Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2019 Volume 41 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 41 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells

  • Authors:
    • Yuliang Wang
    • Zhikong Liang
    • Hui Li
    • Jinglong Tao
    • Yi Sun
    • Yanhua Gong
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Biology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China, Jiangsu Provincial Corps Hospital of Chinese People's Armed Police Force, Tianjin 300309, P.R. China, Department of Histology and Embryology, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China, Department of Epidemiology, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China, Department of Immunology, Logistics University of the Chinese People's Armed Police Force, Tianjin 300309, P.R. China
  • Pages: 2575-2584
    |
    Published online on: February 5, 2019
       https://doi.org/10.3892/or.2019.7000
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Recently, emerging evidence shows that a number of long non‑coding RNAs (lncRNAs) recruit polycomb group (PcG) proteins to specific chromatin loci to silence relevant gene expression. In the present study, we provided evidence that lncRNA candidates, selected by bioinformatic analysis and nervous system polycomb 1 (NSPc1), a key polycomb repressive complex 1 (PRC1) member, were highly expressed in glioma H4 cells in contrast to that noted in non‑cancerous cells. RNA binding protein immunoprecipitation (RIP) assays demonstrated that metastasis associated lung adenocarcinoma transcript 1 (MALAT1), SOX2 overlapping transcript (SOX2OT) and maternally expressed 3 (MEG3) among the 8 candidates bound to the NSPc1 protein complex in glioma H4 cells. Furthermore, overexpression of NSPc1 caused a decrease in the expression of MALAT1 and MEG3 and increased expression of SOX2OT, while NSPc1 downregulation caused the levels of all three genes to increase. Meanwhile, suppression of the expression of MALAT1 increased the expression levels of mRNA and protein of NSPc1, whereas downregulation of the expression of SOX2OT decreased NSPc1 expression. Moreover, a significant decrease in cell growth and increased cell apoptosis were observed in the transfected H4 cells by MTT assay and flow cytometric analysis. The results showed that the reduced co‑expression between NSPc1 and MALAT1/SOX2OT decreased the proliferation and promoted the death of H4 cells more obviously than the respectively decrease in expression of NSPc1, MALAT1 and SOX2OT. Remarkably, the influence of a simultaneously decreased expression of NSPc1 and SOX2OT on promoting cell apoptosis was more obvious than the total effect of the separate downregulation of NSPc1 and SOX2OT on accelerating cell death. However, that impact was partially counteracted in the silencing of the co‑expression of MALAT1 and NSPc1. Furthermore, they cooperated to affect transcription of p21 and OCT4.Briefly, these data suggest NSPc1 polycomb protein complex binding and cross‑talk to lncRNAs in glioma H4 cells, offering new insight into the important function of polycomb protein complex and lncRNA interactions in glioma cells and provide a novel view of potential biomarkers and targets for the diagnosis and therapy of glioma.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Johnson DR and O'Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Johnsson P, Lipovich L, Grandér D and Morris KV: Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840:1063–1071. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Wilusz JE: Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta. 1859:128–138. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Prensner JR and Chinnaiyan AM: The emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C, et al: Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18:1433–1445. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Mercer TR, Dinger ME, Sunkin SM, Mehler MF and Mattick JS: Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 105:716–721. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS and Mehler MF: Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 11:142010. View Article : Google Scholar : PubMed/NCBI

10 

Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST and Leung GK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis. 48:1–8. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Morey L and Helin K: Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 35:323–332. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Sparmann A and van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 6:846–856. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Nunes M, Blanc I, Maes J, Fellous M, Robert B and McElreavey K: NSPc1, a novel mammalian Polycomb gene, is expressed in neural crest-derived structures of the peripheral nervous system. Mech Dev. 102:219–222. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Gong Y, Wang X, Liu J, Shi L, Yin B, Peng X, Qiang B and Yuan J: NSPc1, a mainly nuclear localized protein of novel PcG family members, has a transcription repression activity related to its PKC phosphorylation site at S183. FEBS Lett. 579:115–121. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Hu PS, Xia QS, Wu F, Li DK, Qi YJ, Hu Y, Wei ZZ, Li SS, Tian NY, Wei QF, et al: NSPc1 promotes cancer stem cell self-renewal by repressing the synthesis of all-trans retinoic acid via targeting RDH16 in malignant glioma. Oncogene. 36:4706–4718. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Gong Y, Yue J, Wu X, Wang X, Wen J, Lu L, Peng X, Qiang B and Yuan J: NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element. Nucleic Acids Res. 34:6158–6169. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Wu X, Gong Y, Yue J, Qiang B, Yuan J and Peng X: Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res. 36:3590–3599. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Simon JA and Kingston RE: Mechanisms of polycomb gene silencing: Knowns and unknowns. Nat Rev Mol Cell Biol. 10:697–708. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Davidovich C, Zheng L, Goodrich KJ and Cech TR: Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol. 20:1250–1257. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Gutschner T, Hämmerle M and Diederichs S: MALAT1 - a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 91:791–801. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, Ishii N and Dahiya R: Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 75:1322–1331. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Qi Y, Ooi HS, Wu J, Chen J, Zhang X, Tan S, Yu Q, Li YY, Kang Y, Li H, et al: MALAT1 long ncRNA promotes gastric cancer metastasis by suppressing PCDH10. Oncotarget. 7:12693–12703. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Lu Q, Ren S, Lu M, Zhang Y, Zhu D, Zhang X and Li T: Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics. 14:6512013. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Δ Δ C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Yao J, Zhou B, Zhang J, Geng P, Liu K, Zhu Y and Zhu W: A new tumor suppressor lncRNA ADAMTS9-AS2 is regulated by DNMT1 and inhibits migration of glioma cells. Tumour Biol. 35:7935–7944. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Laugesen A and Helin K: Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell. 14:735–751. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ and Zhou MM: Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 38:662–674. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M and Xiong Y: Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 30:1956–1962. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X, Wang LP, et al: A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 26:344–357. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J, et al: Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 8:e787002013. View Article : Google Scholar : PubMed/NCBI

