Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2017 Volume 38 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2017 Volume 38 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Anti-angiogenesis target therapy for advanced osteosarcoma (Review)

  • Authors:
    • Lu Xie
    • Tao Ji
    • Wei Guo
  • View Affiliations / Copyright

    Affiliations: Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, P.R. China
    Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 625-636
    |
    Published online on: June 21, 2017
       https://doi.org/10.3892/or.2017.5735
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteosarcomas (OS), especially those with metastatic or unresectable disease, have limited treatment options. The greatest advancement in treatments occurred in the 1980s when multi-agent chemotherapy, including doxorubicin, cisplatin, high-dose methotrexate, and, in some regimens, ifosfamide, was demonstrated to improve overall survival compared with surgery alone. However, standard chemotherapeutic options have been limited by poor response rates in patients with relapsed or advanced cases. It has been reported that VEGFR expression correlates with the outcome of patients with osteosarcoma and circulating VEGF level has been associated with the development of lung metastasis. At present, it seems to us that progress has not been made since Grignani reported a phase II cohort trial of sorafenib and sorafenib combined with everolimus for advanced osteosarcoma, which, in a sense, have become a milestone as a second-line therapy for osteosarcoma. Although the recognization of muramyltripepetide phosphatidyl-ethanolamine has made some progress based on its combination with standard chemotherapy, its effect on refractory cases is controversial. Personalized comprehensive molecular profiling of high-risk osteosarcoma up to now has not changed the therapeutic prospect of advanced osteosarcoma significantly. Thus, how far have we moved forward and what therapeutic strategy should we prefer for anti-angiogenesis therapy? This review provides an overview of the most updated anti-angiogenesis therapy in OS and discusses some clinical options in order to maintain or even improve progression-free survival.
View Figures

Figure 1

View References

1 

Gorlick R, Anderson P, Andrulis I, Arndt C, Beardsley GP, Bernstein M, Bridge J, Cheung NK, Dome JS, Ebb D, et al: Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res. 9:5442–5453. 2003.PubMed/NCBI

2 

van Maldegem AM, Bhosale A, Gelderblom HJ, Hogendoorn PC and Hassan AB: Comprehensive analysis of published phase I/II clinical trials between 1990–2010 in osteosarcoma and Ewing sarcoma confirms limited outcomes and need for translational investment. Clin Sarcoma Res. 2:52012. View Article : Google Scholar : PubMed/NCBI

3 

Dickerson ME, Page RL, LaDue TA, Hauck ML, Thrall DE, Stebbins ME and Price GS: Retrospective analysis of axial skeleton osteosarcoma in 22 large-breed dogs. J Vet Intern Med. 15:120–124. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Lagmay JP, Krailo MD, Dang H, Kim A, Hawkins DS, Beaty O III, Widemann BC, Zwerdling T, Bomgaars L, Langevin AM, et al: Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through children's cancer group, pediatric oncology group, and children's oncology group: Learning from the past to move forward. J Clin Oncol. 34:3031–3038. 2016. View Article : Google Scholar : PubMed/NCBI

5 

MacGabhann F, Qutub AA, Annex BH and Popel AS: Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip Rev Syst Biol Med. 2:694–707. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Versleijen-Jonkers YM, Vlenterie M, van de Luijtgaarden AC and van der Graaf WT: Anti-angiogenic therapy, a new player in the field of sarcoma treatment. Crit Rev Oncol Hematol. 91:172–185. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Quan GM and Choong PF: Anti-angiogenic therapy for osteosarcoma. Cancer Metastasis Rev. 25:707–713. 2006. View Article : Google Scholar : PubMed/NCBI

8 

DuBois S and Demetri G: Markers of angiogenesis and clinical features in patients with sarcoma. Cancer. 109:813–819. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Segal E, Pan H, Ofek P, Udagawa T, Kopecková P, Kopecek J and Satchi-Fainaro R: Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One. 4:e52332009. View Article : Google Scholar : PubMed/NCBI

