Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2017 Volume 38 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2017 Volume 38 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Anticancer potential of bioactive peptides from animal sources (Review)

  • Authors:
    • Linghong Wang
    • Chao Dong
    • Xian Li
    • Wenyan Han
    • Xiulan Su
  • View Affiliations / Copyright

    Affiliations: Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China, College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
  • Pages: 637-651
    |
    Published online on: July 3, 2017
       https://doi.org/10.3892/or.2017.5778
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is the most common cause of human death worldwide. Conventional anticancer therapies, including chemotherapy and radiation, are associated with severe side effects and toxicities as well as low specificity. Peptides are rapidly being developed as potential anticancer agents that specifically target cancer cells and are less toxic to normal tissues, thus making them a better alternative for the prevention and management of cancer. Recent research has focused on anticancer peptides from natural animal sources, such as terrestrial mammals, marine animals, amphibians, and animal venoms. However, the mode of action by which bioactive peptides inhibit the proliferation of cancer cells remains unclear. In this review, we present the animal sources from which bioactive peptides with anticancer activity are derived and discuss multiple proposed mechanisms by which these peptides exert cytotoxic effects against cancer cells.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

2 

McGuire S: World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 7:418–419. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R and Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2:751–760. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Amit D and Hochberg A: Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J Transl Med. 8:1342010. View Article : Google Scholar : PubMed/NCBI

5 

Kang TH, Mao CP, He L, Tsai YC, Liu K, La V, Wu TC and Hung CF: Tumor-targeted delivery of IL-2 by NKG2D leads to accumulation of antigen-specific CD8+ T cells in the tumor loci and enhanced anti-tumor effects. PLoS One. 7:e351412012. View Article : Google Scholar : PubMed/NCBI

6 

Blaurock N, Schmerler D, Hünniger K, Kurzai O, Ludewig K, Baier M, Brunkhorst FM, Imhof D and Kiehntopf M: C-terminal alpha-1 antitrypsin peptide: A new sepsis biomarker with immunomodulatory function. Mediators Inflamm. 2016:61294372016. View Article : Google Scholar : PubMed/NCBI

7 

Porta A, Petrone AM, Morello S, Granata I, Rizzo F, Memoli D, Weisz A and Maresca B: Design and expression of peptides with antimicrobial activity against Salmonella typhimurium. Cell Microbiol. 19:e126452017.doi: 10.1111/cmi.12645. View Article : Google Scholar

8 

Dabarera MC, Athiththan LV and Perera RP: Antihypertensive peptides from curd. Ayu. 36:214–219. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Shiratsuchi E, Ura M, Nakaba M, Maeda I and Okamoto K: Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts. J Pept Sci. 16:652–658. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Qin Y, Zhou J, Zhang W, Yang X, Wang J, Wei C, Gu F and Lei T: Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer Agents Med Chem. Jun 26–2016.(Epub ahead of print).

11 

Kongcharoen A, Poolex W, Wichai T and Boonsombat R: Production of an antioxidative peptide from hairy basil seed waste by a recombinant Escherichia coli. Biotechnol Lett. 38:1195–1201. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Iwaniak A, Darewicz M, Minkiewicz P, Protasiewicz M and Borawska J: (Biologically active peptides derived from food proteins as the food components with cardioprotective properties). Pol Merkur Lekarski. 36:403–406. 2014.(In Polish). PubMed/NCBI

13 

Jang A, Jo C, Kang K-S and Lee M: Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 107:327–336. 2008. View Article : Google Scholar

14 

Su L, Xu G, Shen J, Tuo Y, Zhang X, Jia S, Chen Z and Su X: Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncol Rep. 23:3–9. 2010.PubMed/NCBI

15 

Yu L, Yang L, An W and Su X: Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J Cell Biochem. 115:697–711. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Su X, Dong C, Zhang J, Su L, Wang X, Cui H and Chen Z: Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci. 4:72014. View Article : Google Scholar : PubMed/NCBI

17 

Su LY, Shi YX, Yan MR, Xi Y and Su XL: Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol Sin. 36:1514–1519. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Park YW and Nam MS: Bioactive peptides in milk and dairy products: A review. Korean J Food Sci Anim Resour. 35:831–840. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Roy MK, Watanabe Y and Tamai Y: Induction of apoptosis in HL-60 cells by skimmed milk digested with a proteolytic enzyme from the yeast Saccharomyces cerevisiae. J Biosci Bioeng. 88:426–432. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Meisel H and FitzGerald RJ: Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr Pharm Des. 9:1289–1295. 2003. View Article : Google Scholar : PubMed/NCBI

21 

MacDonald RS, Thornton WH Jr and Marshall RT: A cell culture model to identify biologically active peptides generated by bacterial hydrolysis of casein. J Dairy Sci. 77:1167–1175. 1994. View Article : Google Scholar : PubMed/NCBI

