|
1
|
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H,
Seitz H, Horwich MD, Syrzycka M, Honda BM, et al: Collapse of
germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs
in flies. Cell. 137:509–521. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Shrey K, Suchit A, Nishant M and Vibha R:
RNA interference: Emerging diagnostics and therapeutics tool.
Biochem Biophys Res Commun. 386:273–277. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Collins LJ and Penny D: The RNA
infrastructure: Dark matter of the eukaryotic cell? Trends Genet.
25:120–128. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Malone CD and Hannon GJ: Small RNAs as
guardians of the genome. Cell. 136:656–668. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Malone CD, Brennecke J, Dus M, Stark A,
McCombie WR, Sachidanandam R and Hannon GJ: Specialized piRNA
pathways act in germline and somatic tissues of the Drosophila
ovary. Cell. 137:522–535. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Freedman JE, Gerstein M, Mick E, Rozowsky
J, Levy D, Kitchen R, Das S, Shah R, Danielson K, Beaulieu L, et
al: Diverse human extracellular RNAs are widely detected in human
plasma. Nat Commun. 7:111062016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Iliev R, Stanik M, Fedorko M, Poprach A,
Vychytilova-Faltejskova P, Slaba K, Svoboda M, Fabian P, Pacik D,
Dolezel J, et al: Decreased expression levels of PIWIL1, PIWIL2,
and PIWIL4 are associated with worse survival in renal cell
carcinoma patients. OncoTargets Ther. 9:217–222. 2016.
|
|
8
|
Lee JH, Schutte D, Wulf G, Füzesi L,
Radzun HJ, Schweyer S, Engel W and Nayernia K: Stem-cell protein
Piwil2 is widely expressed in tumors and inhibits apoptosis through
activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 15:201–211.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Taubert H, Greither T, Kaushal D, Würl P,
Bache M, Bartel F, Kehlen A, Lautenschläger C, Harris L, Kraemer K,
et al: Expression of the stem cell self-renewal gene Hiwi and risk
of tumour-related death in patients with soft-tissue sarcoma.
Oncogene. 26:1098–1100. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang Y, Liu Y, Shen X, Zhang X, Chen X,
Yang C and Gao H: The PIWI protein acts as a predictive marker for
human gastric cancer. Int J Clin Exp Pathol. 5:315–325.
2012.PubMed/NCBI
|
|
11
|
Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z,
Zhou H and Li QN: piRNA, the new non-coding RNA, is aberrantly
expressed in human cancer cells. Clin Chim Acta. 412:1621–1625.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Huang G, Hu H, Xue X, Shen S, Gao E, Guo
G, Shen X and Zhang X: Altered expression of piRNAs and their
relation with clinicopathologic features of breast cancer. Clin
Transl Oncol. 15:563–568. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Law PT, Qin H, Ching AK, Lai KP, Co NN, He
M, Lung RW, Chan AW, Chan TF and Wong N: Deep sequencing of small
RNA transcriptome reveals novel non-coding RNAs in hepatocellular
carcinoma. J Hepatol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang
L, Chen L, Chu ZB, Tang B, Wang K, et al: piRNA-823 contributes to
tumorigenesis by regulating de novo DNA methylation and
angiogenesis in multiple myeloma. Leukemia. 29:196–206. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Luteijn MJ and Ketting RF:
PIWI-interacting RNAs: from generation to transgenerational
epigenetics. Nat Rev Genet. 14:523–534. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li Y, Wu X, Gao H, Jin JM, Li AX, Kim YS,
Pal SK, Nelson RA, Lau CM, Guo C, et al: Piwi-Interacting RNAs
(piRNAs) are dysregulated in renal cell carcinoma and associated
with tumor metastasis and cancer-specific survival. Mol Med.
21:381–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gigek CO, Chen ES, Calcagno DQ, Wisnieski
F, Burbano RR and Smith MA: Epigenetic mechanisms in gastric
cancer. Epigenomics. 4:279–294. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Potter VR: Initiation and promotion in
cancer formation: the importance of studies on intercellular
communication. Yale J Biol Med. 53:367–384. 1980.PubMed/NCBI
|
|
19
|
Lujambio A, Calin GA, Villanueva A, Ropero
S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso
MS, Faller WJ, et al: A microRNA DNA methylation signature for
human cancer metastasis. Proc Natl Acad Sci USA. 105:13556–13561.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tiwari VK, McGarvey KM, Licchesi JD, Ohm
JE, Herman JG, Schübeler D and Baylin SB: PcG proteins, DNA
methylation, and gene repression by chromatin looping. PLoS Biol.