10 

van Cruijsen H, Voest EE, Punt CJ, Hoekman K, Witteveen PO, Meijerink MR, Puchalski TA, Robertson J, Saunders O, Jürgensmeier JM, et al: Phase I evaluation of cediranib, a selective VEGFR signalling inhibitor, in combination with gefitinib in patients with advanced tumours. Eur J Cancer. 46:901–911. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Schuetze SM, Wathen JK, Lucas DR, Choy E, Samuels BL, Staddon AP, Ganjoo KN, von Mehren M, Chow WA, Loeb DM, et al: SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer. 122:868–874. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Grignani G, Palmerini E, Ferraresi V, D'Ambrosio L, Bertulli R, Asaftei SD, Tamburini A, Pignochino Y, Sangiolo D, Marchesi E, et al: Italian Sarcoma Group: Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: A non-randomised phase 2 clinical trial. Lancet Oncol. 16:98–107. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Grignani G, Palmerini E, Dileo P, Asaftei SD, D'Ambrosio L, Pignochino Y, Mercuri M, Picci P, Fagioli F, Casali PG, et al: A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol. 23:508–516. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M and Nies AT: Impact of membrane drug transporters on resistance to small-molecule tyrosine kinase inhibitors. Trends Pharmacol Sci. 37:904–932. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Carmeliet P: Angiogenesis in life, disease and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Niu G and Chen X: Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 11:1000–1017. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Steeghs N, Nortier JW and Gelderblom H: Small molecule tyrosine kinase inhibitors in the treatment of solid tumors: An update of recent developments. Ann Surg Oncol. 14:942–953. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Kuhnen C, Lehnhardt M, Tolnay E, Muehlberger T, Vogt PM and Müller KM: Patterns of expression and secretion of vascular endothelial growth factor in malignant soft-tissue tumours. J Cancer Res Clin Oncol. 126:219–225. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Potti A, Ganti AK, Tendulkar K, Sholes K, Chitajallu S, Koch M and Kargas S: Determination of vascular endothelial growth factor (VEGF) overexpression in soft tissue sarcomas and the role of overexpression in leiomyosarcoma. J Cancer Res Clin Oncol. 130:52–56. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Fuchs B, Inwards CY and Janknecht R: Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing's sarcoma. Clin Cancer Res. 10:1344–1353. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Gee MF, Tsuchida R, Eichler-Jonsson C, Das B, Baruchel S and Malkin D: Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene. 24:8025–8037. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Su JL, Yen CJ, Chen PS, Chuang SE, Hong CC, Kuo IH, Chen HY, Hung MC and Kuo ML: The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer. 96:541–545. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M and Heldin CH: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 269:26988–26995. 1994.PubMed/NCBI

24 

Agulnik M, Yarber JL, Okuno SH, von Mehren M, Jovanovic BD, Brockstein BE, Evens AM and Benjamin RS: An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann Oncol. 24:257–263. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Watanabe H, Mamelak AJ, Wang B, Howell BG, Freed I, Esche C, Nakayama M, Nagasaki G, Hicklin DJ, Kerbel RS, et al: Anti-vascular endothelial growth factor receptor-2 (Flk-1/KDR) antibody suppresses contact hypersensitivity. Exp Dermatol. 13:671–681. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Ciardiello F, Caputo R, Damiano V, Caputo R, Troiani T, Vitagliano D, Carlomagno F, Veneziani BM, Fontanini G, Bianco AR, et al: Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. 9:1546–1556. 2003.PubMed/NCBI