22 

Ganjam LS, Thornton WH Jr, Marshall RT and MacDonald RS: Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. J Dairy Sci. 80:2325–2329. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Legrand D, Pierce A, Elass E, Carpentier M, Mariller C and Mazurier J: Lactoferrin structure and functions. Adv Exp Med Biol. 606:163–194. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Sánchez-Gómez S, Ferrer-Espada R, Stewart PS, Pitts B, Lohner K and de Martínez Tejada G: Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol. 15:1372015. View Article : Google Scholar : PubMed/NCBI

25 

Yin C, Wong JH and Ng TB: Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin. Curr Mol Med. 14:1139–1154. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Mader JS, Salsman J, Conrad DM and Hoskin DW: Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther. 4:612–624. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Løkke C, Ponthan F, Johnsen JI, Sveinbjørnsson B, Kogner P, et al: The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer. 119:493–500. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Yin CM, Wong JH, Xia J and Ng TB: Studies on anticancer activities of lactoferrin and lactoferricin. Curr Protein Pept Sci. 14:492–503. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Harnedy PA and FitzGerald RJ: Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods. 4:6–24. 2012. View Article : Google Scholar

30 

Zhou QJ, Wang J, Liu M, Qiao Y, Hong WS, Su YQ, Han KH, Ke QZ and Zheng WQ: Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol. 55:195–202. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Shaala LA, Youssef DT, Ibrahim SR and Mohamed GA: Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res. Mar 7–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

32 

Suarez-Jimenez GM, Burgos-Hernandez A and Ezquerra-Brauer JM: Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar Drugs. 10:963–986. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Guha P, Kaptan E, Bandyopadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DV, Vasta GR and Ahmed H: Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci USA. 110:5052–5057. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Jumeri and Kim SM: Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci Biotechnol. 20:10752011. View Article : Google Scholar

35 

Kurt O, Ozdal-Kurt F, Tuğlu MI and Akçora CM: The cytotoxic, neurotoxic, apoptotic and antiproliferative activities of extracts of some marine algae on the MCF-7 cell line. Biotech Histochem. 89:568–576. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Hsu K-C, Li-Chan ECY and Jao C-L: Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem. 126:617–622. 2011. View Article : Google Scholar

37 

Lee YG, Kim JY, Lee KW, Kim KH and Lee HJ: Peptides from anchovy sauce induce apoptosis in a human lymphoma cell (U937) through the increase of caspase-3 and −8 activities. Ann NY Acad Sci. 1010:399–404. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Lee YG, Lee KW, Kim JY, Kim KH and Lee HJ: Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. Biofactors. 21:63–67. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Picot L, Bordenave S, Didelot S, Fruitier-Arnaudin I, Sannier F, Thorkelsson G, Bergé JP, Guérard F, Chabeaud A and Piot JM: Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochem. 41:1217–1222. 2006. View Article : Google Scholar

40 

Chen JY, Lin WJ and Lin TL: A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides. 30:1636–1642. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Chang WT, Pan CY, Rajanbabu V, Cheng CW and Chen JY: Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1–5, shows antitumor activity in cancer cells. Peptides. 32:342–352. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Chen JY, Lin WJ, Wu JL, Her GM and Hui CF: Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells. Peptides. 30:2365–2373. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Hsu JC, Lin LC, Tzen JT and Chen JY: Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides. 32:900–910. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Wu SP, Huang TC, Lin CC, Hui CF, Lin CH and Chen JY: Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs. 10:1852–1872. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Wilson-Sanchez G, Moreno-Félix C, Velazquez C, Plascencia-Jatomea M, Acosta A, Machi-Lara L, Aldana-Madrid ML, Ezquerra-Brauer JM, Robles-Zepeda R and Burgos-Hernandez A: Antimutagenicity and antiproliferative studies of lipidic extracts from white shrimp (Litopenaeus vannamei). Mar Drugs. 8:2795–2809. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Lin MC, Lin SB, Chen JC, Hui CF and Chen JY: Shrimp anti-lipopolysaccharide factor peptide enhances the antitumor activity of cisplatin in vitro and inhibits HeLa cells growth in nude mice. Peptides. 31:1019–1025. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, Gueguen Y, Boze H, Moulin G and Bachère E: Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol. 29:841–851. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Kannan A, Hettiarachchy NS, Marshall M, Raghavan S and Kristinsson H: Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. J Sci Food Agric. 91:1920–1924. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Aneiros A and Garateix A: Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci. 803:41–53. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Baker MA, Grubb DR and Lawen A: Didemnin B induces apoptosis in proliferating but not resting peripheral blood mononuclear cells. Apoptosis. 7:407–412. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Ahuja D, Vera MD, SirDeshpande BV, Morimoto H, Williams PG, Joullié MM and Toogood PL: Inhibition of protein synthesis by didemnin B: How EF-1alpha mediates inhibition of translocation. Biochemistry. 39:4339–4346. 2000. View Article : Google Scholar : PubMed/NCBI

52 

Vera MD and Joullié MM: Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev. 22:102–145. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, Broggini M, D'Incalci M, Ribatti D and Giavazzi R: Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 90:2418–2424. 2004.PubMed/NCBI