6:2911–2927. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nowacka-Zawisza M and Wisnik E: DNA
methylation and histone modifications as epigenetic regulation in
prostate cancer (Review). Oncol Rep. 38:2587–2596. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Weick EM and Miska EA: piRNAs: From
biogenesis to function. Development. 141:3458–3471. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Han BW and Zamore PD: piRNAs. Curr Biol.
24:R730–R733. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Aravin AA, Sachidanandam R, Girard A,
Fejes-Toth K and Hannon GJ: Developmentally regulated piRNA
clusters implicate MILI in transposon control. Science.
316:744–747. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ross RJ, Weiner MM and Lin H: PIWI
proteins and PIWI-interacting RNAs in the soma. Nature.
505:353–359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Houwing S, Kamminga LM, Berezikov E,
Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz
E, Moens CB, et al: A role for Piwi and piRNAs in germ cell
maintenance and transposon silencing in Zebrafish. Cell. 129:69–82.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Aravin AA, Sachidanandam R, Bourc'his D,
Schaefer C, Pezic D, Toth KF, Bestor T and Hannon GJ: A piRNA
pathway primed by individual transposons is linked to de novo DNA
methylation in mice. Mol Cell. 31:785–799. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ghildiyal M and Zamore PD: Small silencing
RNAs: an expanding universe. Nat Rev Genet. 10:94–108. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Peng JC and Lin H: Beyond transposons: The
epigenetic and somatic functions of the Piwi-piRNA mechanism. Curr
Opin Cell Biol. 25:190–194. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Feschotte C and Pritham EJ: DNA
transposons and the evolution of eukaryotic genomes. Annu Rev
Genet. 41:331–368. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kubo S, Seleme MC, Soifer HS, Perez JL,
Moran JV, Kazazian HH Jr and Kasahara N: L1 retrotransposition in
nondividing and primary human somatic cells. Proc Natl Acad Sci
USA. 103:8036–8041. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pelisson A, Mejlumian L, Robert V, Terzian
C and Bucheton A: Drosophila germline invasion by the endogenous
retrovirus gypsy: Involvement of the viral env gene. Insect Biochem
Mol Biol. 32:1249–1256. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Leblanc P, Desset S, Giorgi F, Taddei AR,
Fausto AM, Mazzini M, Dastugue B and Vaury C: Life cycle of an
endogenous retrovirus, ZAM, in Drosophila melanogaster. J Virol.
74:10658–10669. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Brouha B, Schustak J, Badge RM,
Lutz-Prigge S, Farley AH, Moran JV and Kazazian HH Jr: Hot L1s
account for the bulk of retrotransposition in the human population.
Proc Natl Acad Sci USA. 100:5280–5285. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Alisch RS, Garcia-Perez JL, Muotri AR,
Gage FH and Moran JV: Unconventional translation of mammalian
LINE-1 retrotransposons. Genes Dev. 20:210–224. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Baer CF, Miyamoto MM and Denver DR:
Mutation rate variation in multicellular eukaryotes: causes and
consequences. Na Rev Genet. 8:619–631. 2007. View Article : Google Scholar
|
|
37
|
Belinco C, Diprima SN, Wolff RE, Thorp MW,
Buschette JT and Simmons MJ: Cytotype regulation in Drosophila
melanogaster: synergism between telomeric and non-telomeric P
elements. Genet Res. 91:383–394. 2009. View Article : Google Scholar
|
|
38
|
Simmons MJ, Peterson MP, Thorp MW,
Buschette JT, DiPrima SN, Harter CL and Skolnick MJ: piRNA-mediated
transposon regulation and the germ-line mutation rate in Drosophila
melanogaster males. Mutat Res. 773:16–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pezic D, Manakov SA, Sachidanandam R and
Aravin AA: piRNA pathway targets active LINE1 elements to establish
the repressive H3K9me3 mark in germ cells. Genes Dev. 28:1410–1428.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Czech B, Preall JB, McGinn J and Hannon
GJ: A transcriptome-wide RNAi screen in the Drosophila ovary
reveals factors of the germline piRNA pathway. Mol Cell.
