Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2019 Volume 41 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 41 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets

  • Authors:
    • Jin‑Shu Pang
    • Zhe‑Kun Li
    • Peng Lin
    • Xiao‑Dong Wang
    • Gang Chen
    • Hai‑Biao Yan
    • Sheng‑Hua Li
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
    Copyright: © Pang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2089-2102
    |
    Published online on: February 14, 2019
       https://doi.org/10.3892/or.2019.7014
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Papillary renal cell carcinoma (PRCC) accounts for 15‑20% of all kidney neoplasms and continually attracts attention due to the increase in the incidents in which it occurs. The molecular mechanism of PRCC remains unclear and the efficacy of drugs that treat PRCC lacks sufficient evidence in clinical trials. Therefore, it is necessary to investigate the underlying mechanism in the development of PRCC and identify additional potential anti‑PRCC drugs for its treatment. The differently expressed genes (DEGs) of PRCC were identified, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for functional annotation. Then, potential drugs for PRCC treatment were predicted by Connectivity Map (Cmap) based on DEGs. Furthermore, the latent function of query drugs in PRCC was explored by integrating drug‑target, drug‑pathway and drug‑protein interactions. In total, 627 genes were screened as DEGs, and these DEGs were annotated using KEGG pathway analyses and were clearly associated with the complement and coagulation cascades, amongst others. Then, 60 candidate drugs, as predicted based on DEGs, were obtained from the Cmap database. Vorinostat was considered as the most promising drug for detailed discussion. Following protein‑protein interaction (PPI) analysis and molecular docking, vorinostat was observed to interact with C3 and ANXN1 proteins, which are the upregulated hub genes and may serve as oncologic therapeutic targets in PRCC. Among the top 20 metabolic pathways, several significant pathways, such as complement and coagulation cascades and cell adhesion molecules, may greatly contribute to the development and progression of PRCC. Following the performance of the PPI network and molecular docking tests, vorinostat exhibited a considerable and promising application in PRCC treatment by targeting C3 and ANXN1.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Wu X, Liu D, Gao X, Xie F, Tao D, Xiao X, Wang L, Jiang G and Zeng F: Inhibition of BRD4 suppresses cell proliferation and induces apoptosis in renal cell carcinoma. Cell Physiol Biochem. 41:1947–1956. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Wang C, Cai L, Liu J, Wang G, Li H, Wang X, Xu W, Ren M, Feng L, Liu P, et al: MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physiol Biochem. 43:2405–2419. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Wang J, Li M, Wang Y and Liu X: Integrating subpathway analysis to identify candidate agents for hepatocellular carcinoma. Onco Targets Ther. 9:1221–1230. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Steffens S, Janssen M, Roos FC, Becker F, Schumacher S, Seidel C, Wegener G, Thüroff JW, Hofmann R, Stöckle M, et al: Incidence and long-term prognosis of papillary compared to clear cell renal cell carcinoma-a multicentre study. Eur J Cancer. 48:2347–2352. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Lan H, Zeng J, Chen G and Huang H: Survival prediction of kidney renal papillary cell carcinoma by comprehensive LncRNA characterization. Oncotarget. 8:110811–110829. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Sourbier C, Liao PJ, Ricketts CJ, Wei D, Yang Y, Baranes SM, Gibbs BK, Ohanjanian L, Spencer Krane L, Scroggins BT, et al: Targeting loss of the Hippo signaling pathway in NF2-deficient papillary kidney cancers. Oncotarget. 9:10723–10733. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Chakraborty S, Tarantolo SR, Batra SK and Hauke RJ: Incidence and prognostic significance of second primary cancers in renal cell carcinoma. Am J Clin Oncol. 36:132–142. 2013. View Article : Google Scholar : PubMed/NCBI

9 

De P, Otterstatter MC, Semenciw R, Ellison LF, Marrett LD and Dryer D: Trends in incidence, mortality, and survival for kidney cancer in Canada, 1986–2007. Cancer Causes Control. 25:1271–1281. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Ke X, Zeng X, Wei X, Shen Y, Gan J, Tang H and Hu Z: MiR-514a-3p inhibits cell proliferation and epithelial-mesenchymal transition by targeting EGFR in clear cell renal cell carcinoma. Am J Transl Res. 9:5332–5346. 2017.PubMed/NCBI

