|
1
|
Schnekenburger M, Dicato M and Diederich
M: Plant-derived epigenetic modulators for cancer treatment and
prevention. Biotechnol Adv. 32:1123–1132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Butler MS, Robertson AA and Cooper MA:
Natural product and natural product derived drugs in clinical
trials. Nat Prod Rep. 31:1612–1661. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hashemzaei M, Barani AK, Iranshahi M,
Rezaee R, Tsarouhas K, Tsatsakis AM, Wilks MF and Tabrizian K:
Effects of resveratrol on carbon monoxide-induced cardiotoxicity in
rats. Environ Toxicol Pharmacol. 46:110–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hashemzaei M, Heravi Entezari R, Rezaee R,
Roohbakhsh A and Karimi G: Regulation of autophagy by some natural
products as a potential therapeutic strategy for cardiovascular
disorders. Eur J Pharmacol. 802:44–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
DeVita VT Jr, Young RC and Canellos GP:
Combination versus single agent chemotherapy: A review of the basis
for selection of drug treatment of cancer. Cancer. 35:98–110. 1975.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pisani P, Bray F and Parkin DM: Estimates
of the world-wide prevalence of cancer for 25 sites in the adult
population. Int J Cancer. 97:72–81. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Siegel R, Ward E, Brawley O and Jemal A:
Cancer statistics, 2011: The impact of eliminating socioeconomic
and racial disparities on premature cancer deaths. CA Cancer J
Clin. 61:212–236. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ferlay J, Steliarova-Foucher E,
Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D and
Bray F: Cancer incidence and mortality patterns in Europe:
Estimates for 40 countries in 2012. Eur J Cancer. 49:1374–1403.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fridlender M, Kapulnik Y and Koltai H:
Plant derived substances with anti-cancer activity: From folklore
to practice. Front Plant Sci. 6:7992015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Karikas GA: Anticancer and chemopreventing
natural products: Some biochemical and therapeutic aspects. J BUON.
15:627–638. 2010.PubMed/NCBI
|
|
11
|
Katz DL, Doughty K and Ali A: Cocoa and
chocolate in human health and disease. Antioxid Redox Signal.
15:2779–2811. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pandey KB and Rizvi SI: Current
understanding of dietary polyphenols and their role in health and
disease. Curr Nutr Food Sci. 5:249–263. 2009. View Article : Google Scholar
|
|
13
|
Pandey KB and Rizvi SI: Plant polyphenols
as dietary antioxidants in human health and disease. Oxid Med Cell
Longev. 2:270–278. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kühnau J: The Flavonoids. A Class of
Semi-Essential Food Components: Their Role in Human Nutrition.
World Review of Nutrition and Dietetics. Bourne GH: Basel: Karger;
pp. 117–191. 1976, View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Scalbert A and Williamson G: Dietary
intake and bioavailability of polyphenols. J Nutr. 130:(Suppl).
2073S–2085S. 2000.PubMed/NCBI
|
|
16
|
Benbrook CM: Elevating Antioxidant Levels
in Food through Organic Farming and Food Processing. An Organic
Center, State of Science Review. The Organic Center for Education
and Promotion. 2005.
|
|
17
|
Hashemzaei M, Karami SP, Delaramifar A,
Sheidary A, Tabrizian K, Rezaee R, Shahsavand S, Arsene AL,
Tsatsakis AM and Mohammad S: Anticancer effects of
co-administration of daunorubicin and resveratrol in MOLT-4, U266
B1 and RAJI cell lines. Farmacia. 64:36–42. 2016.
|
|
18
|
Ramkissoon JS, Mahomoodally MF, Ahmed N
and Subratty AH: Antioxidant and anti-glycation activities
correlates with phenolic composition of tropical medicinal herbs.