50:749–761. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Handler D, Meixner K, Pizka M, Lauss K,
Schmied C, Gruber FS and Brennecke J: The genetic makeup of the
Drosophila piRNA pathway. Mol Cell. 50:762–777. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Muerdter F, Guzzardo PM, Gillis J, Luo Y,
Yu Y, Chen C, Fekete R and Hannon GJ: A genome-wide RNAi screen
draws a genetic framework for transposon control and primary piRNA
biogenesis in Drosophila. Mol Cell. 50:736–748. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sarot E, Payen-Groschene G, Bucheton A and
Pelisson A: Evidence for a piwi-dependent RNA silencing of the
gypsy endogenous retrovirus by the Drosophila melanogaster flamenco
gene. Genetics. 166:1313–1321. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Le Thomas A, Rogers AK, Webster A, Marinov
GK, Liao SE, Perkins EM, Hur JK, Aravin AA and Tóth KF: Piwi
induces piRNA-guided transcriptional silencing and establishment of
a repressive chromatin state. Genes Dev. 27:390–399. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sienski G, Batki J, Senti KA, Dönertas D,
Tirian L, Meixner K and Brennecke J: Silencio/CG9754 connects the
Piwi-piRNA complex to the cellular heterochromatin machinery. Genes
Dev. 29:2258–2271. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sienski G, Donertas D and Brennecke J:
Transcriptional silencing of transposons by Piwi and maelstrom and
its impact on chromatin state and gene expression. Cell.
151:964–980. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gunawardane LS, Saito K, Nishida KM,
Miyoshi K, Kawamura Y, Nagami T, Siomi H and Siomi MC: A
slicer-mediated mechanism for repeat-associated siRNA 5′end
formation in Drosophila. Science. 315:1587–1590. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Niki Y, Yamaguchi T and Mahowald AP:
Establishment of stable cell lines of Drosophila germ-line stem
cells. Proc Natl Acad Sci USA. 103:16325–16330. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Saito K, Ishizu H, Komai M, Kotani H,
Kawamura Y, Nishida KM, Siomi H and Siomi MC: Roles for the Yb body
components Armitage and Yb in primary piRNA biogenesis in
Drosophila. Genes Dev. 24:2493–2498. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ayyanathan K, Lechner MS, Bell P, Maul GG,
Schultz DC, Yamada Y, Tanaka K, Torigoe K and Rauscher FJ III:
Regulated recruitment of HP1 to a euchromatic gene induces
mitotically heritable, epigenetic gene silencing: A mammalian cell
culture model of gene variegation. Genes Dev. 17:1855–1869. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li Y, Danzer JR, Alvarez P, Belmont AS and
Wallrath LL: Effects of tethering HP1 to euchromatic regions of the
Drosophila genome. Development. 130:1817–1824. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Rangan P, Malone CD, Navarro C, Newbold
SP, Hayes PS, Sachidanandam R, Hannon GJ and Lehmann R: piRNA
production requires heterochromatin formation in Drosophila. Curr
Biol. 21:1373–1379. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang Z, Chen KM, Pandey RR, Homolka D,
Reuter M, Janeiro BK, Sachidanandam R, Fauvarque MO, McCarthy AA
and Pillai RS: PIWI slicing and EXD1 drive biogenesis of nuclear
piRNAs from cytosolic targets of the mouse piRNA pathway. Mol Cell.
61:138–152. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
He W, Wang Z, Wang Q, Fan Q, Shou C, Wang
J, Giercksky KE, Nesland JM and Suo Z: Expression of HIWI in human
esophageal squamous cell carcinoma is significantly associated with
poorer prognosis. BMC Cancer. 9:4262009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
He G, Chen L, Ye Y, Xiao Y, Hua K,
Jarjoura D, Nakano T, Barsky SH, Shen R and Gao JX: Piwil2
expressed in various stages of cervical neoplasia is a potential
complementary marker for p16INK4a. Am J Transl Res. 2:156–169.