11 

Akhtar M, Al-Bozom IA and Al Hussain T: Papillary renal cell carcinoma (PRCC): An update. Adv Anat Pathol. Nov 30–2018.(Epub ahead of print). doi: 10.1097/PAP.0000000000000220. PubMed/NCBI

12 

Courthod G, Tucci M, Di Maio M and Scagliotti GV: Papillary renal cell carcinoma: A review of the current therapeutic landscape. Crit Rev Oncol Hematol. 96:100–112. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Sleire L, Førde HE, Netland IA, Leiss L, Skeie BS and Enger PØ: Drug repurposing in cancer. Pharmacol Res. 124:74–91. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Zhang Y, Huang JC, Cai KT, Yu XB, Chen YR, Pan WY, He ZL, Lv J, Feng ZB and Chen G: Long noncoding RNA HOTTIP promotes hepatocellular carcinoma tumorigenesis and development: A comprehensive investigation based on bioinformatics, qRTPCR and metaanalysis of 393 cases. Int J Oncol. 51:1705–1721. 2017. View Article : Google Scholar : PubMed/NCBI

16 

He Z, Tang F, Lu Z, Huang Y, Lei H, Li Z and Zeng G: Analysis of differentially expressed genes, clinical value and biological pathways in prostate cancer. Am J Transl Res. 10:1444–1456. 2018.PubMed/NCBI

17 

Yang X, Zhu S, Li L, Zhang L, Xian S, Wang Y and Cheng Y: Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis. Onco Targets Ther. 11:1457–1474. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, et al: Meta- and orthogonal integration of influenza ‘OMICs’ data defines a role for UBR4 in virus budding. Cell Host Microbe. 18:723–735. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Wang J, Vasaikar S, Shi Z, Greer M and Zhang B: WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45:W130–W137. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al: The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 313:1929–1935. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Qu XA and Rajpal DK: Applications of Connectivity Map in drug discovery and development. Drug Discov Today. 17:1289–1298. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Zhong Y, Chen EY, Liu R, Chuang PY, Mallipattu SK, Tan CM, Clark NR, Deng Y, Klotman PE, Ma'ayan A, et al: Renoprotective effect of combined inhibition of angiotensin-converting enzyme and histone deacetylase. J Am Soc Nephrol. 24:801–811. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Li C, Li X, Miao Y, Wang Q, Jiang W, Xu C, Li J, Han J, Zhang F, Gong B, et al: SubpathwayMiner: A software package for flexible identification of pathways. Nucleic Acids Res. 37:e1312009. View Article : Google Scholar : PubMed/NCBI

24 

Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P and Kuhn M: STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44:D380–D384. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Scardoni G, Tosadori G, Faizan M, Spoto F, Fabbri F and Laudanna C: Biological network analysis with CentiScaPe: Centralities and experimental dataset integration. F1000Res. 3:1392014. View Article : Google Scholar : PubMed/NCBI

27 

Interactive human protein atlas launches. Cancer Discov. 5:3392015. View Article : Google Scholar

28 

Hsin KY, Matsuoka Y, Asai Y, Kamiyoshi K, Watanabe T, Kawaoka Y and Kitano H: systemsDock: A web server for network pharmacology-based prediction and analysis. Nucleic Acids Res. 44:W507–W513. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Han L, Wang T, Wu J, Yin X, Fang H and Zhang N: A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy. Int J Nanomedicine. 11:6003–6022. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Fernández-Rodríguez C, Salar A, Navarro A, Gimeno E, Pairet S, Camacho L, Ferraro M, Serrano S, Besses C, Bellosillo B, et al: Anti-tumor activity of the combination of bendamustine with vorinostat in diffuse large B-cell lymphoma cells. Leuk Lymphoma. 57:692–699. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Duvic M and Dimopoulos M: The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: A review of clinical studies. Cancer Treat Rev. 43:58–66. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Zinzani PL, Bonthapally V, Huebner D, Lutes R, Chi A and Pileri S: Panoptic clinical review of the current and future treatment of relapsed/refractory T-cell lymphomas: Cutaneous T-cell lymphomas. Crit Rev Oncol Hematol. 99:228–240. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Djamgoz MB, Coombes RC and Schwab A: Ion transport and cancer: From initiation to metastasis. Philos Trans R Soc Lond B Biol Sci. 369:201300922014. View Article : Google Scholar : PubMed/NCBI