Asian Pac J Trop Med. 6:561–569. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Glade MJ: Food, nutrition, and the
prevention of cancer: a global perspective. American Institute for
Cancer Research/World Cancer Research Fund, American Institute for
Cancer Research, 1997. Nutrition. 15:523–526. 1999.PubMed/NCBI
|
|
20
|
Murillo G and Mehta RG: Cruciferous
vegetables and cancer prevention. Nutr Cancer. 41:17–28. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cronin FJ, Krebs-Smith SM, Wyse BW and
Light L: Characterizing food usage by demographic variables. J Am
Diet Assoc. 81:661–673. 1982.PubMed/NCBI
|
|
22
|
Block G, Dresser CM, Hartman AM and
Carroll MD: Nutrient sources in the American diet: quantitative
data from the NHANES II survey. II. Macronutrients and fats. Am J
Epidemiol. 122:27–40. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hashemzaei M, SadeghiBonjar MA, Tabrizian
K, Iranshahi M, Iranshahy M and Rezaee R: Evaluation of the
analgesic effect of Umbelliprenin and Umbelliprenin-morphine
co-administration on the acute, chronic and neuropathic pain.
IJPER. 49:121–125. 2015. View Article : Google Scholar
|
|
24
|
Kumar S and Pandey AK: Chemistry and
biological activities of flavonoids: An overview. Sci World J.
2013:1627502013. View Article : Google Scholar
|
|
25
|
Tabrizian K, Yaghoobi NS, Iranshahi M,
Shahraki J, Rezaee R and Hashemzaei M: Auraptene consolidates
memory, reverses scopolamine-disrupted memory in passive avoidance
task, and ameliorates retention deficits in mice. Iran J Basic Med
Sci. 18:1014–1019. 2015.PubMed/NCBI
|
|
26
|
Nikitovic D, Tsatsakis AM, Karamanos NK
and Tzanakakis GN: The effects of genistein on the synthesis and
distribution of glycosaminoglycans/proteoglycans by two
osteosarcoma cell lines depends on tyrosine kinase and the estrogen
receptor density. Anticancer Res. 23:(1A). 459–464. 2003.PubMed/NCBI
|
|
27
|
Yamaguchi M, Murata T, El-Rayes BF and
Shoji M: The flavonoid p-hydroxycinnamic acid exhibits
anticancer effects in human pancreatic cancer MIA PaCa-2 cells
in vitro: Comparison with gemcitabine. Oncol Rep.
34:3304–3310. 2015.PubMed/NCBI
|
|
28
|
Cárdenas M, Marder M, Blank VC and Roguin
LP: Antitumor activity of some natural flavonoids and synthetic
derivatives on various human and murine cancer cell lines. Bioorg
Med Chem. 14:2966–2971. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chan FL, Choi HL, Chen ZY, Chan PS and
Huang Y: Induction of apoptosis in prostate cancer cell lines by a
flavonoid, baicalin. Cancer Lett. 160:219–228. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kawaii S, Tomono Y, Katase E, Ogawa K and
Yano M: Antiproliferative activity of flavonoids on several cancer
cell lines. Biosci Biotechnol Biochem. 63:896–899. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lin P, Tian XH, Yi YS, Jiang WS, Zhou YJ
and Cheng WJ: Luteolin-induced protection of
H2O2-induced apoptosis in PC12 cells and the
associated pathway. Mol Med Rep. 12:7699–7704. 2015.PubMed/NCBI
|
|
32
|
Leung HW, Kuo CL, Yang WH, Lin CH and Lee
HZ: Antioxidant enzymes activity involvement in luteolin-induced
human lung squamous carcinoma CH27 cell apoptosis. Eur J Pharmacol.
534:12–18. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC and
Cham TM: Preparation, physicochemical characterization, and
antioxidant effects of quercetin nanoparticles. Int J Pharm.
346:160–168. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Busch C, Burkard M, Leischner C, Lauer UM,
Frank J and Venturelli S: Epigenetic activities of flavonoids in
the prevention and treatment of cancer. Clin Epigenetics. 7:642015.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gilbert ER and Liu D: Flavonoids influence
epigenetic-modifying enzyme activity: Structure - function
relationships and the therapeutic potential for cancer. Curr Med
Chem. 17:1756–1768. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Erlund I: Review of the flavonoids
quercetin, hesperetin, and naringenin. Dietary sources,
bioactivities, bioavailability, and epidemiology. Nutr Res.