27 

Trippett TM, Herzog C, Whitlock JA, Wolff J, Kuttesch J, Bagatell R, Hunger SP, Boklan J, Smith AA, Arceci RJ, et al: Phase I and pharmacokinetic study of cetuximab and irinotecan in children with refractory solid tumors: A study of the pediatric oncology experimental therapeutic investigators' consortium. J Clin Oncol. 27:5102–5108. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Navid F, Baker SD, McCarville MB, Stewart CF, Billups CA, Wu J, Davidoff AM, Spunt SL, Furman WL, McGregor LM, et al: Phase I and clinical pharmacology study of bevacizumab, sorafenib, and low-dose cyclophosphamide in children and young adults with refractory/recurrent solid tumors. Clin Cancer Res. 19:236–246. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Malempati S, Weigel B, Ingle AM, Ahern CH, Carroll JM, Roberts CT, Reid JM, Schmechel S, Voss SD, Cho SY, et al: Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: A report from the Children's Oncology Group. J Clin Oncol. 30:256–262. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Kerklaan BM, Lolkema MP, Devriese LA, Voest EE, Nol-Boekel A, Mergui-Roelvink M, Langenberg M, Mykulowycz K, Stoebenau J, Lane S, et al: Phase I and pharmacological study of pazopanib in combination with oral topotecan in patients with advanced solid tumours. Br J Cancer. 113:706–715. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Inada-Inoue M, Ando Y, Kawada K, Mitsuma A, Sawaki M, Yokoyama T, Sunakawa Y, Ishida H, Araki K, Yamashita K, et al: Phase 1 study of pazopanib alone or combined with lapatinib in Japanese patients with solid tumors. Cancer Chemother Pharmacol. 73:673–683. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Bender Glade JL, Lee A, Reid JM, Baruchel S, Roberts T, Voss SD, Wu B, Ahern CH, Ingle AM, Harris P, et al: Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: A children's oncology group phase I consortium report. J Clin Oncol. 31:3034–3043. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Bender Glade JL, Adamson PC, Reid JM, Xu L, Baruchel S, Shaked Y, Kerbel RS, Cooney-Qualter EM, Stempak D, Chen HX, et al: Children's Oncology Group Study: Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: A Children's Oncology Group Study. J Clin Oncol. 26:399–405. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Freeman BB III, Daw NC, Geyer JR, Furman WL and Stewart CF: Evaluation of gefitinib for treatment of refractory solid tumors and central nervous system malignancies in pediatric patients. Cancer Invest. 24:310–317. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Fox E, Aplenc R, Bagatell R, Chuk MK, Dombi E, Goodspeed W, Goodwin A, Kromplewski M, Jayaprakash N, Marotti M, et al: A phase 1 trial and pharmacokinetic study of cediranib, an orally bioavailable pan-vascular endothelial growth factor receptor inhibitor, in children and adolescents with refractory solid tumors. J Clin Oncol. 28:5174–5181. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Dubois SG, Shusterman S, Ingle AM, Ahern CH, Reid JM, Wu B, Baruchel S, Glade-Bender J, Ivy P, Grier HE, et al: Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a children's oncology group study. Clin Cancer Res. 17:5113–5122. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Daw NC, Furman WL, Stewart CF, Iacono LC, Krailo M, Bernstein ML, Dancey JE, Speights RA, Blaney SM, Croop JM, et al: Children's Oncology Group: Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: A Children's Oncology Group Study. J Clin Oncol. 23:6172–6180. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Brell JM, Krishnamurthi SS, Rath L, Bokar JA, Savvides P, Gibbons J, Cooney MM, Meropol NJ, Ivy P and Dowlati A: Phase I trial of sunitinib and gemcitabine in patients with advanced solid tumors. Cancer Chemother Pharmacol. 70:547–553. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Bagatell R, Herzog CE, Trippett TM, Grippo JF, Cirrincione-Dall G, Fox E, Macy M, Bish J, Whitcomb P, Aikin A, et al: Pharmacokinetically guided phase 1 trial of the IGF-1 receptor antagonist RG1507 in children with recurrent or refractory solid tumors. Clin Cancer Res. 17:611–619. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Broadhead ML, Choong PF and Dass CR: Efficacy of continuously administered PEDF-derived synthetic peptides against osteosarcoma growth and metastasis. J Biomed Biotechnol. 2012:2302982012. View Article : Google Scholar : PubMed/NCBI