34 

Guglietta S and Rescigno M: Hypercoagulation and complement: Connected players in tumor development and metastases. Semin Immunol. 28:578–586. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Samatov TR, Wicklein D and Tonevitsky AG: L1CAM: Cell adhesion and more. Prog Histochem Cytochem. 51:25–32. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Kourtidis A and Anastasiadis PZ: Bringing together cell-to-cell adhesion and miRNA biology in cancer research. Future Oncol. 12:1211–1214. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Brower V: Adhesion molecules, stem cells, and the microenvironment in acute myeloid leukemia. J Natl Cancer Inst. 108:djw1132016. View Article : Google Scholar : PubMed/NCBI

38 

Turaga SM and Lathia JD: Adhering towards tumorigenicity: Altered adhesion mechanisms in glioblastoma cancer stem cells. CNS Oncol. 5:251–259. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Hamidi H and Ivaska J: Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 18:533–548. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Tang Q, Zhang H, Kong M, Mao X and Cao X: Hub genes and key pathways of non-small lung cancer identified using bioinformatics. Oncol Lett. 16:2344–2354. 2018.PubMed/NCBI

41 

Zhang Y, Zhang J, Shen Q, Yin W, Huang H, Liu Y and Ni Q: High expression of Nectin-4 is associated with unfavorable prognosis in gastric cancer. Oncol Lett. 15:8789–8795. 2018.PubMed/NCBI

42 

Chang HY, Chang HM, Wu TJ, Chaing CY, Tzai TS, Cheng HL, Raghavaraju G, Chow NH and Liu HS: The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis. J Biomed Sci. 24:612017. View Article : Google Scholar : PubMed/NCBI

43 

Zimpfer A, Maruschke M, Rehn S, Kundt G, Litzenberger A, Dammert F, Zettl H, Stephan C, Hakenberg OW and Erbersdobler A: Prognostic and diagnostic implications of epithelial cell adhesion/activating molecule (EpCAM) expression in renal tumours: A retrospective clinicopathological study of 948 cases using tissue microarrays. BJU Int. 114:296–302. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Alimbretov D, Askarova S, Umbayev B, Davis T and Kipling D: Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int J Mol Sci. 19:E16902018. View Article : Google Scholar : PubMed/NCBI

45 

Shechter D, Dormann HL, Allis CD and Hake SB: Extraction, purification and analysis of histones. Nat Protoc. 2:1445–1457. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Valenzuela-Fernández A, Cabrero JR, Serrador JM and Sánchez-Madrid F: HDAC6: A key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 18:291–297. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Kiweler N, Brill B, Wirth M, Breuksch I, Laguna T, Dietrich C, Strand S, Schneider G, Groner B, Butter F, et al: The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol. 92:2227–2243. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Aggarwal R, Thomas S, Pawlowska N, Bartelink I, Grabowsky J, Jahan T, Cripps A, Harb A, Leng J, Reinert A, et al: Inhibiting histone deacetylase as a means to reverse resistance to angiogenesis inhibitors: Phase I study of abexinostat plus pazopanib in advanced solid tumor malignancies. J Clin Oncol. 35:1231–1239. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Chun P: Therapeutic effects of histone deacetylase inhibitors on kidney disease. Arch Pharm Res. 41:162–183. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Dokmanovic M, Clarke C and Marks PA: Histone deacetylase inhibitors: Overview and perspectives. Mol Cancer Res. 5:981–989. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Schmitt T, Mayer-Steinacker R, Mayer F, Grünwald V, Schütte J, Hartmann JT, Kasper B, Hüsing J, Hajda J, Ottawa G, et al: Vorinostat in refractory soft tissue sarcomas-Results of a multi-centre phase II trial of the German Soft Tissue Sarcoma and Bone Tumour Working Group (AIO). Eur J Cancer. 64:74–82. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Pan CH, Chang YF, Lee MS, Wen BC, Ko JC, Liang SK and Liang MC: Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells. BMC Cancer. 16:8572016. View Article : Google Scholar : PubMed/NCBI