2010.PubMed/NCBI
|
|
56
|
Rajasethupathy P, Antonov I, Sheridan R,
Frey S, Sander C, Tuschl T and Kandel ER: A role for neuronal
piRNAs in the epigenetic control of memory-related synaptic
plasticity. Cell. 149:693–707. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cui L, Lou Y, Zhang X, Zhou H, Deng H,
Song H, Yu X, Xiao B, Wang W and Guo J: Detection of circulating
tumor cells in peripheral blood from patients with gastric cancer
using piRNAs as markers. Clin Biochem. 44:1050–1057. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cheng J, Deng H, Xiao B, Zhou H, Zhou F,
Shen Z and Guo J: piR-823, a novel non-coding small RNA,
demonstrates in vitro and in vivo tumor suppressive activity in
human gastric cancer cells. Cancer Lett. 315:12–17. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gupta K, Miller JD, Li JZ, Russell MW and
Charbonneau C: Epidemiologic and socioeconomic burden of metastatic
renal cell carcinoma (mRCC): A literature review. Cancer Treat Rev.
34:193–205. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Siomi MC, Sato K, Pezic D and Aravin AA:
PIWI-interacting small RNAs: The vanguard of genome defence. Nat
Rev Mol Cell Biol. 12:246–258. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li D, Luo Y, Gao Y and Yang Y, Wang Y, Xu
Y, Tan S, Zhang Y, Duan J and Yang Y: piR-651 promotes tumor
formation in non-small cell lung carcinoma through the upregulation
of cyclin D1 and CDK4. Int J Mol Med. 38:927–936. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Weng W, Liu N, Toiyama Y, Kusunoki M,
Nagasaka T, Fujiwara T, Wei Q, Qin H, Lin H, Ma Y and Goel A: Novel
evidence for a PIWI-interacting RNA (piRNA) as an oncogenic
mediator of disease progression, and a potential prognostic
biomarker in colorectal cancer. Mol Cancer. 17:162018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wu X, Weng L, Li X, Guo C, Pal SK, Jin JM,
Li Y, Nelson RA, Mu B, Onami SH, et al: Identification of a
4-microRNA signature for clear cell renal cell carcinoma metastasis
and prognosis. PLoS One. 7:e356612012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zeng Y, Qu LK, Meng L, Liu CY, Dong B,
Xing XF, Wu J and Shou CC: HIWI expression profile in cancer cells
and its prognostic value for patients with colorectal cancer. Chin
Med J. 124:2144–2149. 2011.PubMed/NCBI
|
|
65
|
Liu JJ, Shen R, Chen L, Ye Y, He G, Hua K,
Jarjoura D, Nakano T, Ramesh GK, Shapiro CL, et al: Piwil2 is
expressed in various stages of breast cancers and has the potential
to be used as a novel biomarker. Int J Clin Exp Pathol. 3:328–337.
2010.PubMed/NCBI
|
|
66
|
Grochola LF, Greither T, Taubert H, Möller
P, Knippschild U, Udelnow A, Henne-Bruns D and Würl P: The stem
cell-associated Hiwi gene in human adenocarcinoma of the pancreas:
expression and risk of tumour-related death. Br J Cancer.
99:1083–1088. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mei Y, Clark D and Mao L: Novel dimensions
of piRNAs in cancer. Cancer Lett. 336:46–52. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tan Y, Liu L, Liao M, Zhang C, Hu S, Zou
M, Gu M and Li X: Emerging roles for PIWI proteins in cancer. Acta
Biochim Biophys Sin. 47:315–324. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Litwin M, Szczepanska-Buda A, Piotrowska
A, Dziegiel P and Witkiewicz W: The meaning of PIWI proteins in
cancer development. Oncol Lett. 13:3354–3362. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tamura S, Isobe T, Ariyama H, Nakano M,
Kikushige Y, Takaishi S, Kusaba H, Takenaka K, Ueki T, Nakamura M,
et al: Ecadherin regulates proliferation of colorectal cancer stem
cells through NANOG. Oncol Rep. 40:693–703. 2018.PubMed/NCBI
|
|
71
|
Liu J, Carmell MA, Rivas FV, Marsden CG,
Thomson JM, Song JJ, Hammond SM, Joshua-Tor L and Hannon GJ:
Argonaute2 is the catalytic engine of mammalian RNAi. Science.
305:1437–1441. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yin H and Lin H: An epigenetic activation
role of Piwi and a Piwi-associated piRNA in Drosophila
melanogaster. Nature. 450:304–308. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen Y, Hu W, Lu Y, Jiang S, Li C, Chen J,
Tao D, Liu Y, Yang Y and Ma Y: A TALEN-based specific transcript
knock-down of PIWIL2 suppresses cell growth in HepG2 tumor cell.