24:851–874. 2004. View Article : Google Scholar
|
|
37
|
Jakubowicz-Gil J, Paduch R, Piersiak T,
Głowniak K, Gawron A and Kandefer-Szerszeń M: The effect of
quercetin on pro-apoptotic activity of cisplatin in HeLa cells.
Biochem Pharmacol. 69:1343–1350. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ramos S: Effects of dietary flavonoids on
apoptotic pathways related to cancer chemoprevention. J Nutr
Biochem. 18:427–442. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ren MX, Deng XH, Ai F, Yuan GY and Song
HY: Effect of quercetin on the proliferation of the human ovarian
cancer cell line SKOV-3 in vitro. Exp Ther Med. 10:579–583.
2015.PubMed/NCBI
|
|
40
|
Deng XH, Song HY, Zhou YF, Yuan GY and
Zheng FJ: Effects of quercetin on the proliferation of breast
cancer cells and expression of survivin in vitro. Exp Ther
Med. 6:1155–1158. 2013.PubMed/NCBI
|
|
41
|
Ren KW, Li YH, Wu G, Ren JZ, Lu HB, Li ZM
and Han XW: Quercetin nanoparticles display antitumor activity via
proliferation inhibition and apoptosis induction in liver cancer
cells. Int J Oncol. 50:1299–1311. 2017.PubMed/NCBI
|
|
42
|
Chen J and Kang JH: Quercetin and
trichostatin A cooperatively kill human leukemia cells. Pharmazie.
60:856–860. 2005.PubMed/NCBI
|
|
43
|
Priego S, Feddi F, Ferrer P, Mena S,
Benlloch M, Ortega A, Carretero J, Obrador E, Asensi M and Estrela
JM: Natural polyphenols facilitate elimination of HT-29 colorectal
cancer xenografts by chemoradiotherapy: A Bcl-2- and superoxide
dismutase 2-dependent mechanism. Mol Cancer Ther. 7:3330–3342.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Scambia G, Ranelletti FO, Panici PB, De
Vincenzo R, Bonanno G, Ferrandina G, Piantelli M, Bussa S, Rumi C,
Cianfriglia M, et al: Quercetin potentiates the effect of
adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell
line: P-glycoprotein as a possible target. Cancer Chemother
Pharmacol. 34:459–464. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yoshida M, Sakai T, Hosokawa N, Marui N,
Matsumoto K, Fujioka A, Nishino H and Aoike A: The effect of
quercetin on cell cycle progression and growth of human gastric
cancer cells. FEBS Lett. 260:10–13. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sharma H, Sen S and Singh N: Molecular
pathways in the chemosensitization of cisplatin by quercetin in
human head and neck cancer. Cancer Biol Ther. 4:949–955. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang JH, Hsia TC, Kuo HM, Chao PD, Chou
CC, Wei YH and Chung JG: Inhibition of lung cancer cell growth by
quercetin glucuronides via G2/M arrest and induction of apoptosis.
Drug Metab Dispos. 34:296–304. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gao X, Wang B, Wei X, Men K, Zheng F, Zhou
Y, Zheng Y, Gou M, Huang M, Guo G, et al: Anticancer effect and
mechanism of polymer micelle-encapsulated quercetin on ovarian
cancer. Nanoscale. 4:7021–7030. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cao HH, Tse AK, Kwan HY, Yu H, Cheng CY,
Su T, Fong WF and Yu ZL: Quercetin exerts anti-melanoma activities
and inhibits STAT3 signaling. Biochem Pharmacol. 87:424–434. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Spagnuolo C, Russo M, Bilotto S, Tedesco
I, Laratta B and Russo GL: Dietary polyphenols in cancer
prevention: the example of the flavonoid quercetin in leukemia. Ann
N Y Acad Sci. 1259:95–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Araújo JR, Gonçalves P and Martel F:
Chemopreventive effect of dietary polyphenols in colorectal cancer
cell lines. Nutr Res. 31:77–87. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Maira F, Catania A, Candido S, Russo AE,
McCubrey JA, Libra M, Malaponte G and Fenga C: Molecular targeted
therapy in melanoma: A way to reverse resistance to conventional
drugs. Curr Drug Deliv. 9:17–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Castle JC, Loewer M, Boegel S, de Graaf J,
Bender C, Tadmor AD, Boisguerin V, Bukur T, Sorn P, Paret C, et al:
Immunomic, genomic and transcriptomic characterization of CT26
colorectal carcinoma. BMC Genomics. 15:1902014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Westerink RHS and Ewing AG: The PC12 cell
as model for neurosecretion. Acta Physiol (Oxf). 192:273–285. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mayhew EG, Lasic D, Babbar S and Martin
FJ: Pharmacokinetics and antitumor activity of epirubicin
encapsulated in long-circulating liposomes incorporating a
polyethylene glycol-derivatized phospholipid. Int J Cancer.
