Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2018 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Role of mitochondrial function in the invasiveness of human colon cancer cells

  • Authors:
    • Chen-Sung Lin
    • Li-Tzu Liu
    • Liang-Hung Ou
    • Siao-Cian Pan
    • Chia-I Lin
    • Yau-Huei Wei
  • View Affiliations / Copyright

    Affiliations: Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C., Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, R.O.C., Division of General Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan, R.O.C., Department of Pathology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan, R.O.C.
  • Pages: 316-330
    |
    Published online on: November 9, 2017
       https://doi.org/10.3892/or.2017.6087
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

We investigated the role of mitochondrial function in the invasiveness of human colorectal cancer (CRC) cell lines, using paired primary SW480 and metastatic SW620 cells, and appraised the clinical relevance of the alteration of mtDNA copy number in 33 pairs of CRC specimens after surgical resection. Suppression of mitochondrial function was achieved by the exposure of cells to oligomycin A (OA) or by knockdown of mitochondrial transcriptional factor A (TFAM) to evaluate their effects on energy metabolism, reactive oxygen species, protein expression levels of epithelial-mesenchymal transition (EMT) markers and invasive activity of CRC cells. We found that SW620 cells expressed higher levels of TFAM and mitochondrial DNA (mtDNA)-encoded NADH dehydrogenase subunit 6 (ND6) and cytochrome c oxidase subunit II (COX-II) and nuclear DNA-encoded NADH ubiquinone oxidoreductase subunit A9 (NDUFA9), iron-sulfur protein subunit B of succinate dehydrogenase (SDHB), ubiquinol‑cytochrome c reductase core protein I/II (UQCRC1/2) and cytochrome c oxidase subunit IV (COX-IV) when compared with the SW480 cells. The mtDNA copy number, ADP-triggered oxygen consumption rate (OCR) and respiratory control ratio (RCR) of succinate-supported respiration in the SW620 cells were higher than those noted in the SW480 cells. The intracellular levels of H2O2 and O2-• in the SW620 cells were lower than levels noted in the SW480 cells. Moreover, SW620 cells displayed lower protein levels of hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI) and lactate dehydrogenase (LDH), and lower lactate production rate, and expressed higher levels of EMT markers N-cadherin, vimentin and Snail, and showed higher Transwell migration and invasion activities as compared with the SW480 cells. After OA treatment, SW620 cells exhibited a decrease in OCR and RCR of succinate-supported respiration, an increase in lactate production rate and intracellular levels of H2O2 and O2-•. Moreover, the level of vimentin and Transwell migration activity of the SW620 cells were decreased. After TFAM knockdown, the protein levels of TFAM, ND6 and COX-II, and mtDNA copy number, OCR and RCR of succinate-supported respiration in the SW620-KD#4 and SW620-KD#5 cells were all lower than those noted in the SW620‑Control cells. By contrast, the protein level of HK-II, lactate production rate, the intracellular levels of H2O2 and O2-• in the SW620-KD#4 and SW620-KD#5 cells were all higher than those noted in the SW620-Control cells. Subsequently, both SW620-KD#4 and SW620-KD#5 cells had lower Transwell invasion activity than did the SW620-Control cells. Furthermore, we found that deeper invasion (P=0.025) and longer tumor length (P=0.069) were associated with higher mtDNA copy ratios in the 33 pairs of CRC specimens obtained from surgical resection. Taken together, we conclude that higher mtDNA copy number and mitochondrial function may confer an invasive advantage to CRCs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Puppa G, Sonzogni A, Colombari R and Pelosi G: TNM staging system of colorectal carcinoma: A critical appraisal of challenging issues. Arch Pathol Lab Med. 134:837–852. 2010.PubMed/NCBI

2 

Hsu CC, Tseng LM and Lee HC: Role of mitochondrial dysfunction in cancer progression. Exp Biol Med. 241:1281–1295. 2016. View Article : Google Scholar

3 

Fearon ER: Molecular genetics of colorectal cancer. Annu Rev Pathol. 6:479–507. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

5 

Kim JW and Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 66:8927–8930. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