Cell Pprolif. 47:448–456. 2014. View Article : Google Scholar
|
|
74
|
Lee JH, Jung C, Javadian-Elyaderani P,
Schweyer S, Schütte D, Shoukier M, Karimi-Busheri F, Weinfeld M,
Rasouli-Nia A, Hengstler JG, et al: Pathways of proliferation and
antiapoptosis driven in breast cancer stem cells by stem cell
protein piwil2. Cancer Res. 70:4569–4579. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang H, Ren Y, Xu H, Pang D, Duan C and
Liu C: The expression of stem cell protein Piwil2 and piR-932 in
breast cancer. Surg Oncol. 22:217–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lee E, Iskow R, Yang L, Gokcumen O,
Haseley P, Luquette LJ III, Lohr JG, Harris CC, Ding L, Wilson RK,
et al: Landscape of somatic retrotransposition in human cancers.
Science. 337:967–971. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Andreotti G, Karami S, Pfeiffer RM,
Hurwitz L, Liao LM, Weinstein SJ, Albanes D, Virtamo J, Silverman
DT, Rothman N and Moore LE: LINE1 methylation levels associated
with increased bladder cancer risk in pre-diagnostic blood DNA
among US (PLCO) and European (ATBC) cohort study participants.
Epigenetics. 9:404–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Daskalos A, Nikolaidis G, Xinarianos G,
Savvari P, Cassidy A, Zakopoulou R, Kotsinas A, Gorgoulis V, Field
JK and Liloglou T: Hypomethylation of retrotransposable elements
correlates with genomic instability in non-small cell lung cancer.
Int J Cancer. 124:81–87. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang X, Jiang C, Fu B, Zhu R, Diao F, Xu
N, Chen Z, Tao W and Li CJ: MILI, a PIWI family protein, inhibits
melanoma cell migration through methylation of LINE1. Biochem
Biophys Res Commun. 457:514–519. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ye Y, Yin DT, Chen L, Zhou Q, Shen R, He
G, Yan Q, Tong Z, Issekutz AC, Shapiro CL, et al: Identification of
Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS One.
5:e134062010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kuramochi-Miyagawa S, Watanabe T, Gotoh K,
Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri
TW, et al: DNA methylation of retrotransposon genes is regulated by
Piwi family members MILI and MIWI2 in murine fetal testes. Genes
Dev. 22:908–917. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lu Y, Li C, Zhang K, Sun H, Tao D, Liu Y,
Zhang S and Ma Y: Identification of piRNAs in Hela cells by massive
parallel sequencing. BMB Rep. 43:635–641. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Virani S, Colacino JA, Kim JH and Rozek
LS: Cancer epigenetics: A brief review. ILAR J. 53:359–369. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chik F, Szyf M and Rabbani SA: Role of
epigenetics in cancer initiation and progression. Adv Exp Med Biol.
720:91–104. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cavalli LR, Urban CA, Dai D, de Assis S,
Tavares DC, Rone JD, Bleggi-Torres LF, Lima RS, Cavalli IJ, Issa
JP, et al: Genetic and epigenetic alterations in sentinel lymph
nodes metastatic lesions compared to their corresponding primary
breast tumors. Cancer Genet Cytogenet. 146:33–40. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Esteller M: Cancer epigenomics: DNA
methylomes and histone-modification maps. Nat Rev Genet. 8:286–298.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hinoue T, Weisenberger DJ, Lange CP, Shen
H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk
CM, et al: Genome-scale analysis of aberrant DNA methylation in
colorectal cancer. Genome Res. 22:271–282. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Azad N, Zahnow CA, Rudin CM and Baylin SB:
The future of epigenetic therapy in solid tumours-lessons from the
past. Nat Rev Clin Oncol. 10:256–266. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jones PA and Taylor SM: Cellular
differentiation, cytidine analogs and DNA methylation. Cell.
20:85–93. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Merry CR, Forrest ME, Sabers JN, Beard L,
Gao XH, Hatzoglou M, Jackson MW, Wang Z, Markowitz SD and Khalil
AM: DNMT1-associated long non-coding RNAs regulate global gene
expression and DNA methylation in colon cancer. Hum Mol Genet.
