Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2019 Volume 42 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 42 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

CAR T cell therapy: A new era for cancer treatment (Review)

  • Authors:
    • Rimjhim Mohanty
    • Chitran Roy Chowdhury
    • Solomon Arega
    • Prakriti Sen
    • Pooja Ganguly
    • Niladri Ganguly
  • View Affiliations / Copyright

    Affiliations: Cancer Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
  • Pages: 2183-2195
    |
    Published online on: September 24, 2019
       https://doi.org/10.3892/or.2019.7335
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer has recently been identified as the leading cause of mortality worldwide. Several conventional treatments and cytotoxic immunotherapies have been developed and made available to the market. Considering the complex behavior of tumors and the involvement of numerous genetic and cellular factors involved in tumorigenesis and metastasis, there is a need to develop a promising immunotherapy that targets tumors at both the cellular and genetic levels. Chimeric antigen receptor (CAR) T cell therapy has emerged as a novel therapeutic T cell engineering practice, in which T cells derived from patient blood are engineered in vitro to express artificial receptors targeted to a specific tumor antigen. These directly identify the tumor antigen without the involvement of the major histocompatibility complex. The use of this therapy in the last few years has been successful, with a reduction in remission rates of up to 80% for hematologic cancer, particularly for acute lymphoblastic leukemia (ALL) and non‑Hodgkin lymphomas, such as large B cell lymphoma. Recently, anti‑CD19 CAR therapy, or UCART19, has been shown to be efficacious in treating relapsed/refractory hematologic cancer. Several other cell surface tumor antigens, such as CD20 and CD22, found in the majority of leukemias and lymphomas are considered potential targets by pharmaceutical companies and research organizations, and trials have been ongoing in this direction. Although this therapeutic regimen is currently confined to treating hematologic cancer, the increasing involvement of several auxiliary techniques, such as bispecific CAR, Tan‑CAR, inhibitory‑CAR, combined antigens, the clustered regularly interspaced short palindromic repeats gene‑editing tool and nanoparticle delivery, may substantially improve its overall anticancer effects. CAR therapy has the potential to offer a rapid and safer treatment regime to treat non‑solid and solid tumors. The present review presents an insight into the advantages and the advances of CAR immunotherapy and presents the emerging discrepancy of CAR therapy over usual forms of therapy, such as chemotherapy and radiotherapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Restifo NP, Dudley ME and Rosenberg SA: Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat Rev Immunol. 12:269–281. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Galluzzi L and Martin P: CARs on a highway with roadblocks. Oncoimmunology. 6:e13884862017. View Article : Google Scholar : PubMed/NCBI

3 

Perales MA, Kebriaei P, Kean LS and Sadelain M: Building a safer and faster CAR: Seatbelts, airbags, and CRISPR. Biol Blood Marrow Transplant. 24:27–31. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Sharpe M and Mount N: Genetically modified T cells in cancer therapy: Opportunities and challenges. Dis Model Mech. 8:337–350. 2015. View Article : Google Scholar : PubMed/NCBI

5 

McGuirk J, Waller EK, Qayed M, Abhyankar S, Ericson S, Holman P, Keir C and Myers GD: Building blocks for institutional preparation of CTL019 delivery. Cytotherapy. 19:1015–1024. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Prasad V: Immunotherapy: Tisagenlecleucel-the first approved CAR-T-cell therapy: Implications for payers and policy makers. Nat Rev Clin Oncol. 15:11–12. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, et al: Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol. 15:47–62. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Miliotou AN and Papadopoulou LC: CAR T-cell therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol. 19:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Mirzaei HR, Jamali A, Jafarzadeh L, Masoumi E, Alishah K, Fallah Mehrjardi K, Emami SAH, Noorbakhsh F, Till BG and Hadjati J: Construction and functional characterization of a fully human anti-CD19 chimeric antigen receptor (huCAR)-expressing primary human T cells. J Cell Physiol. 234:9207–9215. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Vormittag P, Gunn R, Ghorashian S and Veraitch FS: A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol. 53:164–181. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Abate-Daga D and Davila ML: CAR models: Next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 3:160142016. View Article : Google Scholar : PubMed/NCBI