54 

Andavan GS and Lemmens-Gruber R: Cyclodepsipeptides from marine sponges: Natural agents for drug research. Mar Drugs. 8:810–834. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Faivre S, Chièze S, Delbaldo C, Ady-Vago N, Guzman C, Lopez-Lazaro L, Lozahic S, Jimeno J, Pico F, Armand JP, et al: Phase I and pharmacokinetic study of aplidine, a new marine cyclodepsipeptide in patients with advanced malignancies. J Clin Oncol. 23:7871–7880. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Geldof AA, Mastbergen SC, Henrar RE and Faircloth GT: Cytotoxicity and neurocytotoxicity of new marine anticancer agents evaluated using in vitro assays. Cancer Chemother Pharmacol. 44:312–318. 1999. View Article : Google Scholar : PubMed/NCBI

57 

Albella B, Faircloth G, López-Lázaro L, Guzmán C, Jimeno J and Bueren JA: In vitro toxicity of ET-743 and aplidine, two marine-derived antineoplastics, on human bone marrow haematopoietic progenitors. comparison with the clinical results. Eur J Cancer. 38:1395–1404. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Hamada Y and Shioiri T: Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem Rev. 105:4441–4482. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Vervoort H, Fenical W and Epifanio RA: Tamandarins A and B: New cytotoxic depsipeptides from a Brazilian ascidian of the family Didemnidae. J Org Chem. 65:782–792. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Cheng L, Wang C, Liu H, Wang F, Zheng L, Zhao J, Chu E and Lin X: A novel polypeptide extracted from Ciona savignyi induces apoptosis through a mitochondrial-mediated pathway in human colorectal carcinoma cells. Clin Colorectal Cancer. 11:207–214. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Liu G, Liu M, Wei J, Huang H, Zhang Y, Zhao J, Xiao L, Wu N, Zheng L and Lin X: CS5931, a novel polypeptide in Ciona savignyi, represses angiogenesis via inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Mar Drugs. 12:1530–1544. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT and Prinsep MR: Marine natural products. Nat Prod Rep. 26:170–244. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Ibrahim SR, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin W, Wray V, Edrada-Ebel R and Proksch P: Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem. 18:4947–4956. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Coello L, Reyes F, Martín MJ, Cuevas C and Fernández R: Isolation and structures of pipecolidepsins A and B, cytotoxic cyclic depsipeptides from the Madagascan sponge Homophymia lamellosa. J Nat Prod. 77:298–303. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Zhan KX, Jiao WH, Yang F, Li J, Wang SP, Li YS, Han BN and Lin HW: Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis. J Nat Prod. 77:2678–2684. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Williams DE, Yu K, Behrisch HW, Van Soest R and Andersen RJ: Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J Nat Prod. 72:1253–1257. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Nakazawa H, Kitano K, Cioca D, Ishikawa M, Ueno M, Ishida F and Kiyosawa K: Induction of polyploidization by jaspamide in HL-60 cells. Acta Haematol. 104:65–71. 2000. View Article : Google Scholar : PubMed/NCBI

68 

Cioca DP and Kitano K: Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells. Cell Mol Life Sci. 59:1377–1387. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Odaka C, Sanders ML and Crews P: Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin Diagn Lab Immunol. 7:947–952. 2000.PubMed/NCBI

70 

Ebada SS, Wray V, de Voogd NJ, Deng Z, Lin W and Proksch P: Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar Drugs. 7:434–444. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Zampella A, Sepe V, Bellotta F, Luciano P, D'Auria MV, Cresteil T, Debitus C, Petek S, Poupat C and Ahond A: Homophymines B-E and A1-E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org Biomol Chem. 7:4037–4044. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Pelay-Gimeno M, García-Ramos Y, Martin Jesús M, Spengler J, Molina-Guijarro JM, Munt S, Francesch AM, Cuevas C, Tulla-Puche J and Albericio F: The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nat Commun. 4:23522013. View Article : Google Scholar : PubMed/NCBI

73 

Freitas VM, Rangel M, Bisson LF, Jaeger RG and Machado-Santelli GM: The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment. J Cell Physiol. 216:583–594. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Tan KC, Wakimoto T and Abe I: Lipodiscamides A-C, new cytotoxic lipopeptides from Discodermia kiiensis. Org Lett. 16:3256–3259. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Bishara A, Rudi A, Aknin M, Neumann D, Ben-Califa N and Kashman Y: Taumycins A and B, two bioactive lipodepsipeptides from the Madagascar sponge Fascaplysinopsis sp. Org Lett. 10:4307–4309. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Teta R, Irollo E, Della Sala G, Pirozzi G, Mangoni A and Costantino V: Smenamides A and B, chlorinated peptide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar Drugs. 11:4451–4463. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Wang YK, He HL, Wang GF, Wu H, Zhou BC, Chen XL and Zhang YZ: Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar Drugs. 8:255–268. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Cheong SH, Kim EK, Hwang JW, Kim YS, Lee JS, Moon SH, Jeon BT and Park PJ: Purification of a novel peptide derived from a shellfish, Crassostrea gigas, and evaluation of its anticancer property. J Agric Food Chem. 61:11442–11446. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Kim EK, Joung HJ, Kim YS, Hwang JW, Ahn CB, Jeon YJ, Moon SH and Park PJ: Purification of a novel anticancer peptide from enzymatic hydrolysate of Mytilus coruscus. J Microbiol Biotechnol. 22:1381–1387. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Harris JR and Markl J: Keyhole limpet hemocyanin: Molecular structure of a potent marine immunoactivator. A review. Eur Urol. 37:(Suppl 3). 24–33. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Tzianabos AO: Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin Microbiol Rev. 13:523–533. 2000. View Article : Google Scholar : PubMed/NCBI

