Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2019 Volume 42 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2019 Volume 42 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer

  • Authors:
    • Zhigang Liu
    • Wenhe Zhu
    • Xiangyu Kong
    • Xi Chen
    • Xinyi Sun
    • Wei Zhang
    • Ruowen Zhang
  • View Affiliations / Copyright

    Affiliations: Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China, Department of Biochemistry, Jilin Medical University, Jilin, Jilin 132013, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1893-1903
    |
    Published online on: August 27, 2019
       https://doi.org/10.3892/or.2019.7294
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer requires aerobic glycolysis to supply the energy required for proliferation. Existing evidence has revealed that blocking glycolysis results in apoptosis of cancer cells. Tanshinone IIA (Tan IIA) is a diterpenoid naphthoquinone found in traditional Chinese medicine, Danshen (Salvia sp.). Tan IIA exhibits potential anticancer activity. However, its effect on cell viability of human cervical cancer cells and its mechanism are unknown. The aim of the present study was to determine the effect of Tan IIA on proliferation and glucose metabolism in cervical cancer cells. Cell viability was measured by MTT assay, apoptosis was determined using flow cytometry and glucose uptake, lactate production, and adenosine triphosphate content were measured to assess glucose metabolism. The expression of apoptosis‑associated proteins was detected by western blotting and the antitumor activity of Tan IIA in vivo was evaluated in cervical carcinoma‑bearing mice. The results revealed Tan IIA treatment resulted in a considerable reduction in the viability of SiHa cells. Tan IIA decreased the expression of HPV oncogenes E6 and E7, induced apoptosis and also decreased glycolysis by suppressing the activity of the intracellular AKT/mTOR and HIF‑1α. In vivo, treatment with Tan IIA resulted in a 72.7% reduction in tumor volume. The present study highlights the potential therapeutic value of Tan IIA, which functions by inducing apoptosis and may be associated with inhibition of glycolysis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Lecavalier-Barsoum M, Chaudary N, Han K, Koritzinsky M, Hill R and Milosevic M: Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int J Cancer. 143:1017–1028. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Testa U, Petrucci E, Pasquini L, Castelli G and Pelosi E: Ovarian cancers: Genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines (Basel). 5(pii): E162018. View Article : Google Scholar : PubMed/NCBI

3 

Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63:1129–1136. 1990. View Article : Google Scholar : PubMed/NCBI

4 

Wardak S: Human papillomavirus (HPV) and cervical cancer. Med Dosw Mikrobiol. 68:73–84. 2016.PubMed/NCBI

5 

Suh DH, Kim M, Kim K, Kim HJ, Lee KH and Kim JW: Major clinical research advances in gynecologic cancer in 2016: 10-year special edition. J Gynecol Oncol. 28:e452017. View Article : Google Scholar : PubMed/NCBI

6 

Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada's Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center & Research Institute at Christiana Care Health Services, et al, . Integrated genomic and molecular characterization of cervical cancer. Nature. 543:378–384. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Wentzensen N, Schiffman M, Palmer T and Arbyn M: Triage of HPV positive women in cervical cancer screening. J Clin Virol. 76 (Suppl 1):S49–S55. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Fox BW: Medicinal plants in tropical medicine. 2. Natural products in cancer treatment from bench to the clinic. Trans R Soc Trop Med Hyg. 85:221991. View Article : Google Scholar : PubMed/NCBI

9 

Pokrzywa CJ, Abbott DE, Matkowskyj KA, Ronnekleiv-Kelly SM, Winslow ER, Weber SM and Fisher AV: Natural history and treatment trends in pancreatic cancer subtypes. J Gastrointest Surg. 23:768–778. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G, et al: Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol. 210:525–534. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Li C, Han X, Hong Z, Wu J and Bao L: The interplay between autophagy and apoptosis induced by tanshinone IIA in prostate cancer cells. Tumour Biol. 37:7667–7674. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Liao P, Hemmerlin A, Bach TJ and Chye ML: The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv. 34:697–713. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Zhang Y, Jiang P, Ye M, Kim SH, Jiang C and Lü J: Tanshinones: Sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci. 13:13621–13666. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Fan G, Jiang X, Wu X, Fordjour PA, Miao L, Zhang H, Zhu Y and Gao X: Anti-inflammatory activity of tanshinone IIA in LPS-Stimulated RAW264.7 macrophages via miRNAs and TLR4-NF-κB pathway. Inflammation. 39:375–384. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Li Q, Shen L, Wang Z, Jiang HP and Liu LX: Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 84:106–114. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Wang S, Cang S and Liu D: Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol. 9:342016. View Article : Google Scholar : PubMed/NCBI