32 

Shen L, Chen L, Wang Y, Jiang X, Xia H and Zhuang Z: Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J Neurooncol. 121:101–108. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Wang J, Su L, Chen X, Li P, Cai Q, Yu B, Liu B, Wu W and Zhu Z: MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed Pharmacother. 68:557–564. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Li H, Fan R, Sun M, Jiang T and Gong Y: Nspc1 regulates the key pluripotent Oct4-Nanog-Sox2 axis in P19 embryonal carcinoma cells via directly activating Oct4. Biochem Biophys Res Commun. 440:527–532. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, et al: Mutations in SOX2 cause anophthalmia. Nat Genet. 33:461–463. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC and Mattick JS: Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 15:2013–2027. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Askarian-Amiri ME, Seyfoddin V, Smart CE, Wang J, Kim JE, Hansji H, Baguley BC, Finlay GJ and Leung EY: Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer. PLoS One. 9:e1021402014. View Article : Google Scholar : PubMed/NCBI

38 

Shahryari A, Rafiee MR, Fouani Y, Oliae NA, Samaei NM, Shafiee M, Semnani S, Vasei M and Mowla SJ: Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells. 32:126–134. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Shahryari A, Jazi MS, Samaei NM and Mowla SJ: Long non- coding RNA SOX2OT: Expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front Genet. 6:1962015. View Article : Google Scholar : PubMed/NCBI

40 

Shi XM and Teng F: Up-regulation of long non-coding RNA Sox2ot promotes hepatocellular carcinoma cell metastasis and correlates with poor prognosis. Int J Clin Exp Pathol. 8:4008–4014. 2015.PubMed/NCBI

41 

Zhang Y, Yang R, Lian J and Xu H: lncRNA Sox2ot overexpression serves as a poor prognostic biomarker in gastric cancer. Am J Transl Res. 8:5035–5043. 2016.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Y, Liang Z, Li H, Tao J, Sun Y and Gong Y: NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells. Oncol Rep 41: 2575-2584, 2019.
APA
Wang, Y., Liang, Z., Li, H., Tao, J., Sun, Y., & Gong, Y. (2019). NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells. Oncology Reports, 41, 2575-2584. https://doi.org/10.3892/or.2019.7000
MLA
Wang, Y., Liang, Z., Li, H., Tao, J., Sun, Y., Gong, Y."NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells". Oncology Reports 41.4 (2019): 2575-2584.
Chicago
Wang, Y., Liang, Z., Li, H., Tao, J., Sun, Y., Gong, Y."NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells". Oncology Reports 41, no. 4 (2019): 2575-2584. https://doi.org/10.3892/or.2019.7000
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Y, Liang Z, Li H, Tao J, Sun Y and Gong Y: NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells. Oncol Rep 41: 2575-2584, 2019.
APA
Wang, Y., Liang, Z., Li, H., Tao, J., Sun, Y., & Gong, Y. (2019). NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells. Oncology Reports, 41, 2575-2584. https://doi.org/10.3892/or.2019.7000
MLA
Wang, Y., Liang, Z., Li, H., Tao, J., Sun, Y., Gong, Y."NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells". Oncology Reports 41.4 (2019): 2575-2584.
Chicago
Wang, Y., Liang, Z., Li, H., Tao, J., Sun, Y., Gong, Y."NSPc1 polycomb protein complex binds and cross‑talks to lncRNAs in glioma H4 cells". Oncology Reports 41, no. 4 (2019): 2575-2584. https://doi.org/10.3892/or.2019.7000
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team