82 

Lamm DL, Dehaven JI and Riggs DR: Keyhole limpet hemocyanin immunotherapy of bladder cancer: Laboratory and clinical studies. Eur Urol. 37:(Suppl 3). 41–44. 2000. View Article : Google Scholar : PubMed/NCBI

83 

Murai A, Kitahara K, Okumura S, Kobayashi M and Horio F: Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens. Anim Sci J. 87:257–265. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Riggs DR, Jackson B, Vona-Davis L and McFadden D: In vitro anticancer effects of a novel immunostimulant: Keyhole limpet hemocyanin. J Surg Res. 108:279–284. 2002. View Article : Google Scholar : PubMed/NCBI

85 

McFadden DW, Riggs DR, Jackson BJ and Vona-Davis L: Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett's esophageal adenocarcinoma. Am J Surg. 186:552–555. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Riggs DR, Jackson BJ, Vona-Davis L, Nigam A and McFadden DW: In vitro effects of keyhole limpet hemocyanin in breast and pancreatic cancer in regards to cell growth, cytokine production, and apoptosis. Am J Surg. 189:680–684. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Pettit GR, Srirangam JK, Barkoczy J, Williams MD, Durkin KP, Boyd MR, Bai R, Hamel E, Schmidt JM and Chapuis JC: Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des. 10:529–544. 1995.PubMed/NCBI

88 

Pettit GR, Flahive EJ, Boyd MR, Bai R, Hamel E, Pettit RK and Schmidt JM: Antineoplastic agents 360. Synthesis and cancer cell growth inhibitory studies of dolastatin 15 structural modifications. Anticancer Drug Des. 13:47–66. 1998.PubMed/NCBI

89 

Maderna A, Doroski M, Subramanyam C, Porte A, Leverett CA, Vetelino BC, Chen Z, Risley H, Parris K, Pandit J, et al: Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J Med Chem. 57:10527–10543. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Gajula PK, Asthana J, Panda D and Chakraborty TK: A synthetic dolastatin 10 analogue suppresses microtubule dynamics, inhibits cell proliferation, and induces apoptotic cell death. J Med Chem. 56:2235–2245. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Pettit GR, Hogan F and Toms S: Antineoplastic agents. 592. Highly effective cancer cell growth inhibitory structural modifications of dolastatin 10. J Nat Prod. 74:962–968. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Suenaga K, Kajiwara S, Kuribayashi S, Handa T and Kigoshi H: Synthesis and cytotoxicity of aurilide analogs. Bioorg Med Chem Lett. 18:3902–3905. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Sato S, Murata A, Orihara T, Shirakawa T, Suenaga K, Kigoshi H and Uesugi M: Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol. 18:131–139. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Semenzato M, Cogliati S and Scorrano L: Prohibitin(g) cancer: Aurilide and killing by Opa1-dependent cristae remodeling. Chem Biol. 18:8–9. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Shilabin AG and Hamann MT: In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg Med Chem. 19:6628–6632. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Cruz LJ, Luque-Ortega JR, Rivas L and Albericio F: Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents. Mol Pharm. 6:813–824. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Hosta L, Pla-Roca M, Arbiol J, López-Iglesias C, Samitier J, Cruz LJ, Kogan MJ and Albericio F: Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjug Chem. 20:138–146. 2009. View Article : Google Scholar : PubMed/NCBI

98 

García-Rocha M, Bonay P and Avila J: The antitumoral compound Kahalalide F acts on cell lysosomes. Cancer Lett. 99:43–50. 1996. View Article : Google Scholar : PubMed/NCBI

99 

Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FA and Giaccone G: Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol Pharmacol. 68:502–510. 2005.PubMed/NCBI

100 

Wesson KJ and Hamann MT: Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J Nat Prod. 59:629–631. 1996. View Article : Google Scholar : PubMed/NCBI

101 

Conlon JM, Mechkarska M, Lukic ML and Flatt PR: Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides. 57:67–77. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Angeletti LR, Agrimi U, Curia C, French D and Mariani-Costantini R: Healing rituals and sacred serpents. Lancet. 340:223–225. 1992. View Article : Google Scholar : PubMed/NCBI

103 

Oelkrug C, Hartke M and Schubert A: Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res. 35:635–643. 2015.PubMed/NCBI