7 

Bratic I and Trifunovic A: Mitochondrial energy metabolism and ageing. Biochim Biophys Acta. 797:961–967. 2010. View Article : Google Scholar

8 

Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A and Quintanilla B: The mitochondrial nucleoid: Integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol. 5:a0110802013. View Article : Google Scholar : PubMed/NCBI

9 

Kaniak-Golik A and Skoneczna A: Mitochondria-nucleus network for genome stability. Free Radic Biol Med. 82:73–104. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Baker MJ, Frazier AE, Gulbis JM and Ryan MT: Mitochondrial protein-import machinery: Correlating structure with function. Trends Cell Biol. 17:456–464. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Lee HC and Wei YH: Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol. 37:822–834. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Asin-Cayuela J and Gustafsson CM: Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci. 32:111–117. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Moraes CT: What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 17:199–205. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Boland ML, Chourasia AH and Macleod KF: Mitochondrial dysfunction in cancer. Front Oncol. 3:2922013. View Article : Google Scholar : PubMed/NCBI

15 

Lin CS and Wang LS: Mitochondrial DNA instability in human cancers. Formos J Surg. 46:71–75. 2013. View Article : Google Scholar

16 

Lee CH and Yu HS: Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis. Front Biosci. 8:312–320. 2016. View Article : Google Scholar

17 

Lee CH, Wu SB, Hong CH, Liao WT, Wu CY, Chen GS, Wei YH and Yu HS: Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers. Am J Pathol. 178:2066–2076. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH and Califano JA: Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res. 10:8512–8515. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Yu M, Shi Y, Wei X, Yang Y, Zhou Y, Hao X, Zhang N and Niu R: Depletion of mitochondrial DNA by ethidium bromide treatment inhibits the proliferation and tumorigenesis of T47D human breast cancer cells. Toxicol Lett. 170:83–93. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Lin CS, Chang SC, Ou LH, Chen CM, Hsieh SS, Chung YP, King KL, Lin SL and Wei YH: Mitochondrial DNA alterations correlate with the pathological status and the immunological ER, PR, HER-2/neu, p53 and Ki-67 expression in breast invasive ductal carcinoma. Oncol Rep. 33:2924–2934. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Lin CS, Chang SC, Wang LS, Chou TY, Hsu WH, Wu YC and Wei YH: The role of mitochondrial DNA alterations in esophageal squamous cell carcinomas. J Thorac Cardiovasc Surg. 139:189–197 e184. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Lin CS, Lee HT, Lee SY, Shen YA, Wang LS, Chen YJ and Wei YH: High mitochondrial DNA copy number and bioenergetic function are associated with tumor invasion of esophageal squamous cell carcinoma cell lines. Int J Mol Sci. 13:11228–11246. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Lee HC and Wei YH: Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci. 10:674–701. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Roberts ER and Thomas KJ: The role of mitochondria in the development and progression of lung cancer. Comput Struct Biotechnol J. 6:e2013030192013. View Article : Google Scholar : PubMed/NCBI

25 

Lin CS, Wang LS, Tsai CM and Wei YH: Low copy number and low oxidative damage of mitochondrial DNA are associated with tumor progression in lung cancer tissues after neoadjuvant chemotherapy. Interact Cardiovasc Thorac Surg. 7:954–958. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J, Bouvier R, Schägger H and Godinot C: Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 23:759–768. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Lin CS, Lee HT, Lee MH, Pan SC, Ke CY, Chiu AW and Wei YH: Role of mitochondrial DNA copy number alteration in human renal cell carcinoma. Int J Mol Sci. 17:E8142016. View Article : Google Scholar : PubMed/NCBI

