisch H, et al: Osteosarcoma relapse after combined modality
therapy: An analysis of unselected patients in the Cooperative
Osteosarcoma Study Group (COSS). J Clin Oncol. 23:559–568. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Steliga M and Vaporciyan A: Surgical
treatment of pulmonary metastases from osteosarcoma in pediatric
and adolescent patients. Cancer Treat Res. 152:185–201. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Schuetze SM, Zhao L, Chugh R, Thomas DG,
Lucas DR, Metko G, Zalupski MM and Baker LH: Results of a phase II
study of sirolimus and cyclophosphamide in patients with advanced
sarcoma. Eur J Cancer. 48:1347–1353. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Demetri GD, Chawla SP, Ray-Coquard I, Le
Cesne A, Staddon AP, Milhem MM, Penel N, Riedel RF, Bui-Nguyen B,
Cranmer LD, et al: Results of an international randomized phase III
trial of the mammalian target of rapamycin inhibitor ridaforolimus
versus placebo to control metastatic sarcomas in patients after
benefit from prior chemotherapy. J Clin Oncol. 31:2485–2492. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chawla SP, Staddon AP, Baker LH, Schuetze
SM, Tolcher AW, D'Amato GZ, Blay JY, Mita MM, Sankhala KK, Berk L,
et al: Phase II study of the mammalian target of rapamycin
inhibitor ridaforolimus in patients with advanced bone and soft
tissue sarcomas. J Clin Oncol. 30:78–84. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Schwartz GK, Tap WD, Qin LX, Livingston
MB, Undevia SD, Chmielowski B, Agulnik M, Schuetze SM, Reed DR,
Okuno SH, et al: Cixutumumab and temsirolimus for patients with
bone and soft-tissue sarcoma: A multicentre, open-label, phase 2
trial. Lancet Oncol. 14:371–382. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Reed DR, Mascarenhas L, Manning K, Hale
GA, Goldberg J, Gill J, Sandler E, Isakoff MS, Smith T, Caracciolo
J, et al: Pediatric phase I trial of oral sorafenib and topotecan
in refractory or recurrent pediatric solid malignancies. Cancer
Med. 5:294–303. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Quek R, Wang Q, Morgan JA, Shapiro GI,
Butrynski JE, Ramaiya N, Huftalen T, Jederlinic N, Manola J, Wagner
AJ, et al: Combination mTOR and IGF-1R inhibition: phase I trial of
everolimus and figitumumab in patients with advanced sarcomas and
other solid tumors. Clin Cancer Res. 17:871–879. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pappo AS, Vassal G, Crowley JJ, Bolejack
V, Hogendoorn PC, Chugh R, Ladanyi M, Grippo JF, Dall G, Staddon
AP, et al: A phase 2 trial of R1507, a monoclonal antibody to the
insulin-like growth factor-1 receptor (IGF-1R), in patients with
recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial
sarcoma, and other soft tissue sarcomas: Results of a Sarcoma
Alliance for Research Through Collaboration study. Cancer.
120:2448–2456. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Olmos D, Postel-Vinay S, Molife LR, Okuno
SH, Schuetze SM, Paccagnella ML, Batzel GN, Yin D, Pritchard-Jones
K, Judson I, et al: Safety, pharmacokinetics, and preliminary
activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in
patients with sarcoma and Ewing's sarcoma: A phase 1 expansion
cohort study. Lancet Oncol. 11:129–135. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hassan SE, Bekarev M, Kim MY, Lin J,
Piperdi S, Gorlick R and Geller DS: Cell surface receptor
expression patterns in osteosarcoma. Cancer. 118:740–749. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Freeman SS, Allen SW, Ganti R, Wu J, Ma J,
Su X, Neale G, Dome JS, Daw NC and Khoury JD: Copy number gains in
EGFR and copy number losses in PTEN are common events in
osteosarcoma tumors. Cancer. 113:1453–1461. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Roth M, Linkowski M, Tarim J, Piperdi S,
Sowers R, Geller D, Gill J and Gorlick R: Ganglioside GD2 as a
therapeutic target for antibody-mediated therapy in patients with
osteosarcoma. Cancer. 120:548–554. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kubo T, Piperdi S, Rosenblum J, Antonescu
CR, Chen W, Kim HS, Huvos AG, Sowers R, Meyers PA, Healey JH, et
al: Platelet-derived growth factor receptor as a prognostic marker
and a therapeutic target for imatinib mesylate therapy in
osteosarcoma. Cancer. 112:2119–2129. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ebos JM, Lee CR, Christensen JG, Mutsaers
AJ and Kerbel RS: Multiple circulating proangiogenic factors
induced by sunitinib malate are tumor-independent and correlate
with antitumor efficacy. Proc Natl Acad Sci USA. 104:17069–17074.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Loges S, Schmidt T and Carmeliet P:
Mechanisms of resistance to anti-angiogenic therapy and development
of third-generation anti-angiogenic drug candidates. Genes Cancer.