104 

Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H and Woodhams DC: The alyteserins: Two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides. 30:1069–1073. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Conlon JM, Mechkarska M, Prajeep M, Arafat K, Zaric M, Lukic ML and Attoub S: Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids. 44:715–723. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Conlon JM, Galadari S, Raza H and Condamine E: Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem Biol Drug Des. 72:58–64. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Rozek T, Wegener KL, Bowie JH, Olver IN, Carver JA, Wallace JC and Tyler MJ: The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur J Biochem. 267:5330–5341. 2000. View Article : Google Scholar : PubMed/NCBI

108 

van Zoggel H, Hamma-Kourbali Y, Galanth C, Ladram A, Nicolas P, Courty J, Amiche M and Delbé J: Antitumor and angiostatic peptides from frog skin secretions. Amino Acids. 42:385–395. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Shi D, Hou X, Wang L, Gao Y, Wu D, Xi X, Zhou M, Kwok HF, Duan J, Chen T, et al: Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of Pachymedusa dacnicolor. Toxins (Basel). 8:82016. View Article : Google Scholar

110 

Conlon JM, Woodhams DC, Raza H, Coquet L, Leprince J, Jouenne T, Vaudry H and Rollins-Smith LA: Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon. 50:498–506. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Wan Y, Ma C, Zhou M, Xi X, Li L, Wu D, Wang L, Lin C, Lopez JC, Chen T, et al: Phylloseptin-PBa - A novel broad-spectrum antimicrobial peptide from the skin secretion of the peruvian purple-sided leaf frog (Phyllomedusa baltea) which exhibits cancer cell cytotoxicity. Toxins (Basel). 7:5182–5193. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Ohsaki Y, Gazdar AF, Chen HC and Johnson BE: Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 52:3534–3538. 1992.PubMed/NCBI

113 

Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, Harder J, Unteregger G and Stöckle M: Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol. 50:141–147. 2006. View Article : Google Scholar : PubMed/NCBI

114 

Baker MA, Maloy WL, Zasloff M and Jacob LS: Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 53:3052–3057. 1993.PubMed/NCBI

115 

Koszałka P, Kamysz E, Wejda M, Kamysz W and Bigda J: Antitumor activity of antimicrobial peptides against U937 histiocytic cell line. Acta Biochim Pol. 58:111–117. 2011.PubMed/NCBI

116 

Miyazaki Y, Aoki M, Yano Y and Matsuzaki K: Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry. 51:10229–10235. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Li S, Hao L, Bao W, Zhang P, Su D, Cheng Y, Nie L, Wang G, Hou F and Yang Y: A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell. Arch Microbiol. 198:473–482. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Libério MS, Joanitti GA, Azevedo RB, Cilli EM, Zanotta LC, Nascimento AC, Sousa MV, Pires Júnior OR, Fontes W and Castro MS: Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids. 40:51–59. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Attoub S, Arafat H, Mechkarska M and Conlon JM: Anti-tumor activities of the host-defense peptide hymenochirin-1B. Regul Pept. 187:51–56. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Attoub S, Mechkarska M, Sonnevend A, Radosavljevic G, Jovanovic I, Lukic ML and Conlon JM: Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides. 39:95–102. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Merchant ME, Roche C, Elsey RM and Prudhomme J: Antibacterial properties of serum from the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol. 136:505–513. 2003. View Article : Google Scholar : PubMed/NCBI

122 

Merchant ME, Pallansch M, Paulman RL, Wells JB, Nalca A and Ptak R: Antiviral activity of serum from the American alligator (Alligator mississippiensis). Antiviral Res. 66:35–38. 2005. View Article : Google Scholar : PubMed/NCBI

123 

Merchant ME, Leger N, Jerkins E, Mills K, Pallansch MB, Paulman RL and Ptak RG: Broad spectrum antimicrobial activity of leukocyte extracts from the American alligator (Alligator mississippiensis). Vet Immunol Immunopathol. 110:221–228. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Merchant ME, Roche CM, Thibodeaux D and Elsey RM: Identification of alternative pathway serum complement activity in the blood of the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol. 141:281–288. 2005. View Article : Google Scholar : PubMed/NCBI

125 

Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T and Thammasirirak S: Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev Comp Immunol. 35:545–553. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A and Thammasirirak S: Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. J Antibiot (Tokyo). 67:205–212. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Patathananone S, Thammasirirak S, Daduang J, Chung JG, Temsiripong Y and Daduang S: Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. Environ Toxicol. 31:986–997. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Theansungnoen T, Maijaroen S, Jangpromma N, Yaraksa N, Daduang S, Temsiripong T, Daduang J and Klaynongsruang S: Cationic antimicrobial peptides derived from Crocodylus siamensis leukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J. 35:202–211. 2016. View Article : Google Scholar : PubMed/NCBI