24:6240–6253. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu T, Wu X, Chen T, Luo Z and Hu X:
Downregulation of DNMT3A by miR-708-5p inhibits lung cancer stem
cell-like phenotypes through repressing Wnt/β-catenin signaling.
Clin Cancer Res. 24:1748–1760. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang LH, Huang J, Wu CR, Huang LY, Cui J,
Xing ZZ and Zhao CY: Downregulation of miR29b targets DNMT3b to
suppress cellular apoptosis and enhance proliferation in pancreatic
cancer. Mol Med Rep. 17:2113–2120. 2018.PubMed/NCBI
|
|
95
|
Yang L, Hou J, Cui XH, Suo LN and Lv YW:
RG108 induces the apoptosis of endometrial cancer Ishikawa cell
lines by inhibiting the expression of DNMT3B and demethylation of
HMLH1. Eur Rev Med Pharmacol Sci. 21:5056–5064. 2017.PubMed/NCBI
|
|
96
|
Heo J, Lim J, Lee S, Jeong J, Kang H, Kim
Y, Kang JW, Yu HY, Jeong EM, Kim K, et al: Sirt1 regulates DNA
methylation and differentiation potential of embryonic stem cells
by antagonizing Dnmt3l. Cell Rep. 18:1930–1945. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Guo Y, Wang M, Jia X, Zhu H, Zhi Y and
Yuan L: Wnt signaling pathway upregulates DNMT1 to trigger NHERF1
promoter hypermethylation in colon cancer. Oncol Rep. 40:1165–1173.
2018.PubMed/NCBI
|
|
98
|
Zochbauer-Muller S, Gazdar AF and Minna
JD: Molecular pathogenesis of lung cancer. Ann Rev Physiol.
64:681–708. 2002. View Article : Google Scholar
|
|
99
|
Nakajima NI, Niimi A, Isono M, Oike T,
Sato H, Nakano T and Shibata A: Inhibition of the HDAC/Suv39/G9a
pathway restores the expression of DNA damage-dependent major
histocompatibility complex class I-related chain A and B in cancer
cells. Oncol Rep. 38:693–702. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ferreira HJ, Heyn H, del Muro Garcia X,
Vidal A, Larriba S, Muñoz C, Villanueva A and Esteller M:
Epigenetic loss of the PIWI/piRNA machinery in human testicular
tumorigenesis. Epigenetics. 9:113–118. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sciamanna I, Vitullo P, Curatolo A and
Spadafora C: A reverse transcriptase-dependent mechanism is
essential for murine preimplantation development. Genes. 2:360–373.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Akers SN, Moysich K, Zhang W, Lai Collamat
G, Miller A, Lele S, Odunsi K and Karpf AR: LINE1 and Alu
repetitive element DNA methylation in tumors and white blood cells
from epithelial ovarian cancer patients. Gynecol Oncol.
132:462–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Slotkin RK and Martienssen R: Transposable
elements and the epigenetic regulation of the genome. Nat Rev
Genet. 8:272–285. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shilatifard A: Chromatin modifications by
methylation and ubiquitination: implications in the regulation of
gene expression. Annu Rev Biochem. 75:243–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Grewal SI and Jia S: Heterochromatin
revisited. Nat Rev Genet. 8:35–46. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Heard E: Delving into the diversity of
facultative heterochromatin: the epigenetics of the inactive X
chromosome. Curr Opin Genet Dev. 15:482–489. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Corcoran AE: Immunoglobulin locus
silencing and allelic exclusion. Semin Immunol. 17:141–154. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Skok JA, Gisler R, Novatchkova M, Farmer
D, de Laat W and Busslinger M: Reversible contraction by looping of
the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol.
8:378–387. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
109
|
Klose RJ and Zhang Y: Regulation of
histone methylation by demethylimination and demethylation. Nat Rev
Mol Cell Biol. 8:307–318. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Feldman N, Gerson A, Fang J, Li E, Zhang
Y, Shinkai Y, Cedar H and Bergman Y: G9a-mediated irreversible
epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat
Cell Biol. 8:188–194. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lee E, Wang J, Jung Y, Cackowski FC and
Taichman RS: Reduction of two histone marks, H3k9me3 and H3k27me3
by epidrug induces neuroendocrine differentiation in prostate
cancer. J Cell Biochem. 119:3697–3705. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ooi L and Wood IC: Chromatin crosstalk in
development and disease: lessons from REST. Nat Rev Genet.