12 

Yang QY, Yang JD and Wang YS: Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett. 190:201–205. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Mirzaei HR, Mirzaei H, Namdar A, Rahmati M, Till BG and Hadjati J: Predictive and therapeutic biomarkers in chimeric antigen receptor T-cell therapy: A clinical perspective. J Cell Physiol. 234:5827–5841. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Dai H, Wang Y, Lu X and Han W: Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. 108(pii): djv4392016.PubMed/NCBI

15 

Mirzaei HR, Mirzaei H, Lee SY, Hadjati J and Till BG: Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 380:413–423. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Morgan RA: Chapter 17-Adoptive T-cell therapy: Engineering T-cell receptors. Cancer Immunother (Sec Ed). 261–272. 2013. View Article : Google Scholar

17 

Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, et al: Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 118:6050–6056. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Duong CP, Yong CS, Kershaw MH, Slaney CY and Darcy PK: Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol. 67:46–57. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Sadelain M: CAR therapy: The CD19 paradigm. J Clin Invest. 125:3392–3400. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Eshhar Z: The T-body approach: Redirecting T cells with antibody specificity. Handb Exp Pharmacol. 329–342. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Brentjens R, Yeh R, Bernal Y, Riviere I and Sadelain M: Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 18:666–668. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG, Lin Y, Pagel JM, Budde LE, et al: CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot clinical trial results. Blood. 119:3940–3950. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Park JH and Brentjens RJ: Are all chimeric antigen receptors created equal? J Clin Oncol. 33:651–653. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Qian L, Li D, Ma L, He T, Qi F, Shen J and Lu XA: The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing. Cell Immunol. 304-305:49–54. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Lock D, Mockel-Tenbrinck N, Drechsel K, Barth C, Mauer D, Schaser T, Kolbe C, Al Rawashdeh W, Brauner J, Hardt O, et al: Automated manufacturing of potent CD20-directed chimeric antigen receptor T cells for clinical use. Hum Gene Ther. 28:914–925. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Tang XY, Sun Y, Zhang A, Hu GL, Cao W, Wang DH, Zhang B and Chen H: Third-generation CD28/4-1BB chimeric antigen receptor T cells for chemotherapy relapsed or refractory acute lymphoblastic leukaemia: A non-randomised, open-label phase I trial protocol. BMJ Open. 6:e0139042016. View Article : Google Scholar : PubMed/NCBI

27 

Yeku OO and Brentjens RJ: Armored CAR T-cells: Utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 44:412–418. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Chmielewski M and Abken H: TRUCKs: The fourth generation of CARs. Expert Opin Biol Ther. 15:1145–1154. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE and Gilham DE: CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol Ther Oncolytics. 8:41–51. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, Palmer DC, Reger RN, Borman ZA, Zhang L, et al: Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 70:6725–6734. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Giacca M and Zacchigna S: Virus-mediated gene delivery for human gene therapy. J Control Release. 161:377–388. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Yi Y, Noh MJ and Lee KH: Current Advances in retroviral gene therapy. Curr Gene Ther. 11:218–228. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Kidd ME, Shin S and Shea LD: Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J Control Release. 157:80–85. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Munñoz-López M and García-Perez JL: DNA transposons: Nature and applications in genomics. Curr Genomics. 11:115–128. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Morita D, Nishio N, Saito S, Tanaka M, Kawashima N, Okuno Y, Suzuki S, Matsuda K, Maeda Y, Wilson MH, et al: Enhanced expression of Anti-CD19 chimeric antigen receptor in piggyBac transposon-engineered T cells. Mol Ther Methods Clin Dev. 8:131–140. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, Jena B, Dawson MJ, Kumaresan PR, Su S, et al: Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest. 126:3363–3376. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Manuri PV, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S, Dawson MJ, Huls H, Lee DA, Rao PH, et al: piggyBac Transposon/Transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther. 21:427–437. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Yarmush ML, Golberg A, Serša G, Kotnik T and Miklavčič D: Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu Rev Biomed Eng. 16:295–320. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Chicaybam L, Sodre AL, Curzio BA and Bonamino MH: An efficient low cost method for gene transfer to T lymphocytes. PLoS One. 8:e602982013. View Article : Google Scholar : PubMed/NCBI