28 

Wu CW, Yin PH, Hung WY, Li AF, Li SH, Chi CW, Wei YH and Lee HC: Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer. 44:19–28. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Lee YK, Woo HG and Yoon G: Mitochondrial defect-responsive gene signature in liver-cancer progression. BMB Rep. 48:597–598. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY, Wei YH, Liu TY and Chi CW: Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer. 90:2390–2396. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Toki N, Kagami S, Kurita T, Kawagoe T, Matsuura Y, Hachisuga T, Matsuyama A, Hashimoto H, Izumi H and Kohno K: Expression of mitochondrial transcription factor A in endometrial carcinomas: Clinicopathologic correlations and prognostic significance. Virchows Arch. 456:387–393. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Singh KP, Kumari R, Treas J and DuMond JW: Chronic exposure to arsenic causes increased cell survival, DNA damage, and increased expression of mitochondrial transcription factor A (mtTFA) in human prostate epithelial cells. Chem Res Toxicol. 24:340–349. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Mo M, Peng F, Wang L, Peng L, Lan G and Yu S: Roles of mitochondrial transcription factor A and microRNA-590-3p in the development of bladder cancer. Oncol Lett. 6:617–623. 2013.PubMed/NCBI

34 

Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsokos M, Stamp GW and Stetler-Stevenson WG: Validation of a model of colon cancer progression. J Pathol. 192:446–454. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Leibovitz A, Stinson JC, McCombs WB III, McCoy CE, Mazur KC and Mabry ND: Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 36:4562–4569. 1976.PubMed/NCBI

36 

Futschik M, Jeffs A, Pattison S, Kasabov N, Sullivan M, Merrie A and Reeve A: Gene expression profiling of metastatic and nonmetastatic colorectal cancer cell lines. Genome Lett. 1:26–34. 2002. View Article : Google Scholar

37 

Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS and Huang TS: TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem. 287:2798–2809. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Wang CH, Wang CC, Huang HC and Wei YH: Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J. 280:1039–1050. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Ma J, Zhang Q, Chen S, Fang B, Yang Q, Chen C, Miele L, Sarkar FH, Xia J and Wang Z: Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One. 8:e694852013. View Article : Google Scholar : PubMed/NCBI

40 

Cillero-Pastor B, Rego-Pérez I, Oreiro N, Fernandez-Lopez C and Blanco FJ: Mitochondrial respiratory chain dysfunction modulates metalloproteases −1, −3 and −13 in human normal chondrocytes in culture. BMC Musculoskelet Disord. 14:2352013. View Article : Google Scholar : PubMed/NCBI

41 

Li C, Wu Z, Liu M, Pazgier M and Lu W: Chemically synthesized human survivin does not inhibit caspase-3. Protein Sci. 17:1624–1629. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Salazar N, Muñoz D, Hoy J and Lokeshwar BL: Use of shRNA for stable suppression of chemokine receptor expression and function in human cancer cell lines. Methods Mol Biol. 1172:209–218. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Chen CT, Shih YR, Kuo TK, Lee OK and Wei YH: Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 26:960–968. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Clerc P and Polster BM: Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS One. 7:e344652012. View Article : Google Scholar : PubMed/NCBI

45 

Wang CH, Chen YF, Wu CY, Wu PC, Huang YL, Kao CH, Lin CH, Kao LS, Tsai TF and Wei YH: Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Hum Mol Genet. 23:4770–4785. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Chou SJ, Tseng WL, Chen CT, Lai YF, Chien CS, Chang YL, Lee HC, Wei YH and Chiou SH: Impaired ROS scavenging system in human induced pluripotent stem cells generated from patients with MERRF syndrome. Sci Rep. 6:236612016. View Article : Google Scholar : PubMed/NCBI

47 

Lee HT, Lin CS, Chen WS, Liao HT, Tsai CY and Wei YH: Leukocyte mitochondrial DNA alteration in systemic lupus erythematosus and its relevance to the susceptibility to lupus nephritis. Int J Mol Sci. 13:8853–8868. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Lee HT, Lin CS, Lee CS, Tsai CY and Wei YH: Increased 8-hydroxy-2′-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin Exp Immunol. 176:66–77. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Kubens BS and Zänker KS: Differences in the migration capacity of primary human colon carcinoma cells (SW480) and their lymph node metastatic derivatives (SW620). Cancer Lett. 131:55–64. 1998. View Article : Google Scholar : PubMed/NCBI

51 

Koppenol WH, Bounds PL and Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the ‘Warburg Effect’, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 39:211–222. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Lu J, Tan M and Cai Q: The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 356:156–164. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Zong WX, Rabinowitz JD and White E: Mitochondria and Cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL and Singh G: Mitochondria and cancer: Past, present, and future. Biomed Res Int. 2013:6123692013. View Article : Google Scholar : PubMed/NCBI