129 

He S, Mao X, Zhang T, Guo X, Ge Y, Ma C and Zhang X: Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). J Microencapsul. 33:344–354. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Chippaux JP and Goyffon M: Epidemiology of scorpionism: A global appraisal. Acta Trop. 107:71–79. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Goudet C, Chi CW and Tytgat J: An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon. 40:1239–1258. 2002. View Article : Google Scholar : PubMed/NCBI

132 

Srinivasan KN, Gopalakrishnakone P, Tan PT, Chew KC, Cheng B, Kini RM, Koh JL, Seah SH and Brusic V: SCORPION, a molecular database of scorpion toxins. Toxicon. 40:23–31. 2002. View Article : Google Scholar : PubMed/NCBI

133 

DeBin JA, Maggio JE and Strichartz GR: Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 264:C361–C369. 1993.PubMed/NCBI

134 

Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E and De Waard M: Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel). 7:1079–1101. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Mamelak AN and Jacoby DB: Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin Drug Deliv. 4:175–186. 2007. View Article : Google Scholar : PubMed/NCBI

136 

Veiseh O, Gunn JW, Kievit FM, Sun C, Fang C, Lee JS and Zhang M: Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small. 5:256–264. 2009. View Article : Google Scholar : PubMed/NCBI

137 

Deshane J, Garner CC and Sontheimer H: Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem. 278:4135–4144. 2003. View Article : Google Scholar : PubMed/NCBI

138 

Soroceanu L, Manning TJ Jr and Sontheimer H: Modulation of glioma cell migration and invasion using Cl(−) and K(+) ion channel blockers. J Neurosci. 19:5942–5954. 1999.PubMed/NCBI

139 

Sontheimer H: An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 233:779–791. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Lui VC, Lung SS, Pu JK, Hung KN and Leung GK: Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res. 30:4515–4524. 2010.PubMed/NCBI

141 

Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T and Shaw C: Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie. 95:1784–1794. 2013. View Article : Google Scholar : PubMed/NCBI

142 

Ali SA, Alam M, Abbasi A, Undheim EA, Fry BG, Kalbacher H and Voelter W: Structure-activity relationship of chlorotoxin-like peptides. Toxins (Basel). 8:362016. View Article : Google Scholar : PubMed/NCBI

143 

Kuhn-Nentwig L: Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci. 60:2651–2668. 2003. View Article : Google Scholar : PubMed/NCBI

144 

Vorontsova OV, Egorova NS, Arseniev AS and Feofanov AV: Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie. 93:227–241. 2011. View Article : Google Scholar : PubMed/NCBI

145 

Liu Z, Deng M, Xiang J, Ma H, Hu W, Zhao Y, Li DW and Liang S: A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr Mol Med. 12:1350–1360. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Moreno M and Giralt E: Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins (Basel). 7:1126–1150. 2015. View Article : Google Scholar : PubMed/NCBI

147 

Havas LJ: Effect of bee venom on colchicine-induced tumours. Nature. 166:567–568. 1950. View Article : Google Scholar : PubMed/NCBI

148 

Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ and Hong JT: Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol. 258:72–81. 2012. View Article : Google Scholar : PubMed/NCBI

149 

Wang C, Chen T, Zhang N, Yang M, Li B, Lü X, Cao X and Ling C: Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J Biol Chem. 284:3804–3813. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Park MH, Choi MS, Kwak DH, Oh KW, Yoon DY, Han SB, Song HS, Song MJ and Hong JT: Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate. 71:801–812. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Park JH, Jeong YJ, Park KK, Cho HJ, Chung IK, Min KS, Kim M, Lee KG, Yeo JH, Park KK, et al: Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol Cells. 29:209–215. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Gajski G and Garaj-Vrhovac V: Melittin: A lytic peptide with anticancer properties. Environ Toxicol Pharmacol. 36:697–705. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Pan H, Soman NR, Schlesinger PH, Lanza GM and Wickline SA: Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 3:318–327. 2011. View Article : Google Scholar : PubMed/NCBI

154 

Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA and Schlesinger PH: Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest. 119:2830–2842. 2009. View Article : Google Scholar : PubMed/NCBI

155 

Yamada Y, Shinohara Y, Kakudo T, Chaki S, Futaki S, Kamiya H and Harashima H: Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm. 303:1–7. 2005. View Article : Google Scholar : PubMed/NCBI

156 

de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N, Auada AV, Farias CF, Pasqualoto KF, Rodrigues CP, et al: Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides. 68:113–119. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Vyas VK, Brahmbhatt K, Bhatt H and Parmar U: Therapeutic potential of snake venom in cancer therapy: Current perspectives. Asian Pac J Trop Biomed. 3:156–162. 2013. View Article : Google Scholar : PubMed/NCBI

158 

Kerkis I, Hayashi MA, da Prieto Silva AR, Pereira A, De Sá, Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A and Yamane T: State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed Res Int. 2014:6759852014. View Article : Google Scholar : PubMed/NCBI

159 

Pereira A, Kerkis A, Hayashi MA, Pereira AS, Silva FS, Oliveira EB, da Prieto Silva AR, Yamane T, Rádis-Baptista G and Kerkis I: Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin Investig Drugs. 20:1189–1200. 2011. View Article : Google Scholar : PubMed/NCBI