8:544–554. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Shi Y: Histone lysine demethylases:
emerging roles in development, physiology and disease. Nat Rev
Genet. 8:829–833. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang M, Gocke CB, Luo X, Borek D, Tomchick
DR, Machius M, Otwinowski Z and Yu H: Structural basis for
CoREST-dependent demethylation of nucleosomes by the human LSD1
histone demethylase. Mol Cell. 23:377–387. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Grewal SI and Elgin SC: Transcription and
RNA interference in the formation of heterochromatin. Nature.
447:399–406. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lee J, Ko J and Yi JY: Histone deacetylase
inhibitor (HDACi) upregulates activin A and activates the Smad
signaling pathway in melanomas. J Dermatol Sci. 90:13–20. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Terranova-Barberio M, Thomas S and Munster
PN: Host histone acetylation unlocks HDAC inhibitor potential.
Oncotarget. 8:106161–106162. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu C, Liu L, Chen X, Cheng J, Zhang H,
Zhang C, Shan J, Shen J and Qian C: LSD1 stimulates
cancer-associated fibroblasts to drive Notch3-dependent
self-renewal of liver cancer stem-like cells. Cancer Res.
78:938–949. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fei W, Chen L, Chen J, Shi Q, Zhang L, Liu
S, Li L, Zheng L and Hu X: RBP4 and THBS2 are serum biomarkers for
diagnosis of colorectal cancer. Oncotarget. 8:92254–92264. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Shi Y, Lan F, Matson C, Mulligan P,
Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation
mediated by the nuclear amine oxidase homolog LSD1. Cell.
119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Smith CD, Shu S, Mungall CJ and Karpen GH:
The Release 5.1 annotation of Drosophila melanogaster
heterochromatin. Science. 316:1586–1591. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Smallwood A, Esteve PO, Pradhan S and
Carey M: Functional cooperation between HP1 and DNMT1 mediates gene
silencing. Genes Dev. 21:1169–1178. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Peters AH, O'Carroll D, Scherthan H,
Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner
M, Kohlmaier A, et al: Loss of the Suv39h histone
methyltransferases impairs mammalian heterochromatin and genome
stability. Cell. 107:323–337. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yoon KA, Hwangbo B, Kim IJ, Park S, Kim
HS, Kee HJ, Lee JE, Jang YK, Park JG and Lee JS: Novel
polymorphisms in the SUV39H2 histone methyltransferase and the risk
of lung cancer. Carcinogenesis. 27:2217–2222. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhao Z, Hu Y, Shen X, Lao Y, Zhang L, Qiu
X, Hu J, Gong P, Cui H, Lu S, et al: HBx represses RIZ1 expression
by DNA methyltransferase 1 involvement in decreased miR-152 in
hepatocellular carcinoma. Oncol Rep. 37:2811–2818. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gibbons RJ: Histone modifying and
chromatin remodelling enzymes in cancer and dysplastic syndromes.
Hum Mol Genet. 14:R85–R92. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Lakshmikuttyamma A, Takahashi N, Pastural
E, Torlakovic E, Amin HM, Garcia-Manero G, Voralia M, Czader M,
DeCoteau JF and Geyer CR: RIZ1 is potential CML tumor suppressor
that is down-regulated during disease progression. J Hematol Oncol.
2:282009. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Espino PS, Drobic B, Dunn KL and Davie JR:
Histone modifications as a platform for cancer therapy. J Cell
Biochem. 94:1088–1102. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hamamoto R, Furukawa Y, Morita M, Iimura
Y, Silva FP, Li M, Yagyu R and Nakamura Y: SMYD3 encodes a histone
methyltransferase involved in the proliferation of cancer cells.
Nat Cell Biol. 6:731–740. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Li W, Zhang X, Lu X, You L, Song Y, Luo Z,
Zhang J, Nie J, Zheng W, Xu D, et al: 5-Hydroxymethylcytosine
signatures in circulating cell-free DNA as diagnostic biomarkers
for human cancers. Cell Res. 27:1243–1257. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Pulukuri SM, Estes N, Patel J and Rao JS:
Demethylation-linked activation of urokinase plasminogen activator
is involved in progression of prostate cancer. Cancer Res.