40 

Chicaybam L, Barcelos C, Peixoto B, Carneiro M, Limia CG, Redondo P, Lira C, Paraguassú-Braga F, Vasconcelos ZF, Barros L and Bonamino MH: An efficient electroporation protocol for the genetic modification of mammalian cells. Front Bioeng Biotechnol. 4:992017. View Article : Google Scholar : PubMed/NCBI

41 

Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M and Miklavčič D: Electroporation-based applications in biotechnology. Trends Biotechnol. 33:480–488. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Ramamoorth M and Narvekar A: Non viral vectors in gene therapy-an overview. J Clin Diagn Res. 9:GE01–GE06. 2015.PubMed/NCBI

43 

Yin H, Kauffman KJ and Anderson DG: Delivery technologies for genome editing. Nat Rev Drug Discov. 16:387–399. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS and Stephan MT: In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 12:813–820. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Miller MA: Nanoparticles improve economic mileage for CARs. Sci Transl Med. 9(pii): eaan27842017. View Article : Google Scholar : PubMed/NCBI

46 

Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG, Jiang X, Pillarisetty VG, Pillai SPS, Wittrup KD and Stephan MT: Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J Clin Invest. 127:2176–2191. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann K, Kurrikoff K, Zou X and Langel Ü: Magnetic nanoparticle assisted Self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci Rep. 7:91592017. View Article : Google Scholar : PubMed/NCBI

48 

Kebriaei P: CAR T-cell therapies: Overcoming the challenges and new strategies. Clin Lymphoma Myeloma Leuk. 17 (Suppl 2):S74–S78. 2017. View Article : Google Scholar

49 

Bonifant CL, Jackson HJ, Brentjens RJ and Curran KJ: Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 3:160112016. View Article : Google Scholar : PubMed/NCBI

50 

Brudno JN and Kochenderfer JN: Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood. 127:3321–3330. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Paietta E: Immunobiology of acute leukemia. In: Neoplastic diseases of the bloodSpringer; Cham: pp. 237–279. 2018

53 

Zah E, Lin MY, Jensen MC, Silva-Benedict A and Chen YY: Abstract IA12: Combating antigen escape with CD19/CD20 bispecific CAR-T cell therapy. Cancer Immunol Res 5 (3 Suppl). IA122017.

54 

Majzner RG and Mackall CL: Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8:1219–1226. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Zhu M, Wu B, Brandl C, Johnson J, Wolf A, Chow A and Doshi S: Blinatumomab, a Bispecific T-cell Engager (BiTE(®)) for CD-19 targeted cancer immunotherapy: Clinical pharmacology and its implications. Clin Pharmacokinet. 55:1271–1288. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Martyniszyn A, Krahl AC, André MC, Hombach AA and Abken H: CD20-CD19 Bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther. 28:1147–1157. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Zhu F, Shah N, Xu H, Schneider D, Orentas R, Dropulic B, Hari P and Keever-Taylor CA: Closed-system manufacturing of CD19 and dual-targeted CD20/19 chimeric antigen receptor T cells using the CliniMACS prodigy device at an academic medical center. Cytotherapy. 20:394–406. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y, Yan X, Clark R, Reyes A, Stefanich E, et al: Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 7:287ra702015. View Article : Google Scholar : PubMed/NCBI

59 

Zhang W, Liu Y, Wang Y, Wang C, Yang QM, Zhu HL and Han WD: Long-term safety and efficacy of CART-20 cells in patients with refractory or relapsed B-cell non-Hodgkin lymphoma: 5-years follow-up results of the phase I and IIa trials. Signal Transduct Target Ther. 2:170542017. View Article : Google Scholar : PubMed/NCBI