1:12–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Casanovas O, Hicklin DJ, Bergers G and
Hanahan D: Drug resistance by evasion of antiangiogenic targeting
of VEGF signaling in late-stage pancreatic islet tumors. Cancer
Cell. 8:299–309. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gerlinger M, Rowan AJ, Horswell S, Larkin
J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A,
Tarpey P, et al: Intratumor heterogeneity and branched evolution
revealed by multiregion sequencing. N Engl J Med. 366:883–892.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Seoane J and De Mattos-Arruda L: The
challenge of intratumour heterogeneity in precision medicine. J
Intern Med. 276:41–51. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Massey PR, Okman JS, Wilkerson J and Cowen
EW: Tyrosine kinase inhibitors directed against the vascular
endothelial growth factor receptor (VEGFR) have distinct cutaneous
toxicity profiles: A meta-analysis and review of the literature.
Support Care Cancer. 23:1827–1835. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hurwitz H: Integrating the anti-VEGF-A
humanized monoclonal antibody bevacizumab with chemotherapy in
advanced colorectal cancer. Clin Colorectal Cancer. 4:(Suppl 2).
S62–S68. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Eskens FA and Verweij J: The clinical
toxicity profile of vascular endothelial growth factor (VEGF) and
vascular endothelial growth factor receptor (VEGFR) targeting
angiogenesis inhibitors; a review. Eur J Cancer. 42:3127–3139.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Costelloe CM, Chuang HH, Madewell JE and
Ueno NT: Cancer Response Criteria and Bone Metastases: RECIST 1.1,
MDA and PERCIST. J Cancer. 1:80–92. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Stacchiotti S, Collini P, Messina A,
Morosi C, Barisella M, Bertulli R, Piovesan C, Dileo P, Torri V,
Gronchi A, et al: High-grade soft-tissue sarcomas: Tumor response
assessment - pilot study to assess the correlation between
radiologic and pathologic response by using RECIST and Choi
criteria. Radiology. 251:447–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Nathan PD, Vinayan A, Stott D, Juttla J
and Goh V: CT response assessment combining reduction in both size
and arterial phase density correlates with time to progression in
metastatic renal cancer patients treated with targeted therapies.
Cancer Biol Ther. 9:15–19. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fournier L, Ammari S, Thiam R and Cuénod
CA: Imaging criteria for assessing tumour response: RECIST,
mRECIST, Cheson. Diagn Interv Imaging. 95:689–703. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hamaoka T, Madewell JE, Podoloff DA,
Hortobagyi GN and Ueno NT: Bone imaging in metastatic breast
cancer. J Clin Oncol. 22:2942–2953. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Pakos EE and Ioannidis JP: The association
of P-glycoprotein with response to chemotherapy and clinical
outcome in patients with osteosarcoma. A meta-analysis. Cancer.
98:581–589. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jakubowska A, Rozkrut D, Antoniou A,
Hamann U, Scott RJ, McGuffog L, Healy S, Sinilnikova OM, Rennert G,
Lejbkowicz F, et al: OCGN; SWE-BRCA; HEBON; EMBRACE; GEMO Study
Collaborators; KConFab; CIMBA, the Consortium of Investigators of
Modifiers of BRCA1/2-Related Cancer: Association of PHB 1630 C>T
and MTHFR 677 C>T polymorphisms with breast and ovarian cancer
risk in BRCA1/2 mutation carriers: Results from a multicenter
study. Br J Cancer. 106:2016–2024. 2012.PubMed/NCBI
|
|
98
|
Zurita AJ, Jonasch E, Wu HK, Tran HT and
Heymach JV: Circulating biomarkers for vascular endothelial growth
factor inhibitors in renal cell carcinoma. Cancer. 115:(Suppl 10).
2346–2354. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ahbap E, Sakaci T, Kara E, Sahutoglu T,
Koc Y, Basturk T, Sevinc M, Akgol C, Kayalar AO, Ucar ZA, et al:
Neutrophil-to-lymphocyte ratio and platelet-tolymphocyte ratio in
evaluation of inflammation in end-stage renal disease. Clin
Nephrol. 85:199–208. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Jaffe N, Keifer R III, Robertson R, Cangir
A and Wang A: Renal toxicity with cumulative doses of
cis-diamminedichloroplatinum-II in pediatric patients with
osteosarcoma. Effect on creatinine clearance and methotrexate
excretion. Cancer. 59:1577–1581. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Aras M, Erdil TY, Dane F, Gungor S, Ones
T, Dede F, Inanir S and Turoglu HT: Comparison of WHO, RECIST 1.1,
EORTC, and PERCIST criteria in the evaluation of treatment response
in malignant solid tumors. Nucl Med Commun. 37:9–15.