51:302–309. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gao F, Li L, Liu T, Hao N, Liu H, Tan L,
Li H, Huang X, Peng B, Yan C, et al: Doxorubicin loaded silica
nanorattles actively seek tumors with improved anti-tumor effects.
Nanoscale. 4:3365–3372. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tang L, Gabrielson NP, Uckun FM, Fan TM
and Cheng J: Size-dependent tumor penetration and in vivo efficacy
of monodisperse drug-silica nanoconjugates. Mol Pharm. 10:883–892.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bądziul D, Jakubowicz-Gil J, Langner E,
Rzeski W, Głowniak K and Gawron A: The effect of quercetin and
imperatorin on programmed cell death induction in T98G cells in
vitro. Pharmacol Rep. 66:292–300. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Heravi Entezari R, Hadizadeh F, Sankian M,
Afshari Tavakol J, Taghdisi SM, Jafarian H and Behravan J: Novel
selective Cox-2 inhibitors induce apoptosis in Caco-2 colorectal
carcinoma cell line. Eur J Pharm Sci. 44:479–86. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chahar MK, Sharma N, Dobhal MP and Joshi
YC: Flavonoids: A versatile source of anticancer drugs. Pharmacogn
Rev. 5:1–12. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Batra P and Sharma AK: Anti-cancer
potential of flavonoids: recent trends and future perspectives. 3
Biotech. 3:439–459. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Apostolou A, Stagos D, Galitsiou E, Spyrou
A, Haroutounian S, Portesis N, Trizoglou I, Hayes Wallace A,
Tsatsakis AM and Kouretas D: Assessment of polyphenolic content,
antioxidant activity, protection against ROS-induced DNA damage and
anticancer activity of Vitis vinifera stem extracts. Food
Chem Toxicol. 61:60–68. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sahpazidou D, Geromichalos GD, Stagos D,
Apostolou A, Haroutounian SA, Tsatsakis AM, Tzanakakis GN, Hayes AW
and Kouretas D: Anticarcinogenic activity of polyphenolic extracts
from grape stems against breast, colon, renal and thyroid cancer
cells. Toxicol Lett. 230:218–224. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Erlund I, Kosonen T, Alfthan G, Mäenpää J,
Perttunen K, Kenraali J, Parantainen J and Aro A: Pharmacokinetics
of quercetin from quercetin aglycone and rutin in healthy
volunteers. Eur J Clin Pharmacol. 56:545–553. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Stagos D, Apostolou A, Poulios E,
Kermeliotou E, Mpatzilioti A, Kreatsouli K, Koulocheri SD,
Haroutounian SA and Kouretas D: Antiangiogenic potential of grape
stem extract through inhibition of vascular endothelial growth
factor expression. J Physiol Pharmacol. 65:843–852. 2014.PubMed/NCBI
|
|
66
|
Hsu CL and Yen GC: Phenolic compounds:
Evidence for inhibitory effects against obesity and their
underlying molecular signaling mechanisms. Mol Nutr Food Res.
52:53–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vargas AJ and Burd R: Hormesis and
synergy: Pathways and mechanisms of quercetin in cancer prevention
and management. Nutr Rev. 68:418–428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kuo P-C, Liu H-F and Chao J-I: Survivin
and p53 modulate quercetin-induced cell growth inhibition and
apoptosis in human lung carcinoma cells. J Biol Chem.
279:55875–55885. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Polyak K, Xia Y, Zweier JL, Kinzler KW and
Vogelstein B: A model for p53-induced apoptosis. Nature.