41 

Takenaka K, Yamagishi S, Jinnouchi Y, Nakamura K, Matsui T and Imaizumi T: Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci. 77:3231–3241. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Ek ET, Dass CR, Contreras KG and Choong PF: PEDF-derived synthetic peptides exhibit antitumor activity in an orthotopic model of human osteosarcoma. J Orthop Res. 25:1671–1680. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Dass CR, Ek ET and Choong PF: PEDF as an emerging therapeutic candidate for osteosarcoma. Curr Cancer Drug Targets. 8:683–690. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Geller DS and Gorlick R: HER-2 targeted treatment of osteosarcoma: The challenges of developing targeted therapy and prognostic factors for rare malignancies. Expert Opin Pharmacother. 11:51–61. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Abdeen A, Chou AJ, Healey JH, Khanna C, Osborne TS, Hewitt SM, Kim M, Wang D, Moody K and Gorlick R: Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma. Cancer. 115:5243–5250. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Yang J, Yang D, Sun Y, Sun B, Wang G, Trent JC, Araujo DM, Chen K and Zhang W: Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer. 117:4925–4938. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Lammli J, Fan M, Rosenthal HG, Patni M, Rinehart E, Vergara G, Ablah E, Wooley PH, Lucas G and Yang SY: Expression of vascular endothelial growth factor correlates with the advance of clinical osteosarcoma. Int Orthop. 36:2307–2313. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Chen D, Zhang YJ, Zhu KW and Wang WC: A systematic review of vascular endothelial growth factor expression as a biomarker of prognosis in patients with osteosarcoma. Tumour Biol. 34:1895–1899. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Kampmann E, Altendorf-Hofmann A, Gibis S, Lindner LH, Issels R, Kirchner T and Knösel T: VEGFR2 predicts decreased patients survival in soft tissue sarcomas. Pathol Res Pract. 211:726–730. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Aubry K, Barriere G, Chable-Rabinovitch H, Dutour A, Paraf F, Monteil J and Rigaud M: Molecular mechanisms regulating the angiogenic phenotype in tumors: Clinical impact in the future. Anticancer Res. 27:3111–3119. 2007.PubMed/NCBI

51 

O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR and Folkman J: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell. 88:277–285. 1997. View Article : Google Scholar : PubMed/NCBI

52 

Nalluri SR, Chu D, Keresztes R, Zhu X and Wu S: Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis. JAMA. 300:2277–2285. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R, Lipshultz SE, Krailo M, Devidas M, Barkauskas DA, Siegal GP, et al: Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: A report from the Children's Oncology Group. J Clin Oncol. 30:2545–2551. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Wildiers H, Guetens G, De Boeck G, Verbeken E, Landuyt B, Landuyt W, de Bruijn EA and van Oosterom AT: Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer. 88:1979–1986. 2003. View Article : Google Scholar : PubMed/NCBI

55 

White RR, Sullenger BA and Rusconi CP: Developing aptamers into therapeutics. J Clin Invest. 106:929–934. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, et al: VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 99:11393–11398. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Blume-Jensen P and Hunter T: Oncogenic kinase signalling. Nature. 411:355–365. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Ségaliny AI, Tellez-Gabriel M, Heymann MF and Heymann D: Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 4:1–12. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Pignochino Y, Grignani G, Cavalloni G, Motta M, Tapparo M, Bruno S, Bottos A, Gammaitoni L, Migliardi G, Camussi G, et al: Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer. 8:1182009. View Article : Google Scholar : PubMed/NCBI

60 

Wolfesberger B, Tonar Z, Gerner W, Skalicky M, Heiduschka G, Egerbacher M, Thalhammer JG and Walter I: The tyrosine kinase inhibitor sorafenib decreases cell number and induces apoptosis in a canine osteosarcoma cell line. Res Vet Sci. 88:94–100. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Safwat A, Boysen A, Lücke A and Rossen P: Pazopanib in metastatic osteosarcoma: Significant clinical response in three consecutive patients. Acta Oncol. 53:1451–1454. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Lu D, Jimenez X, Zhang H, Bohlen P, Witte L and Zhu Z: Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer. 97:393–399. 2002. View Article : Google Scholar : PubMed/NCBI

63 

O'Day K and Gorlick R: Novel therapeutic agents for osteosarcoma. Expert Rev Anticancer Ther. 9:511–523. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Chandhanayingyong C, Kim Y, Staples JR, Hahn C and Lee FY: MAPK/ERK Signaling in osteosarcomas, ewing sarcomas and chondrosarcomas: Therapeutic implications and future directions. Sarcoma. 2012:4048102012. View Article : Google Scholar : PubMed/NCBI