60 

Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK, et al: Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest. 126:3036–3052. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Schneider D, Xiong Y, Wu D, Nӧlle V, Schmitz S, Haso W, Kaiser A, Dropulic B and Orentas RJ: A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer. 5:422017. View Article : Google Scholar : PubMed/NCBI

62 

Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schönfeld K, Koch J, Dotti G, et al: TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2:e1052013. View Article : Google Scholar : PubMed/NCBI

63 

Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et al: HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et al: Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 20:506–518. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Ott PA, Hodi FS and Robert C: CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 19:5300–5309. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al: Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Iwai Y, Hamanishi J, Chamoto K and Honjo T: Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 24:262017. View Article : Google Scholar : PubMed/NCBI

70 

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, et al: PD-1 Blockade with Nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 372:311–319. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, Radford J, Ribrag V, Molin D, Vassilakopoulos TP, et al: Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 35:2125–2132. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Barbee MS, Ogunniyi A, Horvat TZ and Dang TO: Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother. 49:907–937. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Curran MA, Kim M, Montalvo W, Al-Shamkhani A and Allison JP: Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS One. 6:e194992011. View Article : Google Scholar : PubMed/NCBI

74 

Seidel JA, Otsuka A and Kabashima K: Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front Oncol. 8:862018. View Article : Google Scholar : PubMed/NCBI

75 

Ren J, Liu X, Fang C, Jiang S, June CH and Zhao Y: Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 23:2255–2266. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Azijli K, Stelloo E, Peters GJ and Van Den Eertwegh AJ: New developments in the treatment of metastatic melanoma: Immune checkpoint inhibitors and targeted therapies. Anticancer Res. 34:1493–1505. 2014.PubMed/NCBI

77 

Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR and Fu YX: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 124:687–695. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Shi H, Sun M, Liu L and Wang Z: Chimeric antigen receptor for adoptive immunotherapy of cancer: Latest research and future prospects. Mol Cancer. 13:2192014. View Article : Google Scholar : PubMed/NCBI

79 

Liu L, Sun M and Wang Z: Adoptive T-cell therapy of B-cell malignancies: Conventional and physiological chimeric antigen receptors. Cancer Lett. 316:1–5. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Minutolo NG, Hollander EE and Powell DJ Jr: The emergence of universal immune receptor T cell therapy for cancer. Front Oncol. 9:1762019. View Article : Google Scholar : PubMed/NCBI

81 

Zhao J, Lin Q, Song Y and Liu D: Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 11:1322018. View Article : Google Scholar : PubMed/NCBI

82 

Lohmueller JJ, Ham JD, Kvorjak M and Finn OJ: mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 7:e13686042018. View Article : Google Scholar

83 

Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, et al: Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 9:eaaj20132017. View Article : Google Scholar : PubMed/NCBI

84 

Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L and Koehl U: Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 6:212015. View Article : Google Scholar : PubMed/NCBI

85 

Klingemann H: Are natural killer cells superior CAR drivers? Oncoimmunology. 3:e281472014. View Article : Google Scholar : PubMed/NCBI

86 

Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, Zeng T, Huang H, Zhang X, Sun W, et al: Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 8:297–310. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Boissel L, Betancur-Boissel M, Lu W, Krause DS, Van Etten RA, Wels WS and Klingemann H: Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology. 2:e265272013. View Article : Google Scholar : PubMed/NCBI

88 

Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, Wels WS, Ottmann OG and Tonn T: CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 20:1287–1294. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Hermanson DL and Kaufman DS: Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol. 6:1952015. View Article : Google Scholar : PubMed/NCBI

90 

Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, Yin J, You F, Zhu M, Shen W, et al: First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 8:1083–1089. 2018.PubMed/NCBI