389:300–305. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yoon KA, Nakamura Y and Arakawa H:
Identification of ALDH4 as a p53-inducible gene and its protective
role in cellular stresses. J Hum Genet. 49:134–140. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hussain SP, Amstad P, He P, Robles A,
Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S,
et al: p53-induced up-regulation of MnSOD and GPx but not catalase
increases oxidative stress and apoptosis. Cancer Res. 64:2350–2356.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
O'Connor JC, Wallace DM, O'Brien CJ and
Cotter TG: A novel antioxidant function for the tumor-suppressor
gene p53 in the retinal ganglion cell. Invest Ophthalmol Vis Sci.
49:4237–4244. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ozaki T and Nakagawara A: p73, a
sophisticated p53 family member in the cancer world. Cancer Sci.
96:729–737. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chien SY, Wu YC, Chung JG, Yang JS, Lu HF,
Tsou MF, Wood WG, Kuo SJ and Chen DR: Quercetin-induced apoptosis
acts through mitochondrial- and caspase-3-dependent pathways in
human breast cancer MDA-MB-231 cells. Hum Exp Toxicol. 28:493–503.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shen X, Si Y, Wang Z, Wang J, Guo Y and
Zhang X: Quercetin inhibits the growth of human gastric cancer stem
cells by inducing mitochondrial-dependent apoptosis through the
inhibition of PI3K/Akt signaling. Int J Mol Med. 38:619–626.
2016.PubMed/NCBI
|
|
76
|
Lin CW, Hou WC, Shen SC, Juan SH, Ko CH,
Wang LM and Chen YC: Quercetin inhibition of tumor invasion via
suppressing PKC δ/ERK/AP-1-dependent matrix metalloproteinase-9
activation in breast carcinoma cells. Carcinogenesis. 29:1807–1815.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lee C-H, Hong H-M, Chang Y-Y and Chang
W-W: Inhibition of heat shock protein (Hsp) 27 potentiates the
suppressive effect of Hsp90 inhibitors in targeting breast cancer
stem-like cells. Biochimie. 94:1382–1389. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Catanzaro D, Ragazzi E, Vianello C,
Caparrotta L and Montopoli M: Effect of quercetin on cell cycle and
cyclin expression in ovarian carcinoma and osteosarcoma cell lines.
Nat Prod Commun. 10:1365–1368. 2015.PubMed/NCBI
|
|
79
|
Chen X, Dong XS, Gao HY, Jiang YF, Jin YL,
Chang YY, Chen LY and Wang JH: Suppression of HSP27 increases the
anti tumor effects of quercetin in human leukemia U937 cells. Mol
Med Rep. 13:689–696. 2016.PubMed/NCBI
|
|
80
|
Neuhouser ML: Dietary flavonoids and
cancer risk: Evidence from human population studies. Nutr Cancer.
50:1–7. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li W, Liu M, Xu YF, Feng Y, Che JP, Wang
GC and Zheng JH: Combination of quercetin and hyperoside has
anticancer effects on renal cancer cells through inhibition of
oncogenic microRNA-27a. Oncol Rep. 31:117–124. 2014.PubMed/NCBI
|
|
82
|
Moon JH, Eo SK, Lee JH and Park SY:
Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell
death. Oncol Rep. 34:375–381. 2015.PubMed/NCBI
|
|
83
|
Seo HS, Ku JM, Choi HS, Choi YK, Woo JK,
Kim M, Kim I, Na CH, Hur H, Jang BH, et al: Quercetin induces
caspase-dependent extrinsic apoptosis through inhibition of signal
transducer and activator of transcription 3 signaling in
HER2-overexpressing BT-474 breast cancer cells. Oncol Rep.