67:930–939. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Stepanova V, Dergilev KV, Holman KR,
Parfyonova YV, Tsokolaeva ZI, Teter M, Atochina-Vasserman EN,
Volgina A, Zaitsev SV, Lewis SP, et al: Urokinase-type plasminogen
activator (uPA) is critical for progression of tuberous sclerosis
complex 2 (TSC2)-deficient tumors. J Biol Chem. 292:20528–20543.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Foekens JA, Peters HA, Look MP, Portengen
H, Schmitt M, Kramer MD, Brünner N, Jänicke F, Meijer-van Gelder
ME, Henzen-Logmans SC, et al: The urokinase system of plasminogen
activation and prognosis in 2780 breast cancer patients. Cancer
Res. 60:636–643. 2000.PubMed/NCBI
|
|
134
|
Miyake H, Hara I, Yamanaka K, Gohji K,
Arakawa S and Kamidono S: Elevation of serum levels of
urokinase-type plasminogen activator and its receptor is associated
with disease progression and prognosis in patients with prostate
cancer. Prostate. 39:123–129. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zhang Z, Wang J, Wang X, Song W, Shi Y and
Zhang L: MicroRNA-21 promotes proliferation, migration, and
invasion of cervical cancer through targeting TIMP3. Arch Gynecol
Obstet. 297:433–442. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Qi JH, Ebrahem Q, Moore N, Murphy G,
Claesson-Welsh L, Bond M, Baker A and Anand-Apte B: A novel
function for tissue inhibitor of metalloproteinases-3 (TIMP3):
inhibition of angiogenesis by blockage of VEGF binding to VEGF
receptor-2. Nat Med. 9:407–415. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
137
|
Cui H, Hu Y, Guo D, Zhang A, Gu Y, Zhang
S, Zhao C, Gong P, Shen X, Li Y, et al: DNA methyltransferase 3A
isoform b contributes to repressing E-cadherin through cooperation
of DNA methylation and H3K27/H3K9 methylation in EMT-related
metastasis of gastric cancer. Oncogene. 37:4358–4371. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Filbin MG, Tirosh I, Hovestadt V, Shaw ML,
Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM,
et al: Developmental and oncogenic programs in H3K27M gliomas
dissected by single-cell RNA-seq. Science. 360:331–335. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Gregory PA, Bracken CP, Bert AG and
Goodall GJ: MicroRNAs as regulators of epithelial-mesenchymal
transition. Cell Cycle. 7:3112–3118. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Suarez Y and Sessa WC: MicroRNAs as novel
regulators of angiogenesis. Circ Res. 104:442–454. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Liang Z, Wu H, Reddy S, Zhu A, Wang S,
Blevins D, Yoon Y, Zhang Y and Shim H: Blockade of invasion and
metastasis of breast cancer cells via targeting CXCR4 with an
artificial microRNA. Biochem Biophys Res Commun. 363:542–546. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Henderson IR and Jacobsen SE: Epigenetic
inheritance in plants. Nature. 447:418–424. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wassenegger M, Heimes S, Riedel L and
Sanger HL: RNA-directed de novo methylation of genomic sequences in
plants. Cell. 76:567–576. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Seitz H, Youngson N, Lin SP, Dalbert S,
Paulsen M, Bachellerie JP, Ferguson-Smith AC and Cavaillé J:
Imprinted microRNA genes transcribed antisense to a reciprocally
imprinted retrotransposon-like gene. Nat Genet. 34:261–262. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Lin SP, Coan P, da Rocha ST, Seitz H,
Cavaille J, Teng PW, Takada S and Ferguson-Smith AC: Differential
regulation of imprinting in the murine embryo and placenta by the
Dlk1-Dio3 imprinting control region. Development. 134:417–426.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Sinkkonen L, Hugenschmidt T, Berninger P,
Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P and
Filipowicz W: MicroRNAs control de novo DNA methylation through
regulation of transcriptional repressors in mouse embryonic stem
cells. Nat Struct Mol Biol. 15:259–267. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Benetti R, Gonzalo S, Jaco I, Muñoz P,
Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T and Klatt P:
A mammalian microRNA cluster controls DNA methylation and telomere
recombination via Rbl2-dependent regulation of DNA
methyltransferases. Nat Struct Mol Biol. 15:268–279. 2008.
View Article : Google Scholar : PubMed/NCBI
|