160 

León G, Sánchez L, Hernández A, Villalta M, Herrera M, Segura A, Estrada R and Gutiérrez JM: Immune response towards snake venoms. Inflamm Allergy Drug Targets. 10:381–398. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Wang H, Ke M, Tian Y, Wang J, Li B, Wang Y, Dou J and Zhou C: BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol. 707:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Naumann GB, Silva LF, Silva L, Faria G, Richardson M, Evangelista K, Kohlhoff M, Gontijo CM, Navdaev A, de Rezende FF, et al: Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta. 1810:683–694. 2011. View Article : Google Scholar : PubMed/NCBI

163 

Harris F, Dennison SR, Singh J and Phoenix DA: On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev. 33:190–234. 2013. View Article : Google Scholar : PubMed/NCBI

164 

Lohner K and Hilpert K: Antimicrobial peptides: Cell membrane and microbial surface interactions. Biochim Biophys Acta. 1858:915–917. 2016. View Article : Google Scholar : PubMed/NCBI

165 

Bailly C: Anticancer properties of lamellarins. Mar Drugs. 13:1105–1123. 2015. View Article : Google Scholar : PubMed/NCBI

166 

Riedl S, Leber R, Rinner B, Schaider H, Lohner K and Zweytick D: Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. Biochim Biophys Acta. 1848:2918–2931. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, Novak A, Lohner K and Zweytick D: In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta. 1808:2638–2645. 2011. View Article : Google Scholar : PubMed/NCBI

168 

Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar Z, Degani H and Shai Y: Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide. Cancer Res. 66:5371–5378. 2006. View Article : Google Scholar : PubMed/NCBI

169 

Won A, Ruscito A and Ianoul A: Imaging the membrane lytic activity of bioactive peptide latarcin 2a. Biochim Biophys Acta. 1818:3072–3080. 2012. View Article : Google Scholar : PubMed/NCBI

170 

Rashid R, Veleba M and Kline KA: Focal targeting of the bacterial envelope by antimicrobial peptides. Front Cell Dev Biol. 4:552016. View Article : Google Scholar : PubMed/NCBI

171 

Sorochkina AI, Kovalchuk SI, Omarova EO, Sobko AA, Kotova EA and Antonenko YN: Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes. Biochim Biophys Acta. 1828:2428–2435. 2013. View Article : Google Scholar : PubMed/NCBI

172 

Ryan L, Lamarre B, Diu T, Ravi J, Judge PJ, Temple A, Carr M, Cerasoli E, Su B, Jenkinson HF, et al: Anti-antimicrobial peptides: Folding-mediated host defense antagonists. J Biol Chem. 288:20162–20172. 2013. View Article : Google Scholar : PubMed/NCBI

173 

Han Y, Cui Z, Li YH, Hsu WH and Lee BH: In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs. 14:22015. View Article : Google Scholar : PubMed/NCBI

174 

Pino-Angeles A, Leveritt JM III and Lazaridis T: Pore structure and synergy in antimicrobial peptides of the magainin family. PLOS Comput Biol. 12:e10045702016. View Article : Google Scholar : PubMed/NCBI

175 

Zhang SK, Song JW, Gong F, Li SB, Chang HY, Xie HM, Gao HW, Tan YX and Ji SP: Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep. 6:273942016. View Article : Google Scholar : PubMed/NCBI

176 

Kashiwada A, Mizuno M and Hashimoto J: pH-Dependent membrane lysis by using melittin-inspired designed peptides. Org Biomol Chem. 14:6281–6288. 2016. View Article : Google Scholar : PubMed/NCBI

177 

Ros U and García-Sáez AJ: More Than a Pore: The interplay of pore-forming proteins and lipid membranes. J Membr Biol. 248:545–561. 2015. View Article : Google Scholar : PubMed/NCBI

178 

Bolintineanu DS, Vivcharuk V and Kaznessis YN: Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci. 13:11000–11011. 2012. View Article : Google Scholar : PubMed/NCBI

179 

Lohner K: Novel antibiotics based upon the multiple mechanisms of membrane perturbation by antimicrobial peptides. Curr Top Med Chem. July;2016.(In press). PubMed/NCBI

180 

Wang C, Zolotarskaya OY, Nair SS, Ehrhardt CJ, Ohman DE, Wynne KJ and Yadavalli VK: Real-time observation of antimicrobial polycation effects on Escherichia coli: Adapting the carpet model for membrane disruption to quaternary copolyoxetanes. Langmuir. 32:2975–2984. 2016. View Article : Google Scholar : PubMed/NCBI

181 

Bechinger B: The SMART model: Soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J Pept Sci. 21:346–355. 2015. View Article : Google Scholar : PubMed/NCBI

182 

Mulder KC, Lima LA, Miranda VJ, Dias SC and Franco OL: Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides. Front Microbiol. 4:3212013. View Article : Google Scholar : PubMed/NCBI