53 

Yoo C, Ryu MH, Na YS, Ryoo BY, Lee CW and Kang YK: Vorinostat in combination with capecitabine plus cisplatin as a first-line chemotherapy for patients with metastatic or unresectable gastric cancer: Phase II study and biomarker analysis. Br J Cancer. 114:1185–1190. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Li H, Wang X, Zhang C, Cheng Y, Yu M, Zhao K, Ge W, Cai A, Zhang Y, Han F, et al: HDAC1-induced epigenetic silencing of ASPP2 promotes cell motility, tumour growth and drug resistance in renal cell carcinoma. Cancer Lett. 432:121–131. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, et al: Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 487:482–485. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Sung JA, Sholtis K, Kirchherr J, Kuruc JD, Gay CL, Nordstrom JL, Bollard CM, Archin NM and Margolis DM: Vorinostat renders the replication-competent latent reservoir of human immunodeficiency virus (HIV) vulnerable to clearance by CD8 T cells. EBioMedicine 23: 52–58, 2017. J Clin Invest. 127:3126–3135. 2017.PubMed/NCBI

57 

Mota TM, Rasmussen TA, Rhodes A, Tennakoon S, Dantanarayana A, Wightman F, Hagenauer M, Roney J, Spelman T, Purcell DFJ, et al: No adverse safety or virological changes 2 years following vorinostat in HIV-infected individuals on antiretroviral therapy. AIDS. 31:1137–1141. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Pili R, Liu G, Chintala S, Verheul H, Rehman S, Attwood K, Lodge MA, Wahl R, Martin JI, Miles KM, et al: Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial. Br J Cancer. 116:874–883. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Schmeel LC, Schmeel FC, Blaum-Feder S and Schmidt-Wolf IG: In vitro efficacy of naftifine against lymphoma and multiple myeloma. Anticancer Res. 35:5921–5926. 2015.PubMed/NCBI

60 

Bognar Z, Fekete K, Antus C, Hocsak E, Bognar R, Tapodi A, Boronkai A, Farkas N, Gallyas F Jr, Sumegi B, et al: Desethylamiodarone-A metabolite of amiodarone-Induces apoptosis on T24 human bladder cancer cells via multiple pathways. PLoS One. 12:e01894702017. View Article : Google Scholar : PubMed/NCBI

61 

Chang YL, Liu ST, Wang YW, Lin WS and Huang SM: Amiodarone promotes cancer cell death through elevated truncated SRSF3 and downregulation of miR-224. Oncotarget. 9:13390–13406. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Felix F and Fontenele J: Valproic acid may be tested in patients with H3F3A-mutated high-grade gliomas. J Clin Oncol. 34:3104–3105. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Cha HY, Lee BS, Chang JW, Park JK, Han JH, Kim YS, Shin YS, Byeon HK and Kim CH: Downregulation of Nrf2 by the combination of TRAIL and Valproic acid induces apoptotic cell death of TRAIL-resistant papillary thyroid cancer cells via suppression of Bcl-xL. Cancer Lett. 372:65–74. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Xi W, Chen X, Sun J, Wang W, Huo Y, Zheng G, Wu J, Li Y, Yang A and Wang T: Combined treatment with valproic acid and 5-Aza-2′-deoxycytidine synergistically inhibits human clear cell renal cell carcinoma growth and migration. Med Sci Monit. 24:1034–1043. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Wei M, Mao S, Lu G, Li L, Lan X, Huang Z, Chen Y, Zhao M, Zhao Y and Xia Q: Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal. BMC Cancer. 18:4342018. View Article : Google Scholar : PubMed/NCBI