57 

Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, Chi CW, Tam TN and Wei YH: Mitochondrial genome instability and mtDNA depletion in human cancers. Ann NY Acad Sci. 1042:109–122. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM, Wei YH and Lee HC: Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer. 45:629–638. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Jiang WW, Masayesva B, Zahurak M, Carvalho AL, Rosenbaum E, Mambo E, Zhou S, Minhas K, Benoit N, Westra WH, et al: Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin Cancer Res. 11:2486–2491. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Wen S, Gao J, Zhang L, Zhou H, Fang D and Feng S: p53 increase mitochondrial copy number via up-regulation of mitochondrial transcription factor A in colorectal cancer. Oncotarget. 7:75981–75995. 2016.PubMed/NCBI

61 

Gao J, Wen S, Zhou H and Feng S: De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep. 12:7033–7038. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Feng S, Xiong L, Ji Z, Cheng W and Yang H: Correlation between increased copy number of mitochondrial DNA and clinicopathological stage in colorectal cancer. Oncol Lett. 2:899–903. 2011.PubMed/NCBI

63 

Feng S, Xiong L, Ji Z, Cheng W and Yang H: Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep. 6:125–130. 2012.PubMed/NCBI

64 

van Osch FH, Voets AM, Schouten LJ, Gottschalk RW, Simons CC, van Engeland M, Lentjes MH, van den Brandt PA, Smeets HJ and Weijenberg MP: Mitochondrial DNA copy number in colorectal cancer: Between tissue comparisons, clinicopathological characteristics and survival. Carcinogenesis. 36:1502–1510. 2015.PubMed/NCBI

65 

Cui H, Huang P, Wang Z, Zhang Y, Zhang Z, Xu W, Wang X, Han Y and Guo X: Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer. 13:1102013. View Article : Google Scholar : PubMed/NCBI

66 

Sanchez-Pino MJ, Moreno P and Navarro A: Mitochondrial dysfunction in human colorectal cancer progression. Front Biosci. 12:1190–1199. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Phan LM, Yeung SC and Lee MH: Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 11:1–19. 2014.PubMed/NCBI

68 

Yoshida GJ: Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI

69 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC and Harris AL; Tumor and Angiogenesis Research Group, : Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia. 7:1–6. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Zheng J: Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett. 4:1151–1157. 2012.PubMed/NCBI

72 

Vyas S, Zaganjor E and Haigis MC: Mitochondria and cancer. Cell. 166:555–566. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Ahn CS and Metallo CM: Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 3:12015. View Article : Google Scholar : PubMed/NCBI

74 

Shen YA, Wang CY, Hsieh YT, Chen YJ and Wei YH: Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle. 14:86–98. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Shen YA, Lin CH, Chi WH, Wang CY, Hsieh YT, Wei YH and Chen YJ: Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid Based Complement Alternat Med. 2013:5903932013. View Article : Google Scholar : PubMed/NCBI

76 

Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A, Khanna C, Van Winkle T and Avadhani NG: Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene. 33:5238–5250. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Chang CJ, Yin PH, Yang DM, Wang CH, Hung WY, Chi CW, Wei YH and Lee HC: Mitochondrial dysfunction-induced amphiregulin upregulation mediates chemo-resistance and cell migration in HepG2 cells. Cell Mol Life Sci. 66:1755–1765. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Yoshida Y, Hasegawa J, Nezu R, Kim YK, Hirota M, Kawano K, Izumi H and Kohno K: Clinical usefulness of mitochondrial transcription factor A expression as a predictive marker in colorectal cancer patients treated with FOLFOX. Cancer Sci. 102:578–582. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Nakayama Y, Yamauchi M, Minagawa N, Torigoe T, Izumi H, Kohno K and Yamaguchi K: Clinical significance of mitochondrial transcription factor A expression in patients with colorectal cancer. Oncol Rep. 27:1325–1330. 2012.PubMed/NCBI