91 

Hsu PD, Lander ES and Zhang F: Development and Applications of CRISPR-Cas9 for genome engineering. Cell. 157:1262–1278. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Haurwitz RE, Jinek M, Wiedenheft B, Zhou K and Doudna JA: Sequence- and Structure-specific RNA processing by a CRISPR endonuclease. Science. 329:1355–1358. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Cox DB, Platt RJ and Zhang F: Therapeutic genome editing: Prospects and challenges. Nat Med. 21:121–131. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Shang W, Wang F, Fan G and Wang H: Key elements for designing and performing a CRISPR/Cas9-based genetic screen. J Genet Genomics. 44:439–449. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Mirzaei HR, Pourghadamyari H, Rahmati M, Mohammadi A, Nahand JS, Rezaei A and Hadjati J: Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett. 423:95–104. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M and Sadelain M: Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 543:113–117. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Mou H, Kennedy Z, Anderson DG, Yin H and Xue W: Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 7:532015. View Article : Google Scholar : PubMed/NCBI

98 

MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, Brown AE, Triggiano MA, Hux JA, Pham CD, et al: Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther. 25:949–961. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH and Zhao Y: A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 8:17002–17011. 2017.PubMed/NCBI

100 

Grupp SA, Laetsch TW, Buechner J, Bittencourt H, Maude SL, Verneris MR, Myers GD, Boyer MW, Rives S, De Moerloose B, et al: Analysis of a global registration trial of the efficacy and safety of CTL019 in pediatric and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL). Blood. 128:2212016.

101 

Zhao Z, Chen Y, Francisco NM, Zhang Y and Wu M: The application of CAR-T cell therapy in hematological malignancies: Advantages and challenges. Acta Pharm Sin B. 8:539–551. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G and Kalos M: Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res. 2:112–120. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Mirzaei HR, Rodriguez A, Shepphird J, Brown CE and Badie B: Chimeric antigen receptors T cell therapy in solid tumor: Challenges and clinical applications. Front Immunol. 8:18502017. View Article : Google Scholar : PubMed/NCBI

104 

Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MA, Hannen RF, Cooper D, Marelli-Berg FM, Watt FM, Lechler RI, Maher J, et al: Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant. 17:931–943. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Shen CJ, Yang YX, Han EQ, Cao N, Wang YF, Wang Y, Zhao YY, Zhao LM, Cui J, Gupta P, et al: Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J Hematol Oncol. 6:332013. View Article : Google Scholar : PubMed/NCBI

106 

Owens GL, Sheard VE, Kalaitsidou M, Blount D, Lad Y, Cheadle EJ, Edmondson RJ, Kooner G, Gilham DE and Harrop R: Preclinical assessment of CAR T-cell therapy targeting the tumor antigen 5T4 in ovarian cancer. J Immunother. 41:130–140. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G, Lanzavecchia A, Seykora JT, Cotsarelis G, et al: Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 353:179–184. 2016. View Article : Google Scholar : PubMed/NCBI

108 

O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, et al: A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 9(pii): eaaa09842017. View Article : Google Scholar : PubMed/NCBI

109 

Posey AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, et al: Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 44:1444–1454. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo RP, Ayala A, Joseph Espat N, Junghans RP and Katz SC: Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother. 64:817–829. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, et al: Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 33:1688–1696. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Akce M, Zaidi MY, Waller EK, El-Rayes BF and Lesinski GB: The potential of CAR T cell therapy in pancreatic cancer. Front Immunol. 9:21662018. View Article : Google Scholar : PubMed/NCBI

113 

Bach PB, Giralt SA and Saltz LB: FDA approval of tisagenlecleucel: Promise and complexities of a $475 000 cancer drug. JAMA. 318:1861–1862. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Fala L: Yescarta (Axicabtagene Ciloleucel) second CAR T-cell therapy approved for patients with certain types of large B-cell lymphoma. Am Health Drug Benefits. 11:109–111. 2018.