36:31–42. 2016.PubMed/NCBI
|
|
84
|
Yang FQ, Liu M, Li W, Che JP, Wang GC and
Zheng JH: Combination of quercetin and hyperoside inhibits prostate
cancer cell growth and metastasis via regulation of microRNA21. Mol
Med Rep. 11:1085–1092. 2015.PubMed/NCBI
|
|
85
|
Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke
FC, Huang YT and Lee MT: The antitumor activities of flavonoids. In
Vivo. 19:895–909. 2005.PubMed/NCBI
|
|
86
|
Pratheeshkumar P, Budhraja A, Son YO, Wang
X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, et al:
Quercetin inhibits angiogenesis mediated human prostate tumor
growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling
pathways. PLoS One. 7:e475162012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Steiner J, Davis J, McClellan J, Enos R,
Carson J, Fayad R, Nagarkatti M, Nagarkatti P, Altomare D, Creek K,
et al: Dose-dependent benefits of quercetin on tumorigenesis in the
C3(1)/SV40Tag transgenic mouse model of breast cancer. Cancer Biol
Ther. 15:1456–1467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Prasad S, Phromnoi K, Yadav VR, Chaturvedi
MM and Aggarwal BB: Targeting inflammatory pathways by flavonoids
for prevention and treatment of cancer. Planta Med. 76:1044–1063.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yang H, Landis-Piwowar KR, Chen D, Milacic
V and Dou QP: Natural compounds with proteasome inhibitory activity
for cancer prevention and treatment. Curr Protein Pept Sci.
9:227–239. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gibellini L, Pinti M, Nasi M, Montagna JP,
De Biasi S, Roat E, Bertoncelli L, Cooper EL and Cossarizza A:
Quercetin and cancer chemoprevention. Evid Based Complement
Alternat Med. 2011:5913562011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhou J, Fang L, Yao WX, Zhao X, Wei Y,
Zhou H, Xie H, Wang LY and Chen LJ: Effect of quercetin on heat
shock protein expression in HepG2 cells determined by SILAC.
Zhonghua Zhong Liu Za Zhi. 33:737–741. 2011.(In Chinese).
PubMed/NCBI
|
|
92
|
Jeong JH, An JY, Kwon YT, Rhee JG and Lee
YJ: Effects of low dose quercetin: Cancer cell-specific inhibition
of cell cycle progression. J Cell Biochem. 106:73–82. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mu C, Jia P, Yan Z, Liu X, Li X and Liu H:
Quercetin induces cell cycle G1 arrest through elevating Cdk
inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods
Find Exp Clin Pharmacol. 29:179–183. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Crespo I, García-Mediavilla MV, Gutiérrez
B, Sánchez-Campos S, Tuñón MJ and González-Gallego J: A comparison
of the effects of kaempferol and quercetin on cytokine-induced
pro-inflammatory status of cultured human endothelial cells. Br J
Nutr. 100:968–976. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nair MP, Mahajan S, Reynolds JL, Aalinkeel
R, Nair H, Schwartz SA and Kandaswami C: The flavonoid quercetin
inhibits proinflammatory cytokine (tumor necrosis factor alpha)
gene expression in normal peripheral blood mononuclear cells via
modulation of the NF-kappa beta system. Clin Vaccine Immunol.
13:319–328. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Matsukawa Y, Nishino H, Okuyama Y, Matsui
T, Matsumoto T, Matsumura S, Shimizu Y, Sowa Y and Sakai T: Effects
of quercetin and/or restraint stress on formation of aberrant crypt
foci induced by azoxymethane in rat colons. Oncology. 54:118–121.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shan BE, Wang MX and Li RQ: Quercetin
inhibit human SW480 colon cancer growth in association with
inhibition of cyclin D1 and survivin expression through
Wnt/beta-catenin signaling pathway. Cancer Invest. 27:604–612.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yang K, Lamprecht SA, Liu Y, Shinozaki H,
Fan K, Leung D, Newmark H, Steele VE, Kelloff GJ and Lipkin M:
Chemoprevention studies of the flavonoids quercetin and rutin in
normal and azoxymethane-treated mouse colon. Carcinogenesis.
21:1655–1660. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ferry DR, Smith A, Malkhandi J, Fyfe DW,
deTakats PG, Anderson D, Baker J and Kerr DJ: Phase I clinical
trial of the flavonoid quercetin: Pharmacokinetics and evidence for
in vivo tyrosine kinase inhibition. Clin Cancer Res. 2:659–668.
1996.PubMed/NCBI
|