80 

Barbour JA and Turner N: Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol. 2014:1560202014. View Article : Google Scholar : PubMed/NCBI

81 

da Cunha FM, Torelli NQ and Kowaltowski AJ: Mitochondrial retrograde signaling: Triggers, pathways, and outcomes. Oxid Med Cell Longev. 2015:4825822015. View Article : Google Scholar : PubMed/NCBI

82 

Guha M and Avadhani NG: Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion. 13:577–591. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

84 

St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, et al: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 127:397–408. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Alfadda AA and Sallam RM: Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012:9364862012. View Article : Google Scholar : PubMed/NCBI

87 

Eisele HJ, Markart P and Schulz R: Obstructive sleep apnea, oxidative stress, and cardiovascular disease: Evidence from human studies. Oxid Med Cell Longev. 2015:6084382015. View Article : Google Scholar : PubMed/NCBI

88 

Sabharwal SS and Schumacker PT: Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nat Rev Cancer. 14:709–721. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Lu F: Reactive oxygen species in cancer, too much or too little? Med Hypotheses. 69:1293–1298. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A and Beach D: Glycolytic enzymes can modulate cellular life span. Cancer Res. 65:177–185. 2005.PubMed/NCBI

91 

Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA, Kim JW, Yustein JT, Lee LA and Dang CV: Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 25:6225–6234. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL and Thompson CB: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene. 24:4165–4173. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Fields J, Hanisch JJ, Choi JW and Hwang PM: How does p53 regulate mitochondrial respiration? IUBMB Life. 59:682–684. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Ni J, Jiang Z, Shen L, Gao L, Yu M, Xu X, Zou S, Hua D and Wu S: β3GnT8 regulates the metastatic potential of colorectal carcinoma cells by altering the glycosylation of CD147. Oncol Rep. 31:1795–1801. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Cai K, Mulatz K, Ard R, Nguyen T and Gee SH: Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion. BMC Cancer. 14:2082014. View Article : Google Scholar : PubMed/NCBI

98 

Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gönner U, Wilsberg V, Junginger T, Berger MR, Galle PR and Moehler M: Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 11:1743–1750. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Kusakai G, Suzuki A, Ogura T, Miyamoto S, Ochiai A, Kaminishi M and Esumi H: ARK5 expression in colorectal cancer and its implications for tumor progression. Am J Pathol. 164:987–995. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Friedl P and Alexander S: Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell. 147:992–1009. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lin C, Liu L, Ou L, Pan S, Lin C and Wei Y: Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol Rep 39: 316-330, 2018.
APA
Lin, C., Liu, L., Ou, L., Pan, S., Lin, C., & Wei, Y. (2018). Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncology Reports, 39, 316-330. https://doi.org/10.3892/or.2017.6087
MLA
Lin, C., Liu, L., Ou, L., Pan, S., Lin, C., Wei, Y."Role of mitochondrial function in the invasiveness of human colon cancer cells". Oncology Reports 39.1 (2018): 316-330.
Chicago
Lin, C., Liu, L., Ou, L., Pan, S., Lin, C., Wei, Y."Role of mitochondrial function in the invasiveness of human colon cancer cells". Oncology Reports 39, no. 1 (2018): 316-330. https://doi.org/10.3892/or.2017.6087
Copy and paste a formatted citation
x
Spandidos Publications style
Lin C, Liu L, Ou L, Pan S, Lin C and Wei Y: Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol Rep 39: 316-330, 2018.
APA
Lin, C., Liu, L., Ou, L., Pan, S., Lin, C., & Wei, Y. (2018). Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncology Reports, 39, 316-330. https://doi.org/10.3892/or.2017.6087
MLA
Lin, C., Liu, L., Ou, L., Pan, S., Lin, C., Wei, Y."Role of mitochondrial function in the invasiveness of human colon cancer cells". Oncology Reports 39.1 (2018): 316-330.
Chicago
Lin, C., Liu, L., Ou, L., Pan, S., Lin, C., Wei, Y."Role of mitochondrial function in the invasiveness of human colon cancer cells". Oncology Reports 39, no. 1 (2018): 316-330. https://doi.org/10.3892/or.2017.6087
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team