66 

Mao S, Lu G, Lan X, Yuan C, Jiang W, Chen Y, Jin X and Xia Q: Valproic acid inhibits epithelialmesenchymal transition in renal cell carcinoma by decreasing SMAD4 expression. Mol Med Rep. 16:6190–6199. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Tajima S, Waki M, Doi W, Hayashi K, Takenaka S, Fukaya Y and Kimura R: Acquired cystic disease-associated renal cell carcinoma with a focal sarcomatoid component: Report of a case showing more pronounced polysomy of chromosomes 3 and 16 in the sarcomatoid component. Pathol Int. 65:89–94. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Hayes SA, Pandiri AR, Ton TV, Hong HH, Clayton NP, Shockley KR, Peddada SD, Gerrish K, Wyde M, Sills RC, et al: Renal cell carcinomas in vinylidene chloride-exposed male B6C3F1 mice are characterized by oxidative stress and TP53 pathway dysregulation. Toxicol Pathol. 44:71–87. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Malouf GG, Ali SM, Wang K, Balasubramanian S, Ross JS, Miller VA, Stephens PJ, Khayat D, Pal SK, Su X, et al: Genomic characterization of renal cell carcinoma with sarcomatoid dedifferentiation pinpoints recurrent genomic alterations. Eur Urol. 70:348–357. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Casuscelli J, Weinhold N, Gundem G, Wang L, Zabor EC, Drill E, Wang PI, Nanjangud GJ, Redzematovic A, Nargund AM, et al: Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma. JCI insight. 2:926882017. View Article : Google Scholar : PubMed/NCBI

71 

Gao Y, Li J, Qiao N, Meng Q, Zhang M, Wang X, Jia J, Yang S, Qu C, Li W, et al: Adrenomedullin blockade suppresses sunitinib-resistant renal cell carcinoma growth by targeting the ERK/MAPK pathway. Oncotarget. 7:63374–63387. 2016.PubMed/NCBI

72 

Miyazaki A, Miyake H and Fujisawa M: Molecular mechanism mediating cytotoxic activity of axitinib in sunitinib-resistant human renal cell carcinoma cells. Clin Transl Oncol. 18:893–900. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Ye H, Wang WG, Cao J and Hu XC: SPARCL1 suppresses cell migration and invasion in renal cell carcinoma. Mol Med Rep. 16:7784–7790. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Ohnami S, Ohshima K, Nagashima T, Urakami K, Shimoda Y, Saito J, Naruoka A, Hatakeyama K, Mochizuki T, Serizawa M, et al: Comprehensive characterization of genes associated with the TP53 signal transduction pathway in various tumors. Mol Cell Biochem. 431:75–85. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pang JS, Li ZK, Lin P, Wang XD, Chen G, Yan HB and Li SH: The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets. Oncol Rep 41: 2089-2102, 2019.
APA
Pang, J., Li, Z., Lin, P., Wang, X., Chen, G., Yan, H., & Li, S. (2019). The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets. Oncology Reports, 41, 2089-2102. https://doi.org/10.3892/or.2019.7014
MLA
Pang, J., Li, Z., Lin, P., Wang, X., Chen, G., Yan, H., Li, S."The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets". Oncology Reports 41.4 (2019): 2089-2102.
Chicago
Pang, J., Li, Z., Lin, P., Wang, X., Chen, G., Yan, H., Li, S."The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets". Oncology Reports 41, no. 4 (2019): 2089-2102. https://doi.org/10.3892/or.2019.7014
Copy and paste a formatted citation
x
Spandidos Publications style
Pang JS, Li ZK, Lin P, Wang XD, Chen G, Yan HB and Li SH: The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets. Oncol Rep 41: 2089-2102, 2019.
APA
Pang, J., Li, Z., Lin, P., Wang, X., Chen, G., Yan, H., & Li, S. (2019). The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets. Oncology Reports, 41, 2089-2102. https://doi.org/10.3892/or.2019.7014
MLA
Pang, J., Li, Z., Lin, P., Wang, X., Chen, G., Yan, H., Li, S."The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets". Oncology Reports 41.4 (2019): 2089-2102.
Chicago
Pang, J., Li, Z., Lin, P., Wang, X., Chen, G., Yan, H., Li, S."The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets". Oncology Reports 41, no. 4 (2019): 2089-2102. https://doi.org/10.3892/or.2019.7014
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team