|
1
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends-an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pang C, Guan Y, Li H, Chen W and Zhu G:
Urologic cancer in China. Jpn J Clin Oncol. 46:497–501. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang KQ, Liu Y, Huang QH, Mo N, Zhang QY,
Meng QG and Cheng JW: Bone marrow-derived mesenchymal stem cells
induced by inflammatory cytokines produce angiogenetic factors and
promote prostate cancer growth. BMC Cancer. 17:8782017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Balkwill F and Mantovani A: Inflammation
and cancer: Back to virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Daniels NA, Ewing SK, Zmuda JM, Wilt TJ
and Bauer DC; Osteoporotic Fractures in Men (MrOS) Research Group,
: Correlates and prevalence of prostatitis in a large
community-based cohort of older men. Urology. 66:964–970. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
De Marzo AM, Marchi VL, Epstein JI and
Nelson WG: Proliferative inflammatory atrophy of the prostate:
Implications for prostatic carcinogenesis. Am J Pathol.
155:1985–1992. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dong X, Fu J, Yin X, Cao S, Li X, Lin L
and Ni J; Huyiligeqi: Emodin: A review of its pharmacology,
toxicity and pharmacokinetics. Phytother Res. 30:1207–1218. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cha TL, Qiu L, Chen CT, Wen Y and Hung MC:
Emodin down-regulates androgen receptor and inhibits prostate
cancer cell growth. Cancer Res. 65:2287–2295. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Diakos CI, Charles KA, McMillan DC and
Clarke SJ: Cancer-related inflammation and treatment effectiveness.
Lancet Oncol. 15:e493–e503. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu Z, Xiao B, Mao XH and Zou QM: Research
progress on relationship between inflammationand tumor. Prog Mod
Biomed. 9:591–594. 2009.
|
|
11
|
Karan D and Dubey S: From inflammation to
prostate cancer: The role of inflammasomes. Adv Urol.
2016:31403722016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Taniguchi K and Karin M: NF-κB,
inflammation, immunity and cancer: Coming of age. Nat Rev Immunol.
18:309–324. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mantovani A, Allavena P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Laberge RM, Sun Y, Orjalo AV, Patil CK,
Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, et
al: MTOR regulates the pro-tumorigenic senescence-associated
secretory phenotype by promoting IL1A translation. Nat Cell Biol.
17:1049–1061. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu K, Park C, Li S, Lee KW, Liu H, He L,
Soung NK, Ahn JS, Bode AM, Dong Z, et al: Aloe-emodin suppresses
prostate cancer by targeting the mTOR complex 2. Carcinogenesis.
33:1406–1411. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Denko NC: Hypoxia, HIF1 and glucose
metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shalapour S and Karin M: Immunity,
inflammation, and cancer: An eternal fight between good and evil. J
Clin Invest. 125:3347–3355. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang Y, Liang C and Chen X: Research
progress on the relationship between chronic prostatic inflammation
and prostate cancer. J Mod Urol. 20:207–210. 2015.
|
|
19
|
Zhang Q, Liu S, Ge D, Zhang Q, Xue Y,
Xiong Z, Abdel-Mageed AB, Myers L, Hill SM, Rowan BG, et al:
Interleukin-17 promotes formation and growth of prostate
adenocarcinoma in mouse models. Cancer Res. 72:2589–2599. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH
and Park MH: Interleukin 32, inflammation and cancer. Pharmacol
Ther. 174:127–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang Z and Qi Y: Inflammation: Tumor
catalyst. World Latest Med Inf. 16:70–71. 2016.
|
|
22
|
Sfanos KS, Yegnasubramanian S, Nelson WG
and De Marzo AM: The inflammatory microenvironment and microbiome
in prostate cancer development. Nat Rev Urol. 15:11–24. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sfanos KS, Bruno TC, Maris CH, Xu L,
Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB and Drake CG:
Phenotypic analysis of prostate-infiltrating lymphocytes reveals
TH17 and Treg skewing. Clin Cancer Res. 14:3254–3261. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Su huan and Chen ming: Research progress
on the mechanism of inflammatory response and tumor
microenvironment in prostate cancer. J Southeast Univ. 36:847–851.
2017.(Medical Science Edition).
|
|
25
|
Mills EL, Kelly B and O'Neill LAJ:
Mitochondria are the powerhouses of immunity. Nat Immunol.
18:488–498. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Afshar-Kharghan V: The role of the
complement system in cancer. J Clin Invest. 127:780–789. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhou W, Hu W and Xu W: Effects of
CXCL16/CXCR6 axis on proliferation and invasion of human prostate
cancer cell line in vitro. Med J Wuhan University. 31:479–482.
2010.
|
|
28
|
Kuo PL, Shen KH, Hung SH and Hsu YL:
CXCL1/GROα increases cell migration and invasion of prostate cancer
by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic
regulation. Carcinogenesis. 33:2477–2487. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang L, et al: The relationship between
chemokines, inflammation, and prostate cancer. Mod Prev Med.
42:952–956. 2015.
|
|
30
|
Schoenfeld JD, Margalit DN, Kasperzyk JL,
Shui IM, Rider JR, Epstein MM, Meisner A, Kenfield SA, Martin NE,
Nguyen PL, et al: A single nucleotide polymorphism in inflammatory
gene RNASEL predicts outcome after radiation therapy for localized
prostate cancer. Clin Cancer Res. 19:1612–1619. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wiklund F, Jonsson BA, Brookes AJ,
Strömqvist L, Adolfsson J, Emanuelsson M, Adami HO,
Augustsson-Bälter K and Grönberg H: Genetic analysis of the RNASEL
gene in hereditary, familial, and sporadic prostate cancer. Clin
Cancer Res. 10:7150–7156. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Izumi K, Li L and Chang C: Androgen
receptor and immune inflammation in benign prostatic hyperplasia
and prostate cancer. Clin Investig (Lond). 4:935–950. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu ZL, Yuan Y, Geng H and Xia SJ:
Influence of immune inflammation on androgen receptor expression in
benign prostatic hyperplasia tissue. Asian J Androl. 14:316–319.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang X, Lin WJ, Izumi K, Jiang Q, Lai KP,
Xu D, Fang LY, Lu T, Li L, Xia S and Chang C: Increased infiltrated
macrophages in benign prostatic hyperplasia (BPH): Role of stromal
androgen receptor in macrophage-induced prostate stromal cell
proliferation. J Biol Chem. 287:18376–18385. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Vignozzi L, Cellai I, Santi R, Lombardelli
L, Morelli A, Comeglio P, Filippi S, Logiodice F, Carini M, Nesi G,
et al: Antiinflammatory effect of androgen receptor activation in
human benign prostatic hyperplasia cells. J Endocrinol. 214:31–43.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ellem SJ, Wang H, Poutanen M and
Risbridger GP: Increased endogenous estrogen synthesis leads to the
sequential induction of prostatic inflammation (prostatitis) and
prostatic pre-malignancy. Am J Pathol. 175:1187–1199. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Aryee MJ, Liu W, Engelmann JC, Nuhn P,
Gurel M, Haffner MC, Esopi D, Irizarry RA, Getzenberg RH, Nelson
WG, et al: DNA methylation alterations exhibit intraindividual
stability and interindividual heterogeneity in prostate cancer
metastases. Sci Transl Med. 5:169ra102013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mani RS, Amin MA, Li X, Kalyana-Sundaram
S, Veeneman BA, Wang L, Ghosh A, Aslam A, Ramanand SG, Rabquer BJ,
et al: Inflammation-induced oxidative stress mediates gene fusion
formation in prostate cancer. Cell Rep. 17:2620–2631. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Giraud F, Akué-Gédu R, Nauton L, Candelon
N, Debiton E, Théry V, Anizon F and Moreau P: Synthesis and
biological activities of 4-substituted pyrrolo[2,3-a]carbazole Pim
kinase inhibitors. Eur J Med Chem. 56:225–236. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Deng G, Ju X, Meng Q, Yu ZJ and Ma LB:
Emodin inhibits the proliferation of PC3 prostate cancer cells in
vitro via the Notch signaling pathway. Mol Med Rep. 12:4427–4433.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Masaldan S and Iyer VV: Exploration of
effects of emodin in selected cancer cell lines: Enhanced growth
inhibition by ascorbic acid and regulation of LRP1 and AR under
hypoxia-like conditions. J Appl Toxicol. 34:95–104. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ok S, Kim SM, Kim C, Nam D, Shim BS, Kim
SH and Ahn KS, Choi SH and Ahn KS: Emodin inhibits invasion and
migration of prostate and lung cancer cells by downregulating the
expression of chemokine receptor CXCR4. Immunopharmacol
Immunotoxicol. 34:768–778. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yu CX, Zhang XQ, Kang LD, Zhang PJ, Chen
WW, Liu WW, Liu QW and Zhang JY: Emodin induces apoptosis in human
prostate cancer cell LNCaP. Asian J Androl. 10:625–634. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang XZ, Wang J, Huang C, Chen YY, Shi
GY, Hu QS and Yi J: Emodin enhances cytotoxicity of
chemotherapeutic drugs in prostate cancer cells: The mechanisms
involve ROS-mediated suppression of multidrug resistance and
hypoxia inducible factor-1. Cancer Biol Ther. 7:468–475. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kumar S, Yadav M, Yadav A, Rohilla P and
Yadav JP: Antiplasmodial potential and quantification of aloin and
aloe-emodin in Aloe vera collected from different climatic regions
of India. BMC Complement Altern Med. 17:3692017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mijatovic S, Maksimovic-Ivanic D, Radovic
J, Miljkovic DJ, Harhaji LJ, Vuckovic O, Stosic-Grujicic S,
Mostarica Stojkovic M and Trajkovic V: Anti-glioma action of aloe
emodin: The role of ERK inhibition. Cell Mol Life Sci. 62:589–598.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yan Y, Su X, Liang Y, Zhang J, Shi C, Lu
Y, Gu L and Fu L: Emodin azide methyl anthraquinone derivative
triggers mitochondrial-dependent cell apoptosis involving in
caspase-8- mediated bid cleavage. Mol Cancer Ther. 7:1688–1697.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yan YY, Zheng LS, Zhang X, Chen LK, Singh
S, Wang F, Zhang JY, Liang YJ, Dai CL, Gu LQ, et al: Blockade of
Her2/neu binding to Hsp90 by emodin azide methyl anthraquinone
derivative induces proteasomal degradation of Her2/neu. Mol Pharm.
8:1687–1697. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yan YY, Fu LW, Zhang W, Ma HS, Ma CG,
Liang YJ, Liu BY, Yu JZ, Wu QZ and Dong YM: Emodin azide methyl
anthraquinone derivative induced G0/G1 arrest in
HER2/neu-overexpressing MDA-MB-453 breast cancer cells. J BUON.
19:650–655. 2014.PubMed/NCBI
|
|
50
|
Wen-Feng W, Feng-Sen Z, Wen-Na Z, Ze-Dong
B, Hui-Jun Y, Jing-Wei S and Yao-Feng Y: The synthesis, structural
study and anticancer activity evaluation of emodin derivatives
containing conjugative groups. Med Chem. 9:545–552. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xing JY, Song GP, Deng JP, Jiang LZ, Xiong
P, Yang BJ and Liu SS: Antitumor effects and mechanism of novel
emodin rhamnoside derivatives against human cancer cells in vitro.
PLoS One. 10:e01447812015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Thimmegowda NR, Park C, Shwetha B,
Sakchaisri K, Liu K, Hwang J, Lee S, Jeong SJ, Soung NK, Jang JH,
et al: Synthesis and antitumor activity of natural compound aloe
emodin derivatives. Chem Biol Drug Des. 85:638–644. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gebhardt R, Lerche KS, Götschel F, Günther
R, Kolander J, Teich L, Zellmer S, Hofmann HJ, Eger K, Hecht A and
Gaunitz F: 4-Aminoethylamino-emodin-a novel potent inhibitor of
GSK-3beta-acts as an insulin-sensitizer avoiding downstream effects
of activated beta-catenin. J Cell Mol Med. 14:1276–1293. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang X, Zhao W, Hu X, Hao X, Hong F, Wang
J, Xiang L, Zhu Y, Yuan Y, Ho RJ, et al: Synthesis,
characterization, and anticancer activity of novel lipophilic
emodin cationic derivatives. Chem Biol Drug Des. 86:1451–1457.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lee YR, Chen TC, Lee CC, Chen CL, Ahmed
Ali AA, Tikhomirov A, Guh JH, Yu DS and Huang HS: Ring fusion
strategy for synthesis and lead optimization of sulfur-substituted
anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising
scaffold of antitumor agents. Eur J Med Chem. 102:661–676. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Silva JAF, Bruni-Cardoso A, Augusto TM,
Damas-Souza DM, Barbosa GO, Felisbino SL, Stach-Machado DR and
Carvalho HF: Macrophage roles in the clearance of apoptotic cells
and control of inflammation in the prostate gland after castration.
Prostate. 78:95–103. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dart DA, Uysal-Onganer P and Jiang WG:
Prostate-specific PTen deletion in mice activates inflammatory
microRNA expression pathways in the epithelium early in hyperplasia
development. Oncogenesis. 6:4002017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mantovani A: Cancer: An infernal triangle.
Nature. 448:547–548. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Baek HS, Park N, Kwon YJ, Ye DJ, Shin S
and Chun YJ: Annexin A5 suppresses cyclooxygenase-2 expression by
downregulating the protein kinase C-ζ-nuclear factor-κB signaling
pathway in prostate cancer cells. Oncotarget. 8:74263–74275. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhu P, Baek SH, Bourk EM, Ohgi KA,
Garcia-Bassets I, Sanjo H, Akira S, Kotol PF, Glass CK, Rosenfeld
MG and Rose DW: Macrophage/cancer cell interactions mediate hormone
resistance by a nuclear receptor derepression pathway. Cell.
124:615–629. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen G, Huang AC, Zhang W, Zhang G, Wu M,
Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1
contributes to immunosuppression and is associated with anti-PD-1
response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Winograd-Katz SE, Fässler R, Geiger B and
Legate KR: The integrin adhesome: From genes and proteins to human
disease. Nat Rev Mol Cell Biol. 15:273–288. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Eke I, Dickreuter E and Cordes N: Enhanced
radiosensitivity of head and neck squamous cell carcinoma cells by
β1 integrin inhibition. Radiother Oncol. 104:235–242. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu
BM and Li J: Emerging role of microRNAs in regulating macrophage
activation and polarization in immune response and inflammation.
Immunology. 148:237–248. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ouimet M, Ediriweera HN, Gundra UM, Sheedy
FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C,
Fullerton MD, Cecchini K, et al: MicroRNA-33-dependent regulation
of macrophage metabolism directs immune cell polarization in
atherosclerosis. J Clin Invest. 125:4334–4348. 2015. View Article : Google Scholar : PubMed/NCBI
|