17 

Cui ZT, Liu JP and Wei WL: The effects of tanshinone IIA on hypoxia/reoxygenation-induced myocardial microvascular endothelial cell apoptosis in rats via the JAK2/STAT3 signaling pathway. Biomed Pharmacother. 83:1116–1126. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Yano S, Takehara K, Ming Z, Tan Y, Han Q, Li S, Bouvet M, Fujiwara T and Hoffman RM: Tumor-specific cell-cycle decoy by Salmonella typhimurium A1-R combined with tumor-selective cell-cycle trap by methioninase overcome tumor intrinsic chemoresistance as visualized by FUCCI imaging. Cell Cycle. 15:1715–1723. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Parr R, Harbottle A, Jakupciak JP and Singh G: Mitochondria and cancer. Biomed Res Int. 2013:7637032013. View Article : Google Scholar : PubMed/NCBI

20 

Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, Wei S, Crespo J, Wan S, Vatan L, et al: Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 17:95–103. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Wen Z, Zhang SL, Hu X and Tam KY: Targeting tumor metabolism for cancer treatment: Is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? Int J Biol Sci. 11:1390–1400. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Choe M, Brusgard JL, Chumsri S, Bhandary L, Zhao XF, Lu S, Goloubeva OG, Polster BM, Fiskum GM, Girnun GD, et al: The RUNX2 transcription factor negatively regulates SIRT6 expression to alter glucose metabolism in breast cancer cells. J Cell Biochem. 116:2210–2226. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Lu J, Chen M, Gao S, Yuan J, Zhu Z and Zou X: LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett. 15:4358–4364. 2018.PubMed/NCBI

24 

Lu W, Hu Y, Chen G, Chen Z, Zhang H, Wang F, Feng L, Pelicano H, Wang H, Keating MJ, et al: Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol. 10:e10013262012. View Article : Google Scholar : PubMed/NCBI

25 

Pan TL, Wang PW, Hung YC, Huang CH and Rau KM: Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways. Proteomics. 13:3411–3423. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Radha M, Farrukh A, Jeyaprakash J and Gupta RC: Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett. 356:536–546. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 65:55–63. 1983. View Article : Google Scholar : PubMed/NCBI

28 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Yu W, Yang Z, Huang R, Min Z and Ye M: SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive oxygen species. Onco Targets Ther. 12:2861–2868. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Gasparre G, Porcelli AM, Lenaz G and Romeo G: Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect Biol. 5(pii): a0114112013.PubMed/NCBI

31 

Mathupala SP, Rempel A and Pedersen PL: Aberrant glycolytic metabolism of cancer cells: A remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr. 29:339–343. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Vaz CV, Marques R, Alves MG, Oliveira PF, Cavaco JE, Maia CJ and Socorro S: Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. J Cancer Res Clin Oncol. 142:5–16. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Protzel C, Knoedel J, Zimmermann U, Woenckhaus C, Poetsch M and Giebel J: Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas. Histol Histopathol. 22:1197–1204. 2007.PubMed/NCBI