115 

Hey SP and Kesselheim AS: The FDA, Juno therapeutics, and the ethical imperative of transparency. BMJ. 354:i44352016. View Article : Google Scholar : PubMed/NCBI

116 

Rotolo A, Caputo V and Karadimitris A: The prospects and promise of chimeric antigen receptor immunotherapy in multiple myeloma. Br J Haematol. 173:350–364. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Almond LM, Charalampakis M, Ford SJ, Gourevitch D and Desai A: Myeloid sarcoma: Presentation, diagnosis, and treatment. Clin Lymphoma Myeloma Leuk. 17:263–267. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, Ghobadi A, Budde LE, Bot A, Rossi JM, et al: Phase 1 results of ZUMA-1: A multicenter study of KTE-C19 Anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 25:285–295. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Qasim W, Ciocarlie O, Adams S, Inglott S, Murphy C, Rivat C, Wright G, Lucchini G, Silva J, Rao K, et al: Preliminary results of UCART19, an allogeneic anti-CD19 CAR T-cell product in a first-in-human trial (PALL) in pediatric patients with CD19+ relapsed/refractory B-cell acute lymphoblastic leukemia. Blood. 130:12712017.

120 

Cai T, Galetto R, Gouble A, Smith J, Cavazos A, Konoplev S, Lane AA, Guzman ML, Kantarjian HM, Pemmaraju N, et al: Pre-clinical studies of Anti-CD123 CAR-T cells for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 128:40392016.

121 

Gouble A, Schiffer-Mannioui C, Thomas S, Gautron AS, Poirot L and Smith J: Abstract 3763: UCART22: Allogenic adoptive immunotherapy of leukemia by targeting CD22 with CAR T-cells. Cancer Res. 77:3763. 2017.

122 

Galetto R, Chion-Sotinel I, Gouble A and Smith J: Allogenic TCRa/CS1 double knockout T-cells bearing an anti-CS1 chimeric antigen receptor: An improved immunotherapy approach for the treatment of multiple myeloma. Cancer Res. 76 (14 Suppl):Abstract nr 2289. 2016.

123 

Drent E, Groen RW, Noort WA, Themeli M, Lammerts van Bueren JJ, Parren PW, Kuball J, Sebestyen Z, Yuan H, de Bruijn J, et al: Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica. 101:616–625. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Coulter I: Compositions. US Patent 2018/0228866A1. Filed August 12 2016; issued August 16 2018.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P and Ganguly N: CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep 42: 2183-2195, 2019.
APA
Mohanty, R., Chowdhury, C.R., Arega, S., Sen, P., Ganguly, P., & Ganguly, N. (2019). CAR T cell therapy: A new era for cancer treatment (Review). Oncology Reports, 42, 2183-2195. https://doi.org/10.3892/or.2019.7335
MLA
Mohanty, R., Chowdhury, C. R., Arega, S., Sen, P., Ganguly, P., Ganguly, N."CAR T cell therapy: A new era for cancer treatment (Review)". Oncology Reports 42.6 (2019): 2183-2195.
Chicago
Mohanty, R., Chowdhury, C. R., Arega, S., Sen, P., Ganguly, P., Ganguly, N."CAR T cell therapy: A new era for cancer treatment (Review)". Oncology Reports 42, no. 6 (2019): 2183-2195. https://doi.org/10.3892/or.2019.7335
Copy and paste a formatted citation
x
Spandidos Publications style
Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P and Ganguly N: CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep 42: 2183-2195, 2019.
APA
Mohanty, R., Chowdhury, C.R., Arega, S., Sen, P., Ganguly, P., & Ganguly, N. (2019). CAR T cell therapy: A new era for cancer treatment (Review). Oncology Reports, 42, 2183-2195. https://doi.org/10.3892/or.2019.7335
MLA
Mohanty, R., Chowdhury, C. R., Arega, S., Sen, P., Ganguly, P., Ganguly, N."CAR T cell therapy: A new era for cancer treatment (Review)". Oncology Reports 42.6 (2019): 2183-2195.
Chicago
Mohanty, R., Chowdhury, C. R., Arega, S., Sen, P., Ganguly, P., Ganguly, N."CAR T cell therapy: A new era for cancer treatment (Review)". Oncology Reports 42, no. 6 (2019): 2183-2195. https://doi.org/10.3892/or.2019.7335
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team