2016.PubMed/NCBI
|
|
102
|
Lim J, Poulin NM and Nielsen TO: New
strategies in sarcoma: linking genomic and immunotherapy approaches
to molecular subtype. Clin Cancer Res. 21:4753–4759. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Subbiah V, Wagner MJ, McGuire MF, Sarwari
NM, Devarajan E, Lewis VO, Westin S, Kato S, Brown RE and Anderson
P: Personalized comprehensive molecular profiling of high risk
osteosarcoma: Implications and limitations for precision medicine.
Oncotarget. 6:40642–40654. 2015.PubMed/NCBI
|
|
104
|
Egas-Bejar D, Anderson PM, Agarwal R,
Corrales-Medina F, Devarajan E, Huh WW, Brown RE and Subbiah V:
Theranostic profiling for actionable aberrations in advanced high
risk osteosarcoma with aggressive biology reveals high molecular
diversity: The human fingerprint hypothesis. Oncoscience.
1:167–179. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hurwitz H, Fehrenbacher L, Novotny W,
Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S,
Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and
leucovorin for metastatic colorectal cancer. N Engl J Med.
350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Sandler A, Gray R, Perry MC, Brahmer J,
Schiller JH, Dowlati A, Lilenbaum R and Johnson DH:
Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell
lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nerich V, Chelly J, Montcuquet P,
Chaigneau L, Villanueva C, Fiteni F, Meneveau N, Perrin S, Voidey
A, Monnot T, et al: First-line trastuzumab plus taxane-based
chemotherapy for metastatic breast cancer: Cost-minimization
analysis. J Oncol Pharm Pract. 20:362–368. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Cheng YC, Rondón G, Anderlini P, Khouri
IF, Champlin RE and Ueno NT: Paclitaxel and trastuzumab as
maintenance therapy in patients with HER2-positive metastatic
breast cancer who underwent high-dose chemotherapy and autologous
hematopoietic stem cell transplantation. J Cancer. 4:679–685. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Powles T and Crusz SM: Sequencing systemic
therapies in advanced RCC: Is there a best strategy? Am Soc Clin
Oncol Educ Book. 33:e172–e174. 2013. View Article : Google Scholar
|
|
110
|
Kuwano M, Sonoda K, Murakami Y, Watari K
and Ono M: Overcoming drug resistance to receptor tyrosine kinase
inhibitors: Learning from lung cancer. Pharmacol Ther. 161:97–110.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Porta C, Giglione P and Paglino C:
Targeted therapy for renal cell carcinoma: Focus on 2nd and 3rd
line. Expert Opin Pharmacother. 17:643–655. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kim SH, Park WS, Kim SH, Joung JY, Seo HK,
Lee KH and Chung J: Systemic treatments for metastatic renal cell
carcinoma: 10-Year experience of immunotherapy and targeted
therapy. Cancer Res Treat. 48:1092–1101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kramer MW, Steffens S, von Klot C,
Merseburger AS and Kuczyk MA: Systemic therapy for metastatic renal
cell carcinoma. Aktuelle Urol. 43:265–268. 2012.(In German).
PubMed/NCBI
|
|
114
|
Buti S, Leonetti A, Dallatomasina A and
Bersanelli M: Everolimus in the management of metastatic renal cell
carcinoma: An evidence-based review of its place in therapy. Core
Evid. 11:23–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Choueiri TK, Escudier B, Powles T, Tannir
NM, Mainwaring PN, Rini BI, Hammers HJ, Donskov F, Roth BJ, Peltola
K, et al: METEOR investigators: Cabozantinib versus everolimus in
advanced renal cell carcinoma (METEOR): Final results from a
randomised, open-label, phase 3 trial. Lancet Oncol. 17:917–927.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Cella D, Grünwald V, Nathan P, Doan J,
Dastani H, Taylor F, Bennett B, DeRosa M, Berry S, Broglio K, et
al: Quality of life in patients with advanced renal cell carcinoma
given nivolumab versus everolimus in CheckMate 025: A randomised,
open-label, phase 3 trial. Lancet Oncol. 17:994–1003. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Maute L and Bergmann L: Systemic therapy
of metastatic renal cell carcinoma. Dtsch Med Wochenschr.
141:466–469. 2016.(In German). PubMed/NCBI
|
|
118
|
Le Cesne A, Blay JY, Reichardt P and
Joensuu H: Optimizing tyrosine kinase inhibitor therapy in
gastrointestinal stromal tumors: Exploring the benefits of
continuous kinase suppression. Oncologist. 18:1192–1199. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Shien K, Yamamoto H, Soh J, Miyoshi S and
Toyooka S: Drug resistance to EGFR tyrosine kinase inhibitors for
non-small cell lung cancer. Acta Med Okayama. 68:191–200.
2014.PubMed/NCBI
|