183 

Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, et al: Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA. 109:6566–6571. 2012. View Article : Google Scholar : PubMed/NCBI

184 

Linkermann A, Konstantinidis K and Kitsis RN: Catch me if you can: Targeting the mitochondrial permeability transition pore in myocardial infarction. Cell Death Differ. 23:1–2. 2016. View Article : Google Scholar : PubMed/NCBI

185 

Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH, Robbins J, et al: Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. eLife. 2:e007722013. View Article : Google Scholar : PubMed/NCBI

186 

Farsinejad S, Gheisary Z, Samani Ebrahimi S and Alizadeh AM: Mitochondrial targeted peptides for cancer therapy. Tumour Biol. 36:5715–5725. 2015. View Article : Google Scholar : PubMed/NCBI

187 

Meng MX, Ning JF, Yu JY, Chen DD, Meng XL, Xu JP and Zhang J: Antitumor activity of recombinant antimicrobial peptide penaeidin-2 against kidney cancer cells. J Huazhong Univ Sci Technolog Med Sci. 34:529–534. 2014. View Article : Google Scholar : PubMed/NCBI

188 

Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S and Hoskin DW: Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res. 13:R1022011. View Article : Google Scholar : PubMed/NCBI

189 

Hilchie AL, Conrad DM, Coombs MR, Zemlak T, Doucette CD, Liwski RS and Hoskin DW: Pleurocidin-family cationic antimicrobial peptides mediate lysis of multiple myeloma cells and impair the growth of multiple myeloma xenografts. Leuk Lymphoma. 54:2255–2262. 2013. View Article : Google Scholar : PubMed/NCBI

190 

Eike LM, Yang N, Rekdal Ø and Sveinbjørnsson B: The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells. Oncotarget. 6:34910–34923. 2015.PubMed/NCBI

191 

Burns KE, McCleerey TP and Thévenin D: pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates. Sci Rep. 6:284652016. View Article : Google Scholar : PubMed/NCBI

192 

Mandal SM, Pati BR, Chakraborty R and Franco OL: New insights into the bioactivity of peptides from probiotics. Front Biosci (Elite Ed). 8:450–459. 2016. View Article : Google Scholar : PubMed/NCBI

193 

Gaspar D, Veiga AS and Castanho MA: From antimicrobial to anticancer peptides. A review. Front Microbiol. 4:2942013. View Article : Google Scholar : PubMed/NCBI

194 

Liao W, Zhang R, Dong C, Yu Z and Ren J: Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: Facile synthesis and mechanistic investigation of anticancer activity. Int J Nanomed. 11:1305–1321. 2016.

195 

Svensen N, Walton JG and Bradley M: Peptides for cell-selective drug delivery. Trends Pharmacol Sci. 33:186–192. 2012. View Article : Google Scholar : PubMed/NCBI

196 

Wakabayashi N, Yano Y, Kawano K and Matsuzaki K: A pH-dependent charge reversal peptide for cancer targeting. Eur Biophys J. 46:121–127. 2017. View Article : Google Scholar : PubMed/NCBI

197 

Hu X and Liu S: Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures. Dalton Trans. 44:3904–3922. 2015. View Article : Google Scholar : PubMed/NCBI

198 

Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, Wesa AK and Janjic JM: A novel probe for the non-invasive detection of tumor-associated inflammation. OncoImmunology. 2:e230342013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang L, Dong C, Li X, Han W and Su X: Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 38: 637-651, 2017.
APA
Wang, L., Dong, C., Li, X., Han, W., & Su, X. (2017). Anticancer potential of bioactive peptides from animal sources (Review). Oncology Reports, 38, 637-651. https://doi.org/10.3892/or.2017.5778
MLA
Wang, L., Dong, C., Li, X., Han, W., Su, X."Anticancer potential of bioactive peptides from animal sources (Review)". Oncology Reports 38.2 (2017): 637-651.
Chicago
Wang, L., Dong, C., Li, X., Han, W., Su, X."Anticancer potential of bioactive peptides from animal sources (Review)". Oncology Reports 38, no. 2 (2017): 637-651. https://doi.org/10.3892/or.2017.5778
Copy and paste a formatted citation
x
Spandidos Publications style
Wang L, Dong C, Li X, Han W and Su X: Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 38: 637-651, 2017.
APA
Wang, L., Dong, C., Li, X., Han, W., & Su, X. (2017). Anticancer potential of bioactive peptides from animal sources (Review). Oncology Reports, 38, 637-651. https://doi.org/10.3892/or.2017.5778
MLA
Wang, L., Dong, C., Li, X., Han, W., Su, X."Anticancer potential of bioactive peptides from animal sources (Review)". Oncology Reports 38.2 (2017): 637-651.
Chicago
Wang, L., Dong, C., Li, X., Han, W., Su, X."Anticancer potential of bioactive peptides from animal sources (Review)". Oncology Reports 38, no. 2 (2017): 637-651. https://doi.org/10.3892/or.2017.5778
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team