66 

Allen E, Miéville P, Warren CM, Saghafinia S, Li L, Peng MW and Hanahan D: Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep. 15:1144–1160. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Weigel B, Malempati S, Reid JM, Voss SD, Cho SY, Chen HX, Krailo M, Villaluna D, Adamson PC and Blaney SM: Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: A report from the Children's Oncology Group. Pediatr Blood Cancer. 61:452–456. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG, Doyle LA, Chen H and Blaney SM: Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: A report from the Children's Oncology Group. Pediatr Blood Cancer. 62:440–444. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Kempf-Bielack B, Bielack SS, Jürgens H, Branscheid D, Berdel WE, Exner GU, Göbel U, Helmke K, Jundt G, Kabisch H, et al: Osteosarcoma relapse after combined modality therapy: An analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 23:559–568. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Steliga M and Vaporciyan A: Surgical treatment of pulmonary metastases from osteosarcoma in pediatric and adolescent patients. Cancer Treat Res. 152:185–201. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Schuetze SM, Zhao L, Chugh R, Thomas DG, Lucas DR, Metko G, Zalupski MM and Baker LH: Results of a phase II study of sirolimus and cyclophosphamide in patients with advanced sarcoma. Eur J Cancer. 48:1347–1353. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, Penel N, Riedel RF, Bui-Nguyen B, Cranmer LD, et al: Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol. 31:2485–2492. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Chawla SP, Staddon AP, Baker LH, Schuetze SM, Tolcher AW, D'Amato GZ, Blay JY, Mita MM, Sankhala KK, Berk L, et al: Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J Clin Oncol. 30:78–84. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Schwartz GK, Tap WD, Qin LX, Livingston MB, Undevia SD, Chmielowski B, Agulnik M, Schuetze SM, Reed DR, Okuno SH, et al: Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: A multicentre, open-label, phase 2 trial. Lancet Oncol. 14:371–382. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Reed DR, Mascarenhas L, Manning K, Hale GA, Goldberg J, Gill J, Sandler E, Isakoff MS, Smith T, Caracciolo J, et al: Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med. 5:294–303. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Quek R, Wang Q, Morgan JA, Shapiro GI, Butrynski JE, Ramaiya N, Huftalen T, Jederlinic N, Manola J, Wagner AJ, et al: Combination mTOR and IGF-1R inhibition: phase I trial of everolimus and figitumumab in patients with advanced sarcomas and other solid tumors. Clin Cancer Res. 17:871–879. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PC, Chugh R, Ladanyi M, Grippo JF, Dall G, Staddon AP, et al: A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: Results of a Sarcoma Alliance for Research Through Collaboration study. Cancer. 120:2448–2456. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML, Batzel GN, Yin D, Pritchard-Jones K, Judson I, et al: Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: A phase 1 expansion cohort study. Lancet Oncol. 11:129–135. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R and Geller DS: Cell surface receptor expression patterns in osteosarcoma. Cancer. 118:740–749. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Freeman SS, Allen SW, Ganti R, Wu J, Ma J, Su X, Neale G, Dome JS, Daw NC and Khoury JD: Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer. 113:1453–1461. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Roth M, Linkowski M, Tarim J, Piperdi S, Sowers R, Geller D, Gill J and Gorlick R: Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 120:548–554. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Kubo T, Piperdi S, Rosenblum J, Antonescu CR, Chen W, Kim HS, Huvos AG, Sowers R, Meyers PA, Healey JH, et al: Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer. 112:2119–2129. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Ebos JM, Lee CR, Christensen JG, Mutsaers AJ and Kerbel RS: Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA. 104:17069–17074. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Loges S, Schmidt T and Carmeliet P: Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer. 1:12–25. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Casanovas O, Hicklin DJ, Bergers G and Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 8:299–309. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, et al: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 366:883–892. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Seoane J and De Mattos-Arruda L: The challenge of intratumour heterogeneity in precision medicine. J Intern Med. 276:41–51. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Massey PR, Okman JS, Wilkerson J and Cowen EW: Tyrosine kinase inhibitors directed against the vascular endothelial growth factor receptor (VEGFR) have distinct cutaneous toxicity profiles: A meta-analysis and review of the literature. Support Care Cancer. 23:1827–1835. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Hurwitz H: Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal Cancer. 4:(Suppl 2). S62–S68. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Eskens FA and Verweij J: The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 42:3127–3139. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Costelloe CM, Chuang HH, Madewell JE and Ueno NT: Cancer Response Criteria and Bone Metastases: RECIST 1.1, MDA and PERCIST. J Cancer. 1:80–92. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Stacchiotti S, Collini P, Messina A, Morosi C, Barisella M, Bertulli R, Piovesan C, Dileo P, Torri V, Gronchi A, et al: High-grade soft-tissue sarcomas: Tumor response assessment - pilot study to assess the correlation between radiologic and pathologic response by using RECIST and Choi criteria. Radiology. 251:447–456. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Nathan PD, Vinayan A, Stott D, Juttla J and Goh V: CT response assessment combining reduction in both size and arterial phase density correlates with time to progression in metastatic renal cancer patients treated with targeted therapies. Cancer Biol Ther. 9:15–19. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Fournier L, Ammari S, Thiam R and Cuénod CA: Imaging criteria for assessing tumour response: RECIST, mRECIST, Cheson. Diagn Interv Imaging. 95:689–703. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN and Ueno NT: Bone imaging in metastatic breast cancer. J Clin Oncol. 22:2942–2953. 2004. View Article : Google Scholar : PubMed/NCBI

96 

Pakos EE and Ioannidis JP: The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 98:581–589. 2003. View Article : Google Scholar : PubMed/NCBI

97 

Jakubowska A, Rozkrut D, Antoniou A, Hamann U, Scott RJ, McGuffog L, Healy S, Sinilnikova OM, Rennert G, Lejbkowicz F, et al: OCGN; SWE-BRCA; HEBON; EMBRACE; GEMO Study Collaborators; KConFab; CIMBA, the Consortium of Investigators of Modifiers of BRCA1/2-Related Cancer: Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: Results from a multicenter study. Br J Cancer. 106:2016–2024. 2012.PubMed/NCBI

98 

Zurita AJ, Jonasch E, Wu HK, Tran HT and Heymach JV: Circulating biomarkers for vascular endothelial growth factor inhibitors in renal cell carcinoma. Cancer. 115:(Suppl 10). 2346–2354. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Ahbap E, Sakaci T, Kara E, Sahutoglu T, Koc Y, Basturk T, Sevinc M, Akgol C, Kayalar AO, Ucar ZA, et al: Neutrophil-to-lymphocyte ratio and platelet-tolymphocyte ratio in evaluation of inflammation in end-stage renal disease. Clin Nephrol. 85:199–208. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Jaffe N, Keifer R III, Robertson R, Cangir A and Wang A: Renal toxicity with cumulative doses of cis-diamminedichloroplatinum-II in pediatric patients with osteosarcoma. Effect on creatinine clearance and methotrexate excretion. Cancer. 59:1577–1581. 1987. View Article : Google Scholar : PubMed/NCBI

101 

Aras M, Erdil TY, Dane F, Gungor S, Ones T, Dede F, Inanir S and Turoglu HT: Comparison of WHO, RECIST 1.1, EORTC, and PERCIST criteria in the evaluation of treatment response in malignant solid tumors. Nucl Med Commun. 37:9–15. 2016.PubMed/NCBI

102 

Lim J, Poulin NM and Nielsen TO: New strategies in sarcoma: linking genomic and immunotherapy approaches to molecular subtype. Clin Cancer Res. 21:4753–4759. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Subbiah V, Wagner MJ, McGuire MF, Sarwari NM, Devarajan E, Lewis VO, Westin S, Kato S, Brown RE and Anderson P: Personalized comprehensive molecular profiling of high risk osteosarcoma: Implications and limitations for precision medicine. Oncotarget. 6:40642–40654. 2015.PubMed/NCBI

104 

Egas-Bejar D, Anderson PM, Agarwal R, Corrales-Medina F, Devarajan E, Huh WW, Brown RE and Subbiah V: Theranostic profiling for actionable aberrations in advanced high risk osteosarcoma with aggressive biology reveals high molecular diversity: The human fingerprint hypothesis. Oncoscience. 1:167–179. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI

106 

Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R and Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Nerich V, Chelly J, Montcuquet P, Chaigneau L, Villanueva C, Fiteni F, Meneveau N, Perrin S, Voidey A, Monnot T, et al: First-line trastuzumab plus taxane-based chemotherapy for metastatic breast cancer: Cost-minimization analysis. J Oncol Pharm Pract. 20:362–368. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Cheng YC, Rondón G, Anderlini P, Khouri IF, Champlin RE and Ueno NT: Paclitaxel and trastuzumab as maintenance therapy in patients with HER2-positive metastatic breast cancer who underwent high-dose chemotherapy and autologous hematopoietic stem cell transplantation. J Cancer. 4:679–685. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Powles T and Crusz SM: Sequencing systemic therapies in advanced RCC: Is there a best strategy? Am Soc Clin Oncol Educ Book. 33:e172–e174. 2013. View Article : Google Scholar

110 

Kuwano M, Sonoda K, Murakami Y, Watari K and Ono M: Overcoming drug resistance to receptor tyrosine kinase inhibitors: Learning from lung cancer. Pharmacol Ther. 161:97–110. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Porta C, Giglione P and Paglino C: Targeted therapy for renal cell carcinoma: Focus on 2nd and 3rd line. Expert Opin Pharmacother. 17:643–655. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Kim SH, Park WS, Kim SH, Joung JY, Seo HK, Lee KH and Chung J: Systemic treatments for metastatic renal cell carcinoma: 10-Year experience of immunotherapy and targeted therapy. Cancer Res Treat. 48:1092–1101. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Kramer MW, Steffens S, von Klot C, Merseburger AS and Kuczyk MA: Systemic therapy for metastatic renal cell carcinoma. Aktuelle Urol. 43:265–268. 2012.(In German). PubMed/NCBI

114 

Buti S, Leonetti A, Dallatomasina A and Bersanelli M: Everolimus in the management of metastatic renal cell carcinoma: An evidence-based review of its place in therapy. Core Evid. 11:23–36. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, Hammers HJ, Donskov F, Roth BJ, Peltola K, et al: METEOR investigators: Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): Final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17:917–927. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Cella D, Grünwald V, Nathan P, Doan J, Dastani H, Taylor F, Bennett B, DeRosa M, Berry S, Broglio K, et al: Quality of life in patients with advanced renal cell carcinoma given nivolumab versus everolimus in CheckMate 025: A randomised, open-label, phase 3 trial. Lancet Oncol. 17:994–1003. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Maute L and Bergmann L: Systemic therapy of metastatic renal cell carcinoma. Dtsch Med Wochenschr. 141:466–469. 2016.(In German). PubMed/NCBI

118 

Le Cesne A, Blay JY, Reichardt P and Joensuu H: Optimizing tyrosine kinase inhibitor therapy in gastrointestinal stromal tumors: Exploring the benefits of continuous kinase suppression. Oncologist. 18:1192–1199. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Shien K, Yamamoto H, Soh J, Miyoshi S and Toyooka S: Drug resistance to EGFR tyrosine kinase inhibitors for non-small cell lung cancer. Acta Med Okayama. 68:191–200. 2014.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xie L, Ji T and Guo W: Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol Rep 38: 625-636, 2017.
APA
Xie, L., Ji, T., & Guo, W. (2017). Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncology Reports, 38, 625-636. https://doi.org/10.3892/or.2017.5735
MLA
Xie, L., Ji, T., Guo, W."Anti-angiogenesis target therapy for advanced osteosarcoma (Review)". Oncology Reports 38.2 (2017): 625-636.
Chicago
Xie, L., Ji, T., Guo, W."Anti-angiogenesis target therapy for advanced osteosarcoma (Review)". Oncology Reports 38, no. 2 (2017): 625-636. https://doi.org/10.3892/or.2017.5735
Copy and paste a formatted citation
x
Spandidos Publications style
Xie L, Ji T and Guo W: Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol Rep 38: 625-636, 2017.
APA
Xie, L., Ji, T., & Guo, W. (2017). Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncology Reports, 38, 625-636. https://doi.org/10.3892/or.2017.5735
MLA
Xie, L., Ji, T., Guo, W."Anti-angiogenesis target therapy for advanced osteosarcoma (Review)". Oncology Reports 38.2 (2017): 625-636.
Chicago
Xie, L., Ji, T., Guo, W."Anti-angiogenesis target therapy for advanced osteosarcoma (Review)". Oncology Reports 38, no. 2 (2017): 625-636. https://doi.org/10.3892/or.2017.5735
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team