34 

Varier I, Keeley BR, Krupar R, Patsias A, Dong J, Gupta N, Parasher AK, Genden EM, Miles BA, Teng M, et al: Clinical characteristics and outcomes of oropharyngeal carcinoma related to high-risk non-human papillomavirus16 viral subtypes. Head Neck. 38:1330–1337. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Ristriani T, Fournane S, Orfanoudakis G, Travé G and Masson M: A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells. Oncogene. 28:762–772. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Termini L, Boccardo E, Esteves GH, Hirata R Jr, Martins WK, Colo AE, Neves EJ, Villa LL and Reis LF: Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment. BMC Med Genomics. 1:29. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Yu Y, Liu X, Yang Y, Zhao X, Xue J, Zhang W and Yang A: Effect of FHIT loss and p53 mutation on HPV-infected lung carcinoma development. Oncol Lett. 10:392–398. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Hirokawa M, Kawabata Y and Miura AB: Dysregulation of apoptosis and a novel mechanism of defective apoptotic signal transduction in human B-cell neoplasms. Leuk Lymphoma. 43:243–249. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Aschoff AP, Günther E and Jirikowski GF: Tissue transglutaminase in the small intestine of the mouse as a marker for apoptotic cells. Colocalization with DNA fragmentation. Histochem Cell Biol. 113:313–317. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Cha Y, Park DW, Lee CH, Baek SH, Kim SY, Kim JR and Kim JH: Arsenic trioxide induces apoptosis in human colorectal adenocarcinoma HT-29 cells through ROS. Cancer Res Treat. 38:54–60. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Zhu W, Zhang W, Xu N, Li Y, Xu J, Zhang H, Li Y, Lv S, Liu W and Wang H: Dihydroartemisinin induces apoptosis and downregulates glucose metabolism in JF-305 pancreatic cancer cells. Rsc Adv. 8:20692–20700. 2018. View Article : Google Scholar

42 

Zhu W, Zhang W, Li Y, et al: Possible mechanism of apoptosis induced by microwave radiation in human cervical carcinoma cell HeLa. Radiat Protect. 22:378–2258. 2013.

43 

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Hou X, Hongzhi DU and Yuan S: Research progress of tumor metabolism for antitumor drugs. Cancer Res Prev Treat. 44:231–235. 2017.

45 

Zhivotovsky B and Orrenius S: The Warburg effect returns to the cancer stage. Semin Cancer Biol. 19:1–3. 2009. View Article : Google Scholar : PubMed/NCBI

46 

North PE, Waner M, Mizeracki A and Mihm MC Jr: GLUT1: A newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol. 31:11–22. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Qiu P, Man S, Yang H, Liu Y, Liu Z, Ma L, Yu P and Gao W: Metabolic regulatory network alterations reveal different therapeutic effects of cisplatin and Rhizoma paridis saponins in Lewis pulmonary adenoma mice. RSC Adv. 6:115029–115038. 2016. View Article : Google Scholar

48 

Dayan F, Bilton RL, Laferrière J, Trottier E, Roux D, Pouyssegur J and Mazure NM: Activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway. J Cell Physiol. 218:167–174. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Wang F, Zhang W, Guo L, Cheng J, Liu P and Chen B: Gambogic acid suppresses hypoxia-induced HIF-1α/VEGF expression via inhibiting PI3K/Akt/mTOR pathway in multiple myeloma cells. Blood. 124:52302014.

50 

Yeh YH, Hsiao HF, Yeh YC, Chen TW and Li TK: Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res. 37:702018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Z, Zhu W, Kong X, Chen X, Sun X, Zhang W and Zhang R: Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol Rep 42: 1893-1903, 2019.
APA
Liu, Z., Zhu, W., Kong, X., Chen, X., Sun, X., Zhang, W., & Zhang, R. (2019). Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncology Reports, 42, 1893-1903. https://doi.org/10.3892/or.2019.7294
MLA
Liu, Z., Zhu, W., Kong, X., Chen, X., Sun, X., Zhang, W., Zhang, R."Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer". Oncology Reports 42.5 (2019): 1893-1903.
Chicago
Liu, Z., Zhu, W., Kong, X., Chen, X., Sun, X., Zhang, W., Zhang, R."Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer". Oncology Reports 42, no. 5 (2019): 1893-1903. https://doi.org/10.3892/or.2019.7294
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Z, Zhu W, Kong X, Chen X, Sun X, Zhang W and Zhang R: Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol Rep 42: 1893-1903, 2019.
APA
Liu, Z., Zhu, W., Kong, X., Chen, X., Sun, X., Zhang, W., & Zhang, R. (2019). Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncology Reports, 42, 1893-1903. https://doi.org/10.3892/or.2019.7294
MLA
Liu, Z., Zhu, W., Kong, X., Chen, X., Sun, X., Zhang, W., Zhang, R."Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer". Oncology Reports 42.5 (2019): 1893-1903.
Chicago
Liu, Z., Zhu, W., Kong, X., Chen, X., Sun, X., Zhang, W., Zhang, R."Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer". Oncology Reports 42, no. 5 (2019): 1893-1903. https://doi.org/10.3892/or